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Abstract

A novel universal and fault-tolerant basis (set of gates) for quantum computation is described. Such a set is necessary
to perform quantum computation in a realistic noisy environment. The new basis consists only of two single-qubit gates

(Hadamard and σ1/4
z ), and one two-qubit gate (Controlled-NOT). Moreover, a new general method for fault-tolerant

implementation of quantum gates like Toffoli is introduced. This method is a generalization of the methods suggested by
Shor (Proc. FOCS’96, 1996, p. 56) and later by Knill et al. (Proc. Roy. Soc. London Ser. A 454 (1998) 365). 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

A new model of computation based on the laws of
quantum mechanics [7] has been shown to be superior
to standard (classical) computation models [19,12].
Potential realizations of such computing devices are
currently under extensive research, and the theory of
using them in a realistic noisy environment is still
developing. Two of the main requirements for error-
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free operations are to have a set of gates that is both
universal for quantum computing (see [1,3–5,8] and
references therein), and that can operate in a noisy
environment (i.e., fault-tolerant) [18,20,2,15,13,16].

A scheme to correct errors in quantum bits (qubits)
was proposed by Shor [18] by adopting standard cod-
ing techniques and modifying them to correct quan-
tum mechanical errors induced by the environment.
To avoid errors in the computation itself, Shor [20]
suggested performing the computations on the logi-
cal qubits (without first decoding them), and this type
of computation is known as fault-tolerant computa-
tion.

There are significant restrictions on both the types
of unitary operations that can be performed on the en-
coded logical qubits, and the quantum error-correcting
codes that can be used to encode the logical qubits. For
example, if the((7,1,3)) quantum code is used then
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one can show that the following unitary operations can
be fault-tolerantly implemented:

H := 1√
2

(
1 1
1 −1

)
, σ

1/2
z :=

(
1 0
0 i

)
, (1)

Λ1(σx) :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
where i= √−1, andΛk(U) denotes the Controlled-
U operation withk control bits (see [4]);Λ1(σx)

is the Controlled-NOT (CNOT) gate. So far, these
operations are the only ones that have been shown to
be “directly” fault-tolerant operations (in the sense that
no measurements and/or preparations of special states
are required). It is well known, however, that the group
generated by the above operations (often referred to
as thenormalizer group) is not universal for quantum
computation. This leads to the interesting problem of
determining a basis that is both universal and can be
implemented fault-tolerantly.

The well-established results on the universality
of quantum bases [1,3–5,8] rest primarily on the
inclusion of at least one “non-elementary” gate, i.e., a
gate that performs a rotation by an irrational multiple
of π . A direct fault-tolerant realization of such a gate,
however, is not possible; this property makes all the
well-known universal bases inappropriate for practical
and noisy quantum computation.

The search for universal and fault-tolerant bases has
led to a novel basis as proposed in the seminal work of
Shor [20]. It includes the Toffoli gate in addition to the
above-mentioned generators of the normalizer group;
hence, the basis can be represented by the following
set {H,σ 1/2

z ,Λ2(σx)}. A fault-tolerant realization of
the Toffoli gate (involving only the generators of the
normalizer group, preparation of a special state, and
appropriate measurements) has been shown in [20].
Shor realized that this basis is universal, but a proof
was not included. Later Kitaev [13] proved the uni-
versality of a basis, comprising the set{Λ1(σ

1/2
z ),H },

that is “equivalent” to Shor’s basis, i.e., the gates in
Kitaev’s basis can beexactlyrealized using gates in
Shor’s basis and vice versa. This result provides the
first published proof of the universality of a fault-
tolerant basis. The resulting universality of Shor’s ba-
sis is implicit in [13]; it is explicitly done in [6], and in
the journal version of [2].

A number of other researchers have proposed fault-
tolerant bases that are equivalent to Shor’s basis. Knill
et al. [14] considered the basis{H,σ 1/2

z ,Λ1(σ
1/2
z ),

Λ1(σx)} and the basis{σ 1/2
z ,Λ1(σ

1/2
z ),Λ1(σx)} with

the ability to prepare the encoded states1
2

√
2(|0〉L ±

|1〉L). 1 The universality of these bases follows from
the fact that gates in Shor’s basis can be simulated
by small size simple circuits over these new bases.
Hence, while novel fault-tolerant realizations of the
relevant gates in these bases were proposed, no new
proofs of universality were required. The same authors
later [15] studied a model in which the prepared
state cos(1

8π)|0〉L + sin(1
8π)|1〉L is made available,

in addition to the normalizer group gates. In [15] it
is shown that this set can realize the gateΛ1(H), and
consequently the Toffoli gate and thus every gate in
Shor’s basis; this shows the universality of this set.
One can verify that in the model proposed in [15]
it is possible to performσ 1/4

y , and hence this model
is equivalent to the basis studied in this paper. In
this paper we show that there is a simple proof of
universality for this basis, moreover this basis is not
equivalent to Shor’s basis. We also note that Aharonov
and Ben-Or [2] considered universal quantum systems
with basic units that havep > 2 states (referred to
as qubits). Gottesman and Chuang [11] present a
technique for the general construction of our fault-
tolerant implementation of the gates outside of the
normalizer group.

It should be noted that once the existence of a
universalfault-tolerant quantum basis is established,
then any other universal basis available at the physical
level can be utilized in a fault-tolerant computation:
simply approximate each available gate by gates in
the fault-tolerant universal basis. In this sense, any
basis can be considered as fault-tolerant. But such
implementation is conditioned on the existence of an
initial universal fault-tolerant basis that works as a
“seed” for other bases. We restrict the term “fault-
tolerant basis” for such bases.

In this paper, we prove the existence of a novel basis
for quantum computation that lends itself to an elegant
proof (based solely on the geometry of real rotations in
three dimensions) of universality and in which all the
gates can be easily realized in a fault-tolerant manner.

1 |0〉L and|1〉L refer to the states of the logical/encoded qubits.
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In fact, we show that the addition of only one single-
qubit operation to the set in (1), namely,

σ
1/4
z =

(
1 0
0 eiπ/4

)
leads to a universal and fault-tolerant basis for quan-
tum computation. Sinceσ 1/2

z = (σ 1/4
z )2 our basis con-

sists of the following three gates

H, σ
1/4
z , Λ1(σx). (2)

Proving the universality of Shor’s basis (see [13])
seems to be a more complicated process than prov-
ing the universality of the set of gates we suggest here,
and our proof is different from Kitaev’s proof. More-
over, we outline a general method for fault-tolerant re-
alizations of a certain class of unitary operations; the
fault-tolerant realizations of both theσ 1/4

z and the Tof-
foli gates are shown to be special cases of this general
formulation.

This paper is devoted to the proof of universality,
followed by a discussion on the fault-tolerant realiza-
tion of theσ 1/4

z gate. We also show that the new basis
proposed in this paper is not equivalent to Shor’s basis:
the gates in Shor’s basis can beexactlyrealized using
gates in our basis but not vice versa.

2. Definitions and identities

The identityI and the Pauliσ matrices are:

I :=
(

1 0
0 1

)
, σx :=

(
0 1
1 0

)
,

σz :=
(

1 0
0 −1

)
, σy :=

(
0 −i
i 0

)
.

We mention the following useful identities:

H := 1
2

√
2(σx + σz), σy = iσxσz,

and also, with

σαz =
(

1 0
0 eiπα

)
,

we have

σx =H σz H and σy = σ 1/2
z σx σ

−1/2
z . (3)

We review some properties of matrices in SU(2).
Let Eσ = (σx, σy, σz). Every traceless and Hermitian

2× 2 unitary matrixA can be represented asA =
n̂ · Eσ = nxσx + nyσy + nzσz, where n̂ = (nx, ny,
nz) ∈R3 is a unit vector. From commutation relations
(n̂ · Eσ)2 = I , and using this fact exponentiation of
these Pauli matrices can be easily performed to give
eiϕn̂·Eσ = cosϕ I + i sinϕ(n̂ · Eσ). Then, we have

eiϕ1n̂·Eσ · eiϕ2n̂·Eσ = ei(ϕ1+ϕ2)n̂·Eσ

and(
eiφEn·σ )m = eimφEn·σ .

It should be noted that for every element,U in SU(2)
there exist an angleϕU and a unit vector̂nU ∈R3, such
that [17, p. 170]

U = eiϕU n̂U ·Eσ .

From the similarity transformations (see identi-
ties (3)) it follows that:

σαx =H σαz H,
σαy = σ 1/2

z σαx σ
−1/2
z ,

Hα = σ 1/4
y σαz σ

−1/4
y .

Note that we can also equivalently write

σαj = ei(πα/2)e−i(πα/2)σj .

So, using our basis (2), it is possible to computeσmj
andHm for j ∈ {x, y, z} andm ∈ {1, 1

2,
1
4}.

3. A proof of universality

All that is needed for universal quantum computa-
tion isΛ1(σx) and SU(2) (see [4]). Thus, the proof of
universality of our basis follows from the fact thatH
andσ 1/4

z form a dense set in SU(2); i.e., for any ele-
ment of SU(2) and desired degree of precision, there
exists a finite product ofH andσ 1/4

z that approximates
it to this desired degree of precision.

The unitary operationsU1 = σ−1/4
z σ

1/4
x andU2 =

H−1/2σ
−1/4
z σ

1/4
x H 1/2 are exactly computable by our

basis. As mentioned in Section 1, there are unit vectors
n̂1, n̂2 ∈ R3 and anglesλ1 and λ2 such thatU1 =
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Fig. 1. Implementingσ1/4
z fault-tolerantly.

eiπλ1n̂1·Eσ andU2= eiπλ2n̂2·Eσ . By calculating the values
of n̂j andλj we getλ1= λ2= λ and

cosλπ = cos2 1
8π = 1

2

(
1+ 1

2

√
2
)
,

En1=
(√

2cot1
8π
) 1

2

√
2(ẑ− x̂)+ ŷ,

En2=
(√

2cot1
8π
)
ŷ − 1

2

√
2(ẑ− x̂),

wheren̂j = Enj/‖Enj‖ andx̂, ŷ, andẑ are the unit vec-
tors along the respective axes. One can easily verify
that En1 and En2 are orthogonal (these vectors would
need to be normalized when used in exponentiation).

The number ei2πλ is a root of the irreducible monic
polynomial

x4+ x3+ 1
4x

2+ x + 1

which is not cyclotomic (since not all coefficients
are integers), and thusλ is an irrational number
(see Appendix A, Theorem A.1). Sinceλ is irrational,
it can be used to approximate any angleϕ asλm≈ ϕ,
for somem ∈N. So we have(
eiπλn̂j ·σ )m = eimπλn̂j ·σ ≈ eiπϕn̂j ·σ .

Fortunately, this is all that is needed. Since, from
orthogonality of En1 and En2, it follows that for any
U ∈ SU(2) there are anglesα,β andγ such that [17,
p. 173]:

U = eiϕU n̂U ·Eσ

= (eiαn̂1·Eσ )(eiβn̂2·Eσ )(eiγ n̂1·Eσ ). (4)

The representation in (4) is clearly analogous to Euler
rotations about three orthogonal vectors. Expansion
of (4) gives:

cosφ = cosβ cos(γ + α), (5)

n̂sinφ = n̂1 cosβ sin(γ + α)
+ n̂2 sinβ cos(γ − α)
+ n̂1× n̂2 sinβ sin(γ − α). (6)

For any element ofU ∈ SU(2) Eqs. (5) and (6) can be
inverted to findα, β andγ .

There is no guarantee that, in general, it is possible
to efficiently approximatean arbitrary phase eiϕ by
repeated applications of the available phase eiπλ. But
using an argument similar to the one presented in [1],
we can show that for the givenλ (as defined in (3)),
for any givenε > 0, with only poly(1/ε) iterations of
eiπλ we can get eiϕ within ε. However, since our basis
is already proven to be universal, one can make use of
an even better result. As it is shown by Kitaev [13] and
Solovay and Yao [21], every universal quantum basis
B is efficient, in the sense that any unitary operation in
U(2m), for constantm, can be approximated withinε
by a circuit of size poly-log(1/ε) over the basisB.

4. A fault-tolerant realization of σ 1/4
z

We provide a simple scheme for the fault-tolerant
realization of theσ 1/4

z gate. The method describes a
general procedure that works for any quantum code
for which the elements of the normalizer group can be
implemented fault-tolerantly and involves the creation
of special eigenstates of unitary transformations.

To performσ 1/4
z fault-tolerantly we use the follow-

ing state:

|ϕ0〉 = σ 1/4
z H |0〉 = |0〉 + eiπ/4|1〉√

2
, (7)

(for which we later present the preparation process).
To applyσ 1/4

z to a general single qubit state|ψ〉 using
this special state|ϕ0〉, first applyΛ1(σx) from |ψ〉
to |ϕ0〉. See Fig. 1. Then measure the second qubit
(i.e., |ϕ0〉) in the computation basis. If the result is|1〉,
applyσ 1/2

z to the first qubit (i.e.,|ψ〉). This leads to the
desired operation, as demonstrated in the following:
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Fig. 2. Creation of the|ϕ0〉 eigenstate.

|ψ〉 ⊗ |ϕ0〉 =
(
α|0〉 + β|1〉)⊗ |0〉 + eiπ/4|1〉√

2
Λ1(σx)−→ (

α|0〉 + eiπ/4β|1〉)⊗ |0〉√
2

+ (α|0〉 + e−iπ/4β|1〉)⊗ eiπ/4 |1〉√
2

= σ 1/4
z |ψ〉 ⊗ |0〉√

2
+ σ−1/4

z |ψ〉 ⊗ eiπ/4 |1〉√
2
.

Clearly, the above analysis shows that all that is
necessary to performσ 1/4

z fault-tolerantly is the state
|ϕ0〉 and the ability to doΛ1(σx) and σ 1/2

z fault-
tolerantly. For a class of quantum codes, called CSS
codes (see, e.g., [20]),Λ1(σx), H and σ 1/2

z can be
done fault-tolerantly [20,10]. We next show how to
generate the state|ϕ0〉 fault-tolerantly.

Fault-tolerant creation of certain particular encoded
eigenstates has been discussed in [20,15]. We present
it in a more general way. Suppose that the fault-
tolerant operationUη operates as follows:

Uη|ηi〉 = (−1)i |ηi〉
on the states|ηi〉. Thus,Uη has the states|ηi〉 as
eigenvectors with±1 as the eigenvalues. Suppose that
we have access to a vector|τ 〉 such that:

|τ 〉 = α|η0〉 + β|η1〉.
We show that using only bitwise operations, measure-
ments, and this|τ 〉, the eigenvectors|ηi〉 can be ob-
tained. Now, to get the eigenvector ofUη we make use
of a |cat〉 state:

|cat〉 = 1
2

√
2
(|00. . .0〉 + |11. . .1〉)= 1

2

√
2
(|E0〉 + |E1〉).

See Fig. 2. ApplyingΛ1(Uη) bitwise, on|cat〉 ⊗ |τ 〉
we obtain:

|cat〉 ⊗ |τ 〉 Λ1(Uη)−→ α
( |E0〉+|E1〉√

2

)|η0〉 + β
( |E0〉−|E1〉√

2

)|η1〉.

A fault-tolerant measurement can be made to distin-

guish 1
2

√
2(|E0〉 + |E1〉) from 1

2

√
2(|E0〉 − |E1〉) [20]. This

measurement can be repeated to verify that we have it
correct.

The fault-tolerant version ofσ 1/4
z needs the state

|ϕ0〉, which can be generated using this formalism.
In fact, |ϕ0〉 is an eigenstate ofUϕ = σ 1/4

z σxσ
−1/4
z .

By commutation properties of theσ−1/4
z operator, it

is shown thatUϕ can be realized with elements only
from the normalizer group:

Uϕ = σ 1/4
z σx σ

−1/4
z = eiπ/4σ

1/2
z σx.

Sinceσ 1/2
z andσx can be done fault-tolerantly, so can

Uϕ . We consider the vector|ϕ0〉 (defined by (7)) and
the vector

|ϕ1〉 = σ 1/4
z H |1〉 = |0〉 − eiπ/4|1〉√

2
;

in short |ϕj 〉 = σ 1/4
z H |j 〉. One can verify now that

these|ϕj 〉 are eigenvectors ofUϕ (using identities (3)):

Uϕ|ϕj 〉 = σ 1/4
z σxσ

−1/4
z

(
σ

1/4
z H |j 〉)

= σ 1/4
z H(−1)j |j 〉 = (−1)j |ϕj 〉.

Since the|ϕj 〉 vectors are orthogonal, any single qubit
state|ψ〉 can be represented as a superposition of the
|ϕj 〉:
|ψ〉 = α|0〉 + β|1〉 = α′|ϕ0〉 + β ′|ϕ1〉.
So, all the necessary ingredients are here:|ψ〉 and
an appropriate fault-tolerant operation,Uϕ . If the
outcome gives|ϕ1〉 rather than|ϕ0〉 we can flip the
state:

|ϕ0〉 = σz|ϕ1〉 = σz |0〉 − eiπ/4|1〉√
2

= |0〉 + eiπ/4|1〉√
2

.

Shor’s implementation of Toffoli [20] also uses a spe-
cial case of this general procedure. For performing



106 P.O. Boykin et al. / Information Processing Letters 75 (2000) 101–107

Toffoli one usesU = Λ1(σz) ⊗ σz to get the eigen-
states:

|AND〉 = 1
2

(|000〉 + |010〉 + |100〉 + |111〉),
|NAND〉 = 1

2

(|001〉 + |011〉 + |101〉 + |110〉).
Shor uses the|ψ〉 state of:

|ψ〉 = 1
2

√
2
(|AND〉 + |NAND〉)

= (H |0〉)⊗ (H |0〉)⊗ (H |0〉).
Thus the special state in [20] can be obtained by the
same general procedure.

5. Shor’s basis and{H,σ 1/4
z ,Λ1(σx)} are not

equivalent

In this section we show that Shor’s basis and our
basis{H,σ 1/4

z ,Λ1(σx)} are not equivalent. Every gate
in Shor’s basis can be exactly represented by a circuit
over our basis, but the opposite is not true. It is not hard
to see that the basisQ1= {Λ1(σ

1/2
z ),H } is equivalent

to Shor’s basis (see [13,6] and the journal version
of [2]).

The following identity shows that our basis can
exactly implement any gate fromQ1:

Λ1(σ
1/2
z )= (I ⊗ σ−1/4

z

)
Λ1(σx)

(
I ⊗ σ−1/4

z

)
Λ1(σx)

× (σ 1/4
z ⊗ σ 1/2

z

)
.

Hence, with our basis we can exactly implement any
gate from Shor’s basis. We prove that the converse is
not true. Toward this end, we show that the unitary
operationσ 1/4

z , can be computed exactly by our basis
but not by Shor’s basis. First we prove a useful lemma
about unitary operations computable exactly by Shor’s
basis. Note that the set of integer complex numbers is
the setZ + iZ of the complex numbers with integer
real and imaginary parts.

Lemma 5.1. Suppose that the unitary operationU ∈
U(2m) is the transformation performed by a circuitC
defined over Shor’s basis withm inputs. ThenU is of
the form(1

2

√
2)`M, whereM is a2m×2m matrix with

only complex integer entries.

Proof. Suppose thatg1, . . . , gt are the gates ofC.
Each gategj can be considered as a unitary operation

in U(2m) by acting as an identity operator on the
qubits that are not inputs ofgj . Let the matrixMj ∈
U(2m) representgj . ThenU =Mt · · ·M1. If gj is a

σ
1/2
z gate thenMj is a diagonal matrix with 1 or i

on its diagonal. Ifgj is a Toffoli gate thenMj is a
permutation matrix (which is a 0–1 matrix). Finally,
if gj is a Hadamard gate, thenMj = 1

2

√
2M ′j , where

the entries ofM ′j are integers. This completes the
proof. 2

Now since

σ
1/4
z = 1

2

√
2

(√
2 0

0 1+ i

)
,

by Lemma 5.1 it cannot be realized exactly by gates
from Shor’s basis.
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Appendix A. The cyclotomic/rational number
theorem

Theorem A.1. For any c ∈ R, the following two
statements are logically equivalent:
• The minimum monic polynomialmα(x) ∈ Q[x] for
α ≡ ei2πc exists and is cyclotomic.
• c ∈Q.

Proof. A number of algebraic theorems will be taken
for granted in this proof, in particular, properties
of cyclotomic polynomialsΦn(x). See, for instance,
Dummit and Foote [9] for a more thorough discussion
of these polynomials, as well as general properties of
polynomial rings.

Assumemα(x) exists andmα(x)=Φn(x) for some
n ∈ Z+.

0=mα(α) (definition ofmα(x))

=Φn(α) (by assumption)

=
∏
d |n
Φd(α) (0 times anything is 0)
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= αn − 1 (property of cyclotomic polynomials)

= ei2πcn − 1 (definition ofα).

nc ∈ Z. Thusc ∈Q.
Conversely, assumec ∈ Q. c = p/q for some

p,q ∈ Z. mα(x) exists, sinceαq − 1= ei2πcq − 1=
ei2πp − 1 = 0. Moreover,mα(x) divides xq − 1 =∏
d |q Φd(x) in Q[x]. mα(x) ∝ Φn(x) for somen|q .

Since both are monic,mα(x)=Φn(x). 2
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