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Abstract them in a realistic noisy environment is still devel-
oping. Two of the main requirements for error-free

A novel universal and fault-tolerant basis (set of operations are to have a set of gates that is both
gates) for quantum computation is described. Suchuniversal for quantum computing (see [4] and refer-
a set is necessary to perform quantum computationences therein), and that can operate in a noisy envi-
in a realistic noisy environment. The new basis con- ronment (i.e., fault-tolerant) [23, 24, 21, 2, 18, 16].
sists of two single-qubit gatelsladamardindazi),
and one double-qubit gate (Controlled-NOT). Since
the set consisting of Controlled-NOT and Hadamard
gates is not universal, the new basis achieves uni-
versality by including only one additional elemen-

A scheme to correct errors in quantum bits
(qubits) was proposed by Shor [23] by adopting
standard coding techniques and modifying them
to correct quantum mechanical errors induced by
i th hat i incl | the environment. In such quantum error-correction
tary (in the sense that it does not include angles techniques, the two states of each qubit are encoded

that are |rra'_[|onal mqltlples Oﬁ) single ql.Jb't gate, ._using a string of qubits, so that the state of the qubit
and hence, is potentially the simplest universal basis. . o . .

. is kept in a pre-specified two-dimensional subspace
that one can construct. We also provide an alterna-

tive proof of universality for thenly other known of the space spanned by the string of qubits. We re-

| funi | and fault-tol ¢ basi q fer to this as the logical qubit. This is done in a way
icnagzo 1usr}|versa and fault-tolerant basis proposed. .4+ error in one or more (as permitted by the code)

physical qubits will not destroy the logical qubit. To

avoid errors in the computation itself, Shor [24] sug-
gested performing the computations on the logical
qubits (without first decoding them), and this type
of computation is known as fault-tolerant computa-

A new model of computation based on the laws tjon.

of quantum mechanics has been shown to be su-
perior to standard (classical) computation mod-
els [25, 14]. Potential realizations of such comput-
ing devices are currently under extensive researc

[7.19, 28,9, 12, 11, 15, 29], and the theory of using in the same code. wo_rd, on(_e requwement_of fault-
tolerant computation is to disallow operations be-

*This work was supported in part by grants from the Revolu- tween any two qubits from the same codeword. This
tionary Computing group at JPL (contract #961360), and from constraint imposes significant restrictions on both
the DARPA Ultra program (SUbCOntraCt from Purdue Univer- the types Of unltary Operatlons that can be performed
sity #530-1415-01). . .

s . on the encoded logical qubits, and the quantum
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tively: {boykin, talmo, pulver, vwani, error-correcting codes that can be used to encode
vatan }@ee.ucla.edu. the logical qubits. For example, if a “double-even”

1. Introduction

There are a number of requirements that a fault-
tolerant quantum circuit must satisfy. To prevent
hpropagation of single-qubit errors to other qubits




CSS code (e.g., th&7,2,3)) quantum code de- Shor’s basis and vice-versa.

scribed in [6, 27]) is used then one can show thatthe A number of other researchers have proposed

following unitary operations can be fault-tolerantly fault-tolerant bases that are equivalent to Shor’s ba-

implemented: sis. Knill, Laflamme, and Zurek [17] considered the
basis{ H, 0.2, A1(0.2), A1(0,) } and the basis

1000 {0.%, Ay(0.2), Ai(0,) } with the ability to pre-
H, gz%, Ai(oz) = 8 (1) 8 ? (1) pare the encoded stat%(m)L + [1)7)%. The uni-
0010 versality of these bases follows from the fact that

gates in Shor’s basis can be simulated by small size
simple circuits over these new bases. Hence, while

A q h I , ith novel fault-tolerant realizations of the relevant gates
#(U) denotes the controlled-operation withk in these bases were proposed, no new proofs of

control bits (see [4])’7\1(5"’”) isthe Centrolled-l\rI]OT | universality was required. The same authors later
(CNOT) gate. So far, these operations are the on y[18] studied a model in which the prepared state

ones thaF have been shown to be "directly” fault- cos(7/8)|0) ;. + sin(x/8)[1) is made available, in
tolerant (ln the sense that no measurements and/oL, y4ition to the normalizer group gates. Again, the
prepara‘_uons of special states are required) OID(“'\r""'universality of this model follows from the fact that
tions. Itis well known, however, thatthe group gen- i .o realize the gata, (H), and consequently the

erated by '_[he above _operatio_ns (also referred to ASToffoli gate. We also note that Aharonov and Ben-
the normellzer greupls not unlversal for' quantum Or [2] considered universal guantum systems with
computation. This leads to the interesting problem o - Lits that have > 2 states (referred to as

of determining a basis that is both universal and Canqupits) They proposed a class of quantum codes
be implemented fault-tolerantly. called polynomial codes, for such systems consist-

There are several well-established results on theing of qupits. They defined a basis for the polyno-
universality of quantum bases [1, 3, 4, 5, 8]. Proofs mial codes and proved that it is universal. However

of universality of these bases rest primarily on the 4, . proof makes explicit use of qupits with more

fact that they include at least one “non-elementary than two states, and hence does not directly apply to

gaLe, "s" a gate_ thatl perlf(')rlmi.: rot;non ]?n lsmglethe case studied in this paper, where all operations
qubits by an irrational multiple of. A direct fault- are done on qubits only.

tolerant realization of such a gate, however, is not In this paper, we prove the existence of a novel

po_55|ble; this p_roperty m_akes all the_ weII—known basis for guantum computation that lends itself to an
universal bases inappropriate for practical and no'syelegant proof (based solely on the geometry of real

quaﬂtum con;p}utatm-n. | tault-tol rotations in three dimensions) of universality and in
The search for universal and fault-tolerant b""Seswhich all the gates can be easily realized in a fault-

olerant manner. In fact, we show that the inclusion

has led to a novel basis as proposed in the semi,
nal work of Shor [24]." Itincludes the Toffoli gate of only one additional single-qubit operation in the
setin (1), namely,

whereH andaﬁ are defined in the next section, and

in addition to the above-mentioned generators of
the normalizer group; hence, the basis can be rep-

resented by the following sdtH, az%, Ao(oz) }- 0,1 = < 1 Q,T )

A fault-tolerant realization of the Toffoli gate (in- 0 e

volving only the generators of the normalizer group, leads to a universal and fault-tolerant basis for quan-
preparation of a special state, and appropriate meayym computation. Note that > is not required any-

surements) has been shown in [24]; a proof of uni- more. Thus, our basis consists of the following three
versality of this basis, however, was not included. gates

Later Kitaev [16] proved the universality of a basis, i

comprising the sefA+ (¢, 2), H} (see Section 5.1), H, 0.7, Ai(02) - (2)
that is “equivalent” to Shor’s basis, i.e., the gatesin 19y, and|1),, refer to the states of the logical/encoded
the new basis can lexactlyrealized using gates in  qubits.

N




Proving the universality of Shor's basis (see [16]) From the similarity transformations (see identi-
seems to be a more involved process than provingties (3) ) it follows that:
the universality of the set of gates we suggest here.

« . o
Moreover, we outline a general method for fault tol- 0" = Ho" H,

1

o ) ) 1
erant realizations of a certain class of unitary opera- o, = 0,200, 2,
tions; the fault-tolerant realizations of both thet H® — g ig.% i
. . Yy z Yy '
and the Toffoli gates are shown to be special cases
of this general formulation. Note that we can also equivalently writg® =

The first part of this paper is devoted to the proof ¢z e~z %. So, using our basis (2), it is possi-
of universality, followed byadiscussion onthefault- ble to computeefjm andH™ for j € {z,y,z} and
tolerant realization of the, 7 gate, and finally an  m € {1, 3, 1}. These matrices form an interesting
alternate proof for the universality of Shor’s basis. family for quantum computation, and are generally
We also show in Appendix A that the new basis used to putarelative phase betwérand|1). For
proposed in this paper is not equivalent to Shor's exampleg, 2™ o , for integer values of, are used in

basis. Shor’s Factorlzatlon algorithm [25]. Note that we
can also equivalently write;* = ¢’ ¢ "2 %,
2. Definitions and identities Next, to motivate our proof, we note the connec-
tion between real rotations in three dimensions (i.e.,
The identity] and the Pauls matrices are: elements 060(3)) and the group we are concerned
1 0 01 with, SU(2). Note that Euler decomppsitions pro-
I:= <0 1> , Op = <1 0> , vide away to represent a general rotation by an angle
2¢ about an axisi, R;(2¢), by a product of rota-
o, = <(1) 01> Oy = (0 0i> . tions about two orthogonal axes. That is,
— 1

R;(2¢0) = R:(20)Ry(268)R:(27).  (4)

We mention the following useful identitiedd :=

ﬁ (04 + 02), 0y = P00, and also, withr,* = There is a local isomorphism betwe&©(3) and
1 SU(2). For the same parameters in (4), the follow-
( ma) , We have ing equation is also true:
1 1 eiqbﬁ.& _ eiaaz ei,@ay eivaz (5)
or=Ho,H and oy=0,20,0,"2. (3) ’

Thus, just as any rotation can be thought of as three
rotations about two axes, any elemensaf(2) can
be thought of as a product of three matrices, specif-
ically, powers of exponentials of Pauli matrices. In
the following section we will show that using the
operations in our basis (2), we can approximate any
“‘rotation” about two specific orthogonal axes, and
then by Euler decomposition, we will show how all
elements oSU(2) can be approximated.

We review some properties of matricesSb(2).
Let ¢ = (04,04,0.). Every traceless and Her-
mitian 2 x 2 unitary matrix A can be represented
asA = n-0d = ngo, + nyo, + n,o,, where
fi = (ng, ny,n.) € R is a unit vector. From com-
mutation relationg# - #)? = I, and using this fact,
exponentiation of these Pauli matrices can be easily
performed, to give

eicpﬁ-&

=cosp [ +isinp(n-d).

Then, we havei#1id . giveid _ giler+¢2)id ang 3. A proof of universality

(e'7)™ = emeTo_ |t should be noted that for
every matrixU in SU(2) there exist an angle
and a unit vector;; € R3, such that ([22], page
170)

The proof of universality of our basis will be bro-
ken down into two steps. In the first step we show
that 7 ando, 1 form a dense set iBU(2); i.e. for
any element ofSU(2) and desired degree of pre-
U = elevnud cision, there exists a finite product & and o, 4



that approximates it to this desired degree of preci- sion of (6) gives:
sion. Next we observe that for universal quantum

computation all that is neededAs (o) andSU(2) cos ¢ = cos ff cos(y + a) (7)
[4]. nsin ¢ = nq cos Bsin(y + «)
For proving density irBU(2) using our basis, we + fig sin B cos(y — ) (8)

first show that we can construct elements in our ba-
sis which correspond to rotations by angles that are
irrational multiples ofr in SO(3) about two orthog-  For any element dff € SU(2) equations (7) and (8)
onal axes. Once we have these irrational rotationscan be inverted to find, 3 and~. For any element
abouttwo orthogonalaxes, thenthe densi§i{2)  of SU(2) equations (7) and (8) can be inverted to
follows simply from the local isomorphism between find o, 8 and~. SinceA;(o,) and SU(2) form
SU(2) andSO(3) discussed in the previous section. a universal basis for quantum computation [4], it
The unitary operationd/; = o, 40,4 and completes the proof of universality of our basis.
Uy = H> az_i aﬁ H> are exactly computable There is no guarantee that, in general, it is possi-
by our basis. As mentioned in Section 1, there are ble toefficiently approximatan arbitrary phase’¥
unit vectorsiy, o € R? and angles\; and\, such by repeated applications of the available phase.

+ Ny X ngsin Bsin(y — )

thatlU; = ¢/™171°7 andU, = ¢™272'7 By calcu-  But using an argument similar to the one presented
lating the values ofi; and\; we geth; = Ay = A in [1], we can show that for the givexn(as defined
and in (3)), for any givere > 0, with only poly(1) it-

erations ofe’™ we can get’# within . However,
since our basis is already proven to be universal,

=

(

cos A\t = cos? %

i1 = (V2eot §) 2 one can make use of an even better result. As it is
ity = (V2cot §)j Ty shown by Kitaev [16] and Solovay and Yao [26],
every universal quantum badisis efficient, in the

wheren; = 7;/|[7i;]| andz,j, andz are the unit  genge that any unitary operation if23'), for con-
vectors along the respective axes. One can easﬂystantm’ can be approximated withinby a circuit
verify that7i; and7i; are orthogonal (these vectors ¢« e poly-log 1) over the basi®

- :

would need to be normalized when used in expo-
nentiation).

The numbere?™ s a root of the irreducible
monic polynomial

12)7
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4. A fault-tolerant realization of o—zi

We provide a simple scheme for the fault-tolerant
1

P }xz NP realization of thes, 7 gate. The method describes
4 a general procedure that works for any quantum
which is not cyclotomic (since not all coefficients code for which the elements of the normalizer group
are integers), and thusis an irrational number (see  canbeimplemented fault-tolerantly and involves the
Appendix B Theorem B.1). Sinckis irrational, it creation of special eigenstates of unitary transforma-
can be used to approximate any anglas \m ~ tions.

o, for somem € N. So we have(emmj-a)m — To performazi fault-tolerantly we use the fol-
eImTAR -0 o piTph O lowing state:
Fortunately, this is all that is needed. Since, from i
orthogonality ofri; andiis, it follows that for any loo) = gZiH\m = 10) + |1 7 9)
U € SU(2) there are angles, 5 and~ such that V2
([22], page 173): (for which we later present the preparation process).

U = eivvivd _ (emm.a)(ewm.a)(emm‘a) . (6) Tq applyqzi toagene_ralsingle qubit stgte) using
this special statgy), firstapplyA; (o, ) from|¢)) to

The representation in (6) is clearly analogous to Eu- |¢). See Figure 1. Then measure the second qubit
ler rotations about three orthogonal vectors. Expan-(|¢g)) in the computation basis. If the result|is,
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Figure 1. Implementing o4 fault-tolerantly.
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Figure 2. Creation of the |pq) eigenstate.

applyo—Z% to the first qubit [;0)). This leads to the  See Figure 2. Applying (U,) bitwise, on|cat) ®
desired operation, as demonstrated in the following: |¢’) we obtain:

_ 0)+¢* 1) 3D D
el = el e T at) © ) "% (0210 ) 4 (D D).
1) (ajo) + €EBI1) @ (13)

(04\0> +eligl)) @' % A fault-tolerant measurement can be made to distin-
= 0.1[) ® +0z i) © el y guish '0%‘1) from \oﬂu [24]. This measurement
~ can be repeated to verify that you have it correct.
Clearly, the above almaly3|s shows that all thatis  tpe fay|t-tolerant version of. 1 needs the state
necessary to perform, 1 fault tolerantly |slthe state  |,,,), which can be generated using th|s formahsm
lpo) and the ability to doA(o,) ando,? iault- In fact, o) is an eigenstate df,, = 024%02 -5
tolerantly. For CSS coded, (¢.), H ando. 2 can
be done fault-tolerantly [24, 13]. We next show how
to generate the state) fault-tolerantly.

Fault tolerant creation of certain particular en-
coded eigenstates has been discussed[24, 18]. We
present it in a more general way: suppose that the
fault-tolerant operatiod/,, operates as follows:

By commutation properties of the, ~ i operator, it
is shown that/,, can be realized with elements only
from the normalizer group:

1 1 T 1
Up=0,40,0," 4 =€"40,20,. (14)
' Sinceazé ando,, can be done fault-tolerantly, so can
Uplni) = (=1)"|ms) (10) U,. We have claimed thap) (9) is an eigenvector,

on the states;). Thus,U, has the statel);) as and now we state the other eigenvector; i.e.,
eigenvectors witht1 as the eigenvalues. Suppose

we have access to a vectar) such that: lp1) = gZiH|1> = |0>_\;4‘1> (15)
2
) = alno) + Blm). (11) _ _

We show that using only bitwise operations, mea- One can verify now that these;) are eigenvectors:
surements, and thig)), the eigenvectors;) can 1 1

be obtained. Now, to get the eigenvectorbf we Uplipi) = 0210507 7] i)
make use of gcat) state: = 0,90,0, 1(0, 1 H|i)) = 0,10, H|i)

cat) = 5(100...0) +[11...1)) = J5(|0) + |1)). = 0,1 Ho,|i) = 0,1 H(—1)'|i) = (—1) ;)

(12) (16)



Since the|y;) vectors are orthogonal, any single actly using gates from Shor’s basis( is the iden-
qubit state|:)) can be represented as a sum of the tity operation orm qubits.):
i) ) .
) ) H, = Ho, 2Ho,2H
1) = al0) + B[1) = o’|po) + B'ler).  (17) Ao(o.) = (Ii® H)As(0p) (I © H)

So, all the necessary ingredients are hére; and Az(oy) = (I4® H,)A2(0:)(14 ® H),
an appropriate fault-tolerant operatidi,. If the )
outcome givesp; ) rather tharjp,) we can flipthe ~ Next, as shown in Figure 3\;(c.2) can be im-
state: plemented using the identityt, 0 0. = il>. This
B B reduction also shows that the universalitypf im-
lpo) = o|p1) = 0 ‘0>_\E/Z;“> = |0>+\e/l;‘1>, (18)  plies the universality of Shor’s basis.

Shor’s implementation of Toffoli [24] also uses a f
special case of this general procedure. For perform-
ing Toffoli one used/ = A4(0,) ® o, to get the
eigenstates:

=

—l 0,2 — —

1 i i :
IAND) = 5(|000> +1010) + |100) + [111)) F.lgure 3. Constructing )1 from Shor’s ba-
Sis.

1
INAND) = 2(/001) +[011) +[101) + [110))

Conversely, to construct Shor’s basis fram, it

Shor uses thiy) state of: suffices to construct the Toffoli gat®;(o,). Note

1 thatA (0, %2) = (I,@ H)A1 (0% 2 ) (I,® H). Fig-
) = ﬁ(|AND> + [NAND)) ure 4 gives the circuit construction of Toffoli (see
— (H|0)) @ (H|0Y) ® (H|0)). Lemma 6.1 of [4] for a systematic construction of
this circuit).

Thus the special state in [24] can be obtained by the

°
same general procedure. :L L

Y Y
5. Universality of Shor’s basis ? ?
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5.1. Equivalence between{Al(aZ%),H} and
Shor’s basis’ Figure 4. Constructing A (o) from Q.

Kitaev ([16], Lemma 4.6) has provided a proof for

the universality of the basi§; := {Al(ozé), H}. 5.2. An alternate proof
This basis is equivalent to Shor’s fault-tolerant ba-

sis{Ay(0,),0.2, H}, as observed in [16]. We give An alternative proof, which makes use of irra-
one demonstration of this equivalence here for com-tional “rotations” about orthogonal axes, is pre-
pleteness. This equivalence was also showed in-sented in this section for the universality of each
dependently by Aharonov and Ben-Or (in journal of the above two basis’. From either one of these
version of [2]). sets, the following triplet of double-qubit gates is
To construct); from Shor’s basis, it suffices to  constructible:
constructA; (o,2). First we show that the opera- X X
tions Ax(o.) and Ay(o,) can be implemented ex- G ={A1(0:2),A1(0,2),S}



where S is the swap gate:S|ab) = |ba) for any monic polynomial fore??™ over the set of rational
single-qubit statels), |b), which can be constructed numbers is

as 5 1

Megizne(T) = 27 — % +1¢ Z[x]

S=A(0z)(H® H)A(0)(H® H)A1(02). ,
1(0a)(H ® H)A(o2)(H @ H) A (00) and thusc ¢ Q (see Appendix B, Theorem B.1).

For future reference, note that each of the matriceslt follows that successive powers pf andp; can
in G are symmetric. Hence for any matdx thatis ~ approximate matrices of the forms
constr.uctlble from this set, so |s_|ts transpadgé . o2 ¢D(1, 1,671’92,6@'92)92_1 (19)
It will be shown that any gate in the set s iy ifs 1
p3 ~ gSD(la 176 76 )93 (20)

Q

1 ‘ 000 for any 65,03 € R. The powersny andng are
p—- 0 functions off, andés, as well as the desired degree
8 SUB3) of accuracy.

The operatorg, p2, andps fix the (unnormal-
ized) stateq01) — |10), [01) + |10) + |11), and
—101) — |10) + 2]11), resp. which form an or-
thogonal set of states. Motivated by considering
these 3 operations to be rotations about 3 orthogo-
nal vectors, a change of basis is performed into this
basis (while mapping the stafe0) to itself). Un-
der this change of basis, equations (19) and (20) are
h-expressed as:

can be approximated to arbitrary precision by a two-
qubit circuit consisting only of gates from the set
G. l.e. the setGG under regular matrix multipli-
cation generates a set denseXn From this set
all single-qubit unitary operatior8U(2) can be ap-
proximated, which along with\; (o), has been
shown [4] to be a universal set of gates.

Though the correspondence is not a strict mat

ematical correspondence, it will be useful to make 1 0 0 0
an analogy between real rotations in 3-dimensional o 0 cos(6-) 0 asin(6s)
space, and gates constructible frém Define the pam 0 0 1 0
following 6 elements ofG): 0 —a*sin(f2) 0 cos(hs)
o 1 1o 4 1 0 0 0
Pz = Al(_O-;UQ)Al(O-ZQ) ) N 0 COS(93) —B* sin(93) 0
py = Spg S, Py ™ 0 QAsin(f3) cos(f3) O
P = Al(agc)pgjll\l(ax)7 0 0 0 1
_ 1 . . .
p1 = ps'Ai(0z)A(022)pz, wherea = 12! andg = ”\/1%1 which like ei27¢ =
p2 = PaPys » % above, are also seen to not be roots of unity.
p3 = pip2py - Given anyy € C, |y| = 1, define the following

. . _— _ single-parameter group of matrices:
(Each inverse in the above definitions are obtainable gep group

from G, since each element @t is of finite group M,(0) = ( cos(f) —~*sin(h) )
order.) Sincep, and p; are unitary, they can be T\ ysin(9) cos(6)

unitarily diagonalized: If ~ is not a root of unity, then it is
_ D(1,1, =27 gi2ney —1 straightforward to show that the set of matri-

P2 B gQD(l | iz i27rc)gz—1 ces { M, (0)",M,(0)|0 € R} generates a dense

ps = gsD(1,1,e77, ") g5, subset ofSU(2). Given this, and the fact that
any element ofSU(3) can be decomposed into a

wheregs, g3 are some unitary matrices (not neces- duct ofSU2 i i h I
sarily in (G)), D is a diagonal matrix with the given ~ Pro@tct 0 ( ). operafions acting on orthogona
subspaces[20], it follows that the set

ordered quadruplet as the entries along the diagonal;
ande’?™ = ”ZT‘/E for somec € R. The minimum {53, b2, 3, 3}



generates a dense subsetbf Since the previous
change of basis bijectively and continuously maps
3} onto itself, the operator§ in the original basis
generates a dense subsetof [
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A. Shor's basis and{ H, 0.1, A(0,)} are
not equivalent

In this appendix we show that Shor’s basis and
our basis| H, 0.1, A4 (0,) } are not equivalent. In

fact, every gate in Shor’s basis can be exactly rep-

resented by a circuit over our basis. First, the fol-
lowing identity shows that our basis can exactly im-
plement any gate from th@, basis introduced in
Section 5.1:

Hence, as proved in the same section, it can exactl
implement any gate from Shor’s basis. We prove

that the converse is not true. Toward this end, we

show that the unitary operati(mﬁ, can be com-
puted exactly by our basis but not by Shor’s basis.
First we prove a useful Lemma about unitary op-

erations computable exactly by Shor’s basis. Note
that the set of integer complex numbers is the set

Z + iZ of the complex numbers with integer real
and imaginary parts.

Lemma A.1 Suppose that the unitary operation
U € U(2™) is the transformation performed by a
circuit C defined over Shor’s basis with inputs.
ThenU is of the forrr%M, whereM isa2™ x 2™

matrix with only complex integer entries.

Proof. Supposethat, ... , g; are the gates @f.
Each gatg; can be considered as a unitary operation
in U(2™) by acting as an identity operator on the
qubits that are not inputs gf. Letthe matrix)M;
U(2™) represeny;. ThenU = M, --- M. If g; is

aaZ% gate thenV/; is a diagonal matrix with or ¢
on its diagonal. Ifg; is a Toffoli gate thenV/; is a
permutation matrix (which is a 0—1 matrix). Finally,

if g; is a Hadamard gate, thédd; = %Mj’, where

the entries of\/,’ are integers. This completes the
1

proof. O
. 1 V2 0
Now sinces,1 = 7 ( 0 14
A.l it cannot be realized exactly by gates from

Shor’s basis.

), by Lemma

B. The Cyclotomic/Rational Number Theo-
rem

Theorem B.1 For any ¢ € R, the following two
statements are logically equivalent:

(a) The minimum monic polynomiab, (z) €
Q[x] for a = '™ exists and is cyclotomic.

(b) c € Q.

Proof:

A number of algebraic theorems will be taken for
granted in this proof, in particular, properties of
cyclotomic polynomialsp,,(z). See, for instance,
Dummit and Foote [10] for a more thorough discus-
sion of these polynomials, as well as general prop-

yerties of polynomial rings.

Assumem, (x) exists andm,(x) = ®,(z) for
somen € Z™.

M ()
D, ()

[ ®a()
dln

a —1

6z27rcn —1.

4

_5
ne € Z. Thusc € Q.

Conversely, assume € Q. ¢ = § for some
P, q € Z. my(x) exists, sinced —1 = 2™ -1 =
e?™ — 1 = 0. Moreover,m, () dividesz? — 1 =
14y Pa(z) InQ[z]. ma(z) o< @y (x) for somen|q.
Since both are monieyp, (z) = @, (x). O

'Definition of mq ()

2By assumption.

30 times anything is 0.

“Property of cyclotomic polynomials.
SDefinition of .



