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Abstract

A novel universal and fault-tolerant basis (set of
gates) for quantum computation is described. Such
a set is necessary to perform quantum computation
in a realistic noisy environment. The new basis con-
sists of two single-qubit gates (Hadamardandσz

1
4 ),

and one double-qubit gate (Controlled-NOT). Since
the set consisting of Controlled-NOT and Hadamard
gates is not universal, the new basis achieves uni-
versality by including only one additional elemen-
tary (in the sense that it does not include angles
that are irrational multiples ofπ) single-qubit gate,
and hence, is potentially the simplest universal basis
that one can construct. We also provide an alterna-
tive proof of universality for theonly other known
classof universal and fault-tolerant basis proposed
in [24, 16].

1. Introduction

A new model of computation based on the laws
of quantum mechanics has been shown to be su-
perior to standard (classical) computation mod-
els [25, 14]. Potential realizations of such comput-
ing devices are currently under extensive research
[7, 19, 28, 9, 12, 11, 15, 29], and the theory of using
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them in a realistic noisy environment is still devel-
oping. Two of the main requirements for error-free
operations are to have a set of gates that is both
universal for quantum computing (see [4] and refer-
ences therein), and that can operate in a noisy envi-
ronment (i.e., fault-tolerant) [23, 24, 21, 2, 18, 16].

A scheme to correct errors in quantum bits
(qubits) was proposed by Shor [23] by adopting
standard coding techniques and modifying them
to correct quantum mechanical errors induced by
the environment. In such quantum error-correction
techniques, the two states of each qubit are encoded
using a string of qubits, so that the state of the qubit
is kept in a pre-specified two-dimensional subspace
of the space spanned by the string of qubits. We re-
fer to this as the logical qubit. This is done in a way
that error in one or more (as permitted by the code)
physical qubits will not destroy the logical qubit. To
avoid errors in the computation itself, Shor [24] sug-
gested performing the computations on the logical
qubits (without first decoding them), and this type
of computation is known as fault-tolerant computa-
tion.

There are a number of requirements that a fault-
tolerant quantum circuit must satisfy. To prevent
propagation of single-qubit errors to other qubits
in the same code word, one requirement of fault-
tolerant computation is to disallow operations be-
tween any two qubits from the same codeword. This
constraint imposes significant restrictions on both
the types of unitary operations that can be performed
on the encoded logical qubits, and the quantum
error-correcting codes that can be used to encode
the logical qubits. For example, if a “double-even”



CSS code (e.g., the((7, 2, 3)) quantum code de-
scribed in [6, 27]) is used then one can show that the
following unitary operations can be fault-tolerantly
implemented:

H, σz
1
2 , Λ1(σx) =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (1)

whereH andσz
1
2 are defined in the next section, and

Λk(U) denotes the controlled–U operation withk
control bits (see [4]);Λ1(σx) is the Controlled-NOT
(CNOT) gate. So far, these operations are the only
ones that have been shown to be "directly" fault-
tolerant (in the sense that no measurements and/or
preparations of special states are required) opera-
tions. It is well known, however, that the group gen-
erated by the above operations (also referred to as
thenormalizer group) is not universal for quantum
computation. This leads to the interesting problem
of determining a basis that is both universal and can
be implemented fault-tolerantly.

There are several well-established results on the
universality of quantum bases [1, 3, 4, 5, 8]. Proofs
of universality of these bases rest primarily on the
fact that they include at least one “non-elementary”
gate, i.e., a gate that performs a rotation on single
qubits by an irrational multiple ofπ. A direct fault-
tolerant realization of such a gate, however, is not
possible; this property makes all the well-known
universal bases inappropriate for practical and noisy
quantum computation.

The search for universal and fault-tolerant bases
has led to a novel basis as proposed in the semi-
nal work of Shor [24]. It includes the Toffoli gate
in addition to the above-mentioned generators of
the normalizer group; hence, the basis can be rep-
resented by the following set{H, σz

1
2 , Λ2(σx) }.

A fault-tolerant realization of the Toffoli gate (in-
volving only the generators of the normalizer group,
preparation of a special state, and appropriate mea-
surements) has been shown in [24]; a proof of uni-
versality of this basis, however, was not included.
Later Kitaev [16] proved the universality of a basis,
comprising the set{Λ1(σz

1
2 ), H} (see Section 5.1),

that is “equivalent” to Shor’s basis, i.e., the gates in
the new basis can beexactlyrealized using gates in

Shor’s basis and vice-versa.
A number of other researchers have proposed

fault-tolerant bases that are equivalent to Shor’s ba-
sis. Knill, Laflamme, and Zurek [17] considered the
basis{H, σz

1
2 , Λ1(σz

1
2 ), Λ1(σx) } and the basis

{σz
1
2 , Λ1(σz

1
2 ), Λ1(σx) } with the ability to pre-

pare the encoded states1√
2
(|0〉L ± |1〉L)1. The uni-

versality of these bases follows from the fact that
gates in Shor’s basis can be simulated by small size
simple circuits over these new bases. Hence, while
novel fault-tolerant realizations of the relevant gates
in these bases were proposed, no new proofs of
universality was required. The same authors later
[18] studied a model in which the prepared state
cos(π/8)|0〉L + sin(π/8)|1〉L is made available, in
addition to the normalizer group gates. Again, the
universality of this model follows from the fact that
it can realize the gateΛ1(H), and consequently the
Toffoli gate. We also note that Aharonov and Ben-
Or [2] considered universal quantum systems with
basic units that havep > 2 states (referred to as
qupits). They proposed a class of quantum codes,
called polynomial codes, for such systems consist-
ing of qupits. They defined a basis for the polyno-
mial codes and proved that it is universal. However
their proof makes explicit use of qupits with more
than two states, and hence does not directly apply to
the case studied in this paper, where all operations
are done on qubits only.

In this paper, we prove the existence of a novel
basis for quantum computation that lends itself to an
elegant proof (based solely on the geometry of real
rotations in three dimensions) of universality and in
which all the gates can be easily realized in a fault-
tolerant manner. In fact, we show that the inclusion
of only one additional single-qubit operation in the
set in (1), namely,

σz
1
4 ≡

(
1 0
0 ei

π
4

)

leads to a universal and fault-tolerant basis for quan-
tum computation. Note thatσz

1
2 is not required any-

more. Thus, our basis consists of the following three
gates

H, σz
1
4 ,Λ1(σx) . (2)

1|0〉L and |1〉L refer to the states of the logical/encoded
qubits.



Proving the universality of Shor’s basis (see [16])
seems to be a more involved process than proving
the universality of the set of gates we suggest here.
Moreover, we outline a general method for fault tol-
erant realizations of a certain class of unitary opera-
tions; the fault-tolerant realizations of both theσz

1
4

and the Toffoli gates are shown to be special cases
of this general formulation.

The first part of this paper is devoted to the proof
of universality, followed by a discussion on the fault-
tolerant realization of theσz

1
4 gate, and finally an

alternate proof for the universality of Shor’s basis.
We also show in Appendix A that the new basis
proposed in this paper is not equivalent to Shor’s
basis.

2. Definitions and identities

The identityI and the Pauliσ matrices are:

I :=
(

1 0
0 1

)
, σx :=

(
0 1
1 0

)
,

σz :=
(

1 0
0 −1

)
, σy :=

(
0 −i
i 0

)
.

We mention the following useful identities:H :=
1√
2
(σx + σz), σy = iσxσz, and also, withσz

α =(
1 0
0 eiπα

)
, we have

σx = H σz H and σy = σz
1
2 σx σz

− 1
2 . (3)

We review some properties of matrices inSU(2).
Let ~σ = (σx, σy, σz). Every traceless and Her-
mitian 2 × 2 unitary matrixA can be represented
asA = n̂ · ~σ = nxσx + nyσy + nzσz, where
n̂ = (nx, ny, nz) ∈ R3 is a unit vector. From com-
mutation relations(n̂ · ~σ)2 = I, and using this fact,
exponentiation of these Pauli matrices can be easily
performed, to give

eiϕn̂·~σ = cosϕ I + i sinϕ(n̂ · ~σ).

Then, we haveeiϕ1n̂·~σ · eiϕ2n̂·~σ = ei(ϕ1+ϕ2)n̂·~σ and(
eiφ~n·σ)m = eimφ~n·σ. It should be noted that for

every matrixU in SU(2) there exist an angleϕU

and a unit vector̂nU ∈ R3, such that ([22], page
170)

U = eiϕU n̂U ·~σ .

From the similarity transformations (see identi-
ties (3) ) it follows that:

σx
α = H σz

αH,

σy
α = σz

1
2 σx

α σz
− 1

2 ,

Hα = σy
1
4 σz

α σy
− 1

4 .

Note that we can also equivalently writeσj
α =

ei
πα
2 e−i πα

2 σj . So, using our basis (2), it is possi-
ble to computeσj

m andHm for j ∈ {x, y, z} and
m ∈ {1, 1

2 ,
1
4}. These matrices form an interesting

family for quantum computation, and are generally
used to put a relative phase between|0〉 and|1〉. For
example,σz

1
2n , for integer values ofn, are used in

Shor’s Factorization algorithm [25]. Note that we
can also equivalently writeσj

α = ei
πα
2 e−i πα

2 σj .
Next, to motivate our proof, we note the connec-

tion between real rotations in three dimensions (i.e.,
elements ofSO(3)) and the group we are concerned
with, SU(2). Note that Euler decompositions pro-
vide a way to represent a general rotation by an angle
2φ about an axiŝn, Rn̂(2φ), by a product of rota-
tions about two orthogonal axes. That is,

Rn̂(2φ) = Rẑ(2α)Rŷ(2β)Rẑ(2γ). (4)

There is a local isomorphism betweenSO(3) and
SU(2). For the same parameters in (4), the follow-
ing equation is also true:

eiφn̂·~σ = eiασzeiβσyeiγσz . (5)

Thus, just as any rotation can be thought of as three
rotations about two axes, any element ofSU(2) can
be thought of as a product of three matrices, specif-
ically, powers of exponentials of Pauli matrices. In
the following section we will show that using the
operations in our basis (2), we can approximate any
“rotation” about two specific orthogonal axes, and
then by Euler decomposition, we will show how all
elements ofSU(2) can be approximated.

3. A proof of universality

The proof of universality of our basis will be bro-
ken down into two steps. In the first step we show
thatH andσz

1
4 form a dense set inSU(2); i.e. for

any element ofSU(2) and desired degree of pre-
cision, there exists a finite product ofH andσz

1
4



that approximates it to this desired degree of preci-
sion. Next we observe that for universal quantum
computation all that is needed isΛ1(σx) andSU(2)
[4].

For proving density inSU(2) using our basis, we
first show that we can construct elements in our ba-
sis which correspond to rotations by angles that are
irrational multiples ofπ in SO(3) about two orthog-
onal axes. Once we have these irrational rotations
about two orthogonal axes, then the density inSU(2)
follows simply from the local isomorphism between
SU(2) andSO(3) discussed in the previous section.

The unitary operationsU1 = σz
− 1

4 σx
1
4 and

U2 = H− 1
2 σz

− 1
4 σx

1
4 H

1
2 are exactly computable

by our basis. As mentioned in Section 1, there are
unit vectorŝn1, n̂2 ∈ R3 and anglesλ1 andλ2 such
thatU1 = eiπλ1n̂1·~σ andU2 = eiπλ2n̂2·~σ. By calcu-
lating the values of̂nj andλj we getλ1 = λ2 = λ
and

cosλπ = cos2 π
8 = 1

2(1 + 1√
2
),

~n1 = (
√

2 cot π
8 ) ẑ−x̂√

2
+ ŷ,

~n2 = (
√

2 cot π
8 )ŷ − ẑ−x̂√

2
,

wheren̂j = ~nj/‖~nj‖ and x̂, ŷ, and ẑ are the unit
vectors along the respective axes. One can easily
verify that~n1 and~n2 are orthogonal (these vectors
would need to be normalized when used in expo-
nentiation).

The numberei2πλ is a root of the irreducible
monic polynomial

x4 + x3 +
1
4
x2 + x+ 1

which is not cyclotomic (since not all coefficients
are integers), and thusλ is an irrational number (see
Appendix B Theorem B.1). Sinceλ is irrational, it
can be used to approximate any angleϕ asλm ≈
ϕ, for somem ∈ N. So we have

(
eiπλn̂j ·σ)m =

eimπλn̂j ·σ ≈ eiπϕn̂j ·σ.
Fortunately, this is all that is needed. Since, from

orthogonality of~n1 and~n2, it follows that for any
U ∈ SU(2) there are anglesα, β andγ such that
([22], page 173):

U = eiϕU n̂U ·~σ = (eiαn̂1·~σ)(eiβn̂2·~σ)(eiγn̂1·~σ) . (6)

The representation in (6) is clearly analogous to Eu-
ler rotations about three orthogonal vectors. Expan-

sion of (6) gives:

cosφ = cosβ cos(γ + α) (7)

n̂ sinφ = n̂1 cosβ sin(γ + α)
+ n̂2 sinβ cos(γ − α)
+ n̂1 × n̂2 sinβ sin(γ − α)

(8)

For any element ofU ∈ SU(2) equations (7) and (8)
can be inverted to findα, β andγ. For any element
of SU(2) equations (7) and (8) can be inverted to
find α, β and γ. SinceΛ1(σx) and SU(2) form
a universal basis for quantum computation [4], it
completes the proof of universality of our basis.

There is no guarantee that, in general, it is possi-
ble toefficiently approximatean arbitrary phaseeiϕ

by repeated applications of the available phaseeiπλ.
But using an argument similar to the one presented
in [1], we can show that for the givenλ (as defined
in (3)), for any givenε > 0, with only poly(1

ε ) it-
erations ofeiπλ we can geteiϕ within ε. However,
since our basis is already proven to be universal,
one can make use of an even better result. As it is
shown by Kitaev [16] and Solovay and Yao [26],
every universal quantum basisB is efficient, in the
sense that any unitary operation in U(2m), for con-
stantm, can be approximated withinε by a circuit
of size poly-log(1

ε ) over the basisB.

4. A fault-tolerant realization of σz
1
4

We provide a simple scheme for the fault-tolerant
realization of theσz

1
4 gate. The method describes

a general procedure that works for any quantum
code for which the elements of the normalizer group
can be implemented fault-tolerantly and involves the
creation of special eigenstates of unitary transforma-
tions.

To performσz
1
4 fault-tolerantly we use the fol-

lowing state:

|ϕ0〉 ≡ σz
1
4H|0〉 =

|0〉 + ei
π
4 |1〉√

2
, (9)

(for which we later present the preparation process).
To applyσz

1
4 to a general single qubit state|ψ〉 using

this special state|ϕ0〉, first applyΛ1(σx) from |ψ〉 to
|ϕ0〉. See Figure 1. Then measure the second qubit
(|ϕ0〉) in the computation basis. If the result is|1〉,



M

|ψ′〉L |ψ′〉L|ψ〉L

=

σz

1
4σz

1
2

|ψ〉L

|ϕ0〉L

Figure 1. Implementing σz
1
4 fault-tolerantly.

σz
1
4 σxσz

− 1
4

|~0〉 + |~1〉

α(|~0〉 + |~1〉)|ϕ0〉L + β(|~0〉 − |~1〉)|ϕ1〉L

α|ϕ0〉L + β|ϕ1〉L

Figure 2. Creation of the |ϕ0〉 eigenstate.

applyσz
1
2 to the first qubit (|ψ〉). This leads to the

desired operation, as demonstrated in the following:

|ψ〉 ⊗ |ϕ0〉 = (α|0〉 + β|1〉) ⊗ |0〉+ei π
4 |1〉√

2
Λ1(σx)−→ (α|0〉 + ei

π
4 β|1〉) ⊗ |0〉√

2

+(α|0〉 + e−i π
4 β|1〉) ⊗ ei

π
4

|1〉√
2

= σz
1
4 |ψ〉 ⊗ |0〉√

2
+ σz

− 1
4 |ψ〉 ⊗ ei

π
4

|1〉√
2
.

Clearly, the above analysis shows that all that is
necessary to performσz

1
4 fault tolerantly is the state

|ϕ0〉 and the ability to doΛ1(σx) andσz
1
2 fault-

tolerantly. For CSS codes,Λ1(σx),H andσz
1
2 can

be done fault-tolerantly [24, 13]. We next show how
to generate the state|ϕ0〉 fault-tolerantly.

Fault tolerant creation of certain particular en-
coded eigenstates has been discussed[24, 18]. We
present it in a more general way: suppose that the
fault-tolerant operationUη operates as follows:

Uη|ηi〉 = (−1)i|ηi〉 (10)

on the states|ηi〉. Thus,Uη has the states|ηi〉 as
eigenvectors with±1 as the eigenvalues. Suppose
we have access to a vector|ψ〉 such that:

|ψ〉 = α|η0〉 + β|η1〉. (11)

We show that using only bitwise operations, mea-
surements, and this|ψ〉, the eigenvectors|ηi〉 can
be obtained. Now, to get the eigenvector ofUη we
make use of a|cat〉 state:

|cat〉 = 1√
2
(|00...0〉 + |11...1〉) = 1√

2
(|~0〉 + |~1〉).

(12)

See Figure 2. ApplyingΛ1(Uη) bitwise, on|cat〉 ⊗
|ψ〉 we obtain:

|cat〉 ⊗ |ψ〉 Λ1(Uη)−→ α( |~0〉+|~1〉√
2

)|η0〉 + β( |~0〉−|~1〉√
2

)|η1〉.
(13)

A fault-tolerant measurement can be made to distin-
guish |~0〉+|~1〉√

2
from |~0〉−|~1〉√

2
[24]. This measurement

can be repeated to verify that you have it correct.

The fault-tolerant version ofσz
1
4 needs the state

|ϕ0〉, which can be generated using this formalism.
In fact, |ϕ0〉 is an eigenstate ofUϕ = σz

1
4σxσz

− 1
4 .

By commutation properties of theσz
− 1

4 operator, it
is shown thatUϕ can be realized with elements only
from the normalizer group:

Uϕ = σz
1
4σxσz

− 1
4 = ei

π
4 σz

1
2σx. (14)

Sinceσz
1
2 andσx can be done fault-tolerantly, so can

Uϕ. We have claimed that|ϕ0〉 (9) is an eigenvector,
and now we state the other eigenvector; i.e.,

|ϕ1〉 ≡ σz
1
4H|1〉 =

|0〉 − ei
π
4 |1〉√

2
(15)

One can verify now that these|ϕi〉 are eigenvectors:

Uϕ|ϕi〉 = σz
1
4σxσz

− 1
4 |ϕi〉

= σz
1
4σxσz

− 1
4 (σz

1
4H|i〉) = σz

1
4σxH|i〉

= σz
1
4Hσz|i〉 = σz

1
4H(−1)i|i〉 = (−1)i|ϕi〉

(16)



Since the|ϕi〉 vectors are orthogonal, any single
qubit state|ψ〉 can be represented as a sum of the
|ϕi〉:

|ψ〉 = α|0〉 + β|1〉 = α′|ϕ0〉 + β′|ϕ1〉. (17)

So, all the necessary ingredients are here:|ψ〉, and
an appropriate fault-tolerant operation,Uϕ. If the
outcome gives|ϕ1〉 rather than|ϕ0〉 we can flip the
state:

|ϕ0〉 = σz|ϕ1〉 = σz
|0〉−ei π

4 |1〉√
2

= |0〉+ei π
4 |1〉√

2
. (18)

Shor’s implementation of Toffoli [24] also uses a
special case of this general procedure. For perform-
ing Toffoli one usesU = Λ1(σz) ⊗ σz to get the
eigenstates:

|AND〉 =
1
2
(|000〉 + |010〉 + |100〉 + |111〉)

|NAND〉 =
1
2
(|001〉 + |011〉 + |101〉 + |110〉)

Shor uses the|ψ〉 state of:

|ψ〉 =
1√
2
(|AND〉 + |NAND〉)

= (H|0〉) ⊗ (H|0〉) ⊗ (H|0〉).

Thus the special state in [24] can be obtained by the
same general procedure.

5. Universality of Shor’s basis

5.1. Equivalence between{Λ1(σz
1
2 ), H} and

Shor’s basis’

Kitaev ([16], Lemma 4.6) has provided a proof for
the universality of the basisQ1 := {Λ1(σz

1
2 ), H}.

This basis is equivalent to Shor’s fault-tolerant ba-
sis{Λ2(σx), σz

1
2 , H}, as observed in [16]. We give

one demonstration of this equivalence here for com-
pleteness. This equivalence was also showed in-
dependently by Aharonov and Ben-Or (in journal
version of [2]).

To constructQ1 from Shor’s basis, it suffices to
constructΛ1(σz

1
2 ). First we show that the opera-

tions Λ2(σz) andΛ2(σy) can be implemented ex-

actly using gates from Shor’s basis (I2n is the iden-
tity operation onn qubits.):

Hz ≡ Hσz
− 1

2Hσz
1
2H

Λ2(σz) = (I4 ⊗H)Λ2(σx)(I4 ⊗H)
Λ2(σy) = (I4 ⊗Hz)Λ2(σx)(I4 ⊗Hz),

Next, as shown in Figure 3,Λ1(σz
1
2 ) can be im-

plemented using the identity:σxσyσz = iI2. This
reduction also shows that the universality ofQ1 im-
plies the universality of Shor’s basis.

σz
1
2

σz σy σx

Figure 3. Constructing Q1 from Shor’s ba-
sis.

Conversely, to construct Shor’s basis fromQ1, it
suffices to construct the Toffoli gateΛ2(σx). Note
thatΛ1(σx

± 1
2 ) = (I2⊗H)Λ1(σz

± 1
2 )(I2⊗H). Fig-

ure 4 gives the circuit construction of Toffoli (see
Lemma 6.1 of [4] for a systematic construction of
this circuit).

σx
1
2 σx

1
2σx

− 1
2

Figure 4. Constructing Λ2(σx) from Q1.

5.2. An alternate proof

An alternative proof, which makes use of irra-
tional “rotations” about orthogonal axes, is pre-
sented in this section for the universality of each
of the above two basis’. From either one of these
sets, the following triplet of double-qubit gates is
constructible:

G ≡ {Λ1(σx
1
2 ),Λ1(σz

1
2 ), S}



whereS is the swap gate:S|ab〉 = |ba〉 for any
single-qubit states|a〉, |b〉, which can be constructed
as

S = Λ1(σx)(H ⊗H)Λ1(σx)(H ⊗H)Λ1(σx).

For future reference, note that each of the matrices
inG are symmetric. Hence for any matrixM that is
constructible from this set, so is its transposeMT .

It will be shown that any gate in the set

Σ :=




1 0 0 0
0
0
0

SU(3)




can be approximated to arbitrary precision by a two-
qubit circuit consisting only of gates from the set
G. I.e. the setG under regular matrix multipli-
cation generates a set dense inΣ. From this set
all single-qubit unitary operationsSU(2) can be ap-
proximated, which along withΛ1(σx), has been
shown [4] to be a universal set of gates.

Though the correspondence is not a strict math-
ematical correspondence, it will be useful to make
an analogy between real rotations in 3-dimensional
space, and gates constructible fromG. Define the
following 6 elements of〈G〉:

ρx := Λ1(σx
1
2 )Λ1(σz

1
2 )−1,

ρy := Sρ−1
x S,

ρz := Λ1(σx)ρ−1
y Λ1(σx),

ρ1 := ρ−1
z Λ1(σx)Λ1(σz

1
2 )ρz,

ρ2 := ρxρy,

ρ3 := ρ1ρ2ρ
−1
1 .

(Each inverse in the above definitions are obtainable
fromG, since each element ofG is of finite group
order.) Sinceρ2 and ρ3 are unitary, they can be
unitarily diagonalized:

ρ2 = g2D(1, 1, e−i2πc, ei2πc)g−1
2 ,

ρ3 = g3D(1, 1, e−i2πc, ei2πc)g−1
3 ,

whereg2, g3 are some unitary matrices (not neces-
sarily in〈G〉),D is a diagonal matrix with the given
ordered quadruplet as the entries along the diagonal,
andei2πc = 1+i

√
15

4 for somec ∈ R. The minimum

monic polynomial forei2πc over the set of rational
numbers is

mei2πc(x) = x2 − 1
2
x+ 1 6∈ Z[x]

and thusc 6∈ Q (see Appendix B, Theorem B.1).
It follows that successive powers ofρ2 andρ3 can
approximate matrices of the forms

ρn2
2 ≈ g2D(1, 1, e−iθ2 , eiθ2)g−1

2 (19)

ρn3
3 ≈ g3D(1, 1, e−iθ3 , eiθ3)g−1

3 (20)

for any θ2, θ3 ∈ R. The powersn2 and n3 are
functions ofθ2 andθ3, as well as the desired degree
of accuracy.

The operatorsρ1, ρ2, andρ3 fix the (unnormal-
ized) states|01〉 − |10〉, |01〉 + |10〉 + |11〉, and
− |01〉 − |10〉 + 2 |11〉, resp. which form an or-
thogonal set of states. Motivated by considering
these 3 operations to be rotations about 3 orthogo-
nal vectors, a change of basis is performed into this
basis (while mapping the state|00〉 to itself). Un-
der this change of basis, equations (19) and (20) are
expressed as:

ρ̂n2
2 ≈




1 0 0 0
0 cos(θ2) 0 α sin(θ2)
0 0 1 0
0 −α∗ sin(θ2) 0 cos(θ2)




ρ̂n3
3 ≈




1 0 0 0
0 cos(θ3) −β∗ sin(θ3) 0
0 β sin(θ3) cos(θ3) 0
0 0 0 1




whereα ≡ 1+2i√
5

andβ ≡ 1+3i√
10

, which likeei2πc =
1+i

√
15

4 above, are also seen to not be roots of unity.
Given anyγ ∈ C, |γ| = 1, define the following

single-parameter group of matrices:

Mγ(θ) ≡
(

cos(θ) −γ∗ sin(θ)
γ sin(θ) cos(θ)

)
.

If γ is not a root of unity, then it is
straightforward to show that the set of matri-
ces

{
Mγ(θ)T ,Mγ(θ)

∣∣ θ ∈ R
}

generates a dense
subset ofSU(2). Given this, and the fact that
any element ofSU(3) can be decomposed into a
product ofSU(2) operations acting on orthogonal
subspaces[20], it follows that the set{

ρ̂T
2 , ρ̂2, ρ̂

T
3 , ρ̂3

}



generates a dense subset ofΣ. Since the previous
change of basis bijectively and continuously maps
Σ onto itself, the operatorsG in the original basis
generates a dense subset ofΣ. �
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A. Shor’s basis and{ H, σz
1
4 , Λ1(σx) } are

not equivalent

In this appendix we show that Shor’s basis and
our basis{H, σz

1
4 , Λ1(σx) } are not equivalent. In

fact, every gate in Shor’s basis can be exactly rep-
resented by a circuit over our basis. First, the fol-
lowing identity shows that our basis can exactly im-
plement any gate from theQ1 basis introduced in
Section 5.1:

Λ1(σz
1
2 ) =

(
I ⊗ σz

− 1
4

)
Λ1(σx)(

I ⊗ σz
− 1

4

)
Λ1(σx)(

σz
1
4 ⊗ σz

1
2

)
.

Hence, as proved in the same section, it can exactly
implement any gate from Shor’s basis. We prove
that the converse is not true. Toward this end, we
show that the unitary operationσz

1
4 , can be com-

puted exactly by our basis but not by Shor’s basis.
First we prove a useful Lemma about unitary op-
erations computable exactly by Shor’s basis. Note
that the set of integer complex numbers is the set
Z + iZ of the complex numbers with integer real
and imaginary parts.

Lemma A.1 Suppose that the unitary operation
U ∈ U(2m) is the transformation performed by a
circuit C defined over Shor’s basis withm inputs.
ThenU is of the form 1√

2`M , whereM is a2m×2m

matrix with only complex integer entries.

Proof. Suppose thatg1, . . . , gt are the gates ofC.
Each gategj can be considered as a unitary operation
in U(2m) by acting as an identity operator on the
qubits that are not inputs ofgj . Let the matrixMj ∈
U(2m) representgj . ThenU = Mt · · ·M1. If gj is

aσz
1
2 gate thenMj is a diagonal matrix with1 or i

on its diagonal. Ifgj is a Toffoli gate thenMj is a
permutation matrix (which is a 0–1 matrix). Finally,
if gj is a Hadamard gate, thenMj = 1√

2
Mj

′, where

the entries ofMj
′ are integers. This completes the

proof. �
Now sinceσz

1
4 = 1√

2

(√
2 0

0 1 + i

)
, by Lemma

A.1 it cannot be realized exactly by gates from
Shor’s basis.

B. The Cyclotomic/Rational Number Theo-
rem

Theorem B.1 For any c ∈ R, the following two
statements are logically equivalent:

(a) The minimum monic polynomialmα(x) ∈
Q[x] for α ≡ ei2πc exists and is cyclotomic.

(b) c ∈ Q.

Proof:
A number of algebraic theorems will be taken for
granted in this proof, in particular, properties of
cyclotomic polynomialsΦn(x). See, for instance,
Dummit and Foote [10] for a more thorough discus-
sion of these polynomials, as well as general prop-
erties of polynomial rings.

Assumemα(x) exists andmα(x) = Φn(x) for
somen ∈ Z+.

0 = 1 mα(α)
= 2 Φn(α)

= 3
∏
d|n

Φd(α)

= 4 αn − 1
= 5 ei2πcn − 1.

nc ∈ Z. Thusc ∈ Q.
Conversely, assumec ∈ Q. c = p

q for some

p, q ∈ Z. mα(x) exists, sinceαq−1 = ei2πcq−1 =
ei2πp − 1 = 0. Moreover,mα(x) dividesxq − 1 =∏

d|q Φd(x) in Q[x]. mα(x) ∝ Φn(x) for somen|q.
Since both are monic,mα(x) = Φn(x). �

1Definition ofmα(x)
2By assumption.
30 times anything is 0.
4Property of cyclotomic polynomials.
5Definition ofα.


