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Abstract

A novel universal and fault-tolerant basis (set of gates) for quantum computation is described. Such a set is necessary
to perform quantum computation in a realistic noisy environment. The new basis consists only of two single-qubit gates
(Hadamard and azl/4), and one two-qubit gate (Controlled-NOT). Moreover, a new general method for fault-tolerant
implementation of quantum gates like Toffoli is introduced. This method is a generalization of the methods suggested by
Shor (Proc. FOCS'96, 1996, p. 56) and later by Knill et al. (Proc. Roy. Soc. London Ser. A 454 (1998) 268)0 Elsevier

Science B.V. All rights reserved.
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1. Introduction free operations are to have a set of gates that is both
universal for quantum computing (see [1,3-5,8] and
A new model of computation based on the laws of references therein), and that can operate in a noisy
quantum mechanics [7] has been shown to be superiorenvironment (i.e., fault-tolerant) [18,20,2,15,13,16].
to standard (classical) computation models [19,12]. A scheme to correct errors in quantum bits (qubits)

Potential realizations qf such computing devices are was proposed by Shor [18] by adopting standard cod-
currently under extensive research, and the theory of . : e

. . - : . .2 7 ing techniques and modifying them to correct quan-
using them in a realistic noisy environment is still

developing. Two of the main requirements for error- tum m(.achanlcallerrors induced .by t_he environment.
To avoid errors in the computation itself, Shor [20]
_ , _ suggested performing the computations on the logi-
Y A preliminary version of this paper appeared, as part of the paper

by Boykin et al. inProceedings of 40th IEEE Annual Symposium cal qu'tS (WlthOUt first deCOdmg them)’ and this type
on Foundations of Computer Science, FOCS'J8is work was of computation is known as fault-tolerant computa-
supported in part by grants from the Revolutionary Computing tion.

group at JPL (contract #961360), and from the DARPA Ultra

program (subcontract from Purdue University #530-1415-01). There are significant restrictions on both the types
* Corresponding author. of unitary operations that can be performed on the en-
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0020-0190/00/$ — see front mattér 2000 Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(00)00084-3



102 P.O. Boykin et al. / Information Processing Letters 75 (2000) 101-107

one can show that the following unitary operationscan A number of other researchers have proposed fault-

be fault-tolerantly implemented: tolerant bases that are equivalent to Shor’s basis. Knill
o 1/1 1 12 (1 0 1) et al. [14] considered tlhg bas{i{, ozl/z, Al(azl/z),
=/ (1 _1>’ = (o i)’ A1(0y)} and the basigo/?, A1(0X?), A1(o)} with
1 0 0 the ability to prepare the encoded sta%s.ﬁ(m)L +
0100 11)).1 The universality of these bases follows from
M)=|45 ¢ o 1] the fact that gates in Shor's basis can be simulated
00 10 by small size simple circuits over these new bases.

Hence, while novel fault-tolerant realizations of the
relevant gates in these bases were proposed, no new
proofs of universality were required. The same authors
later [15] studied a model in which the prepared

where i= +/—1, and A (U) denotes the Controlled-
U operation withk control bits (see [4]);A1(ox)

is the Controlled-NOT (CNOT) gate. So far, these
operations are the only ones that have been shown tostate COS%JT)IO)L " sin(%n)u)L is made available,

be “directly” fault-tolerant operations (in the sense that . S . :
. ; in addition to the normalizer group gates. In [15] it
no measurements and/or preparations of special states : )
. . Is shown that this set can realize the gatg H), and
are required). Itis well known, however, that the group . .
. consequently the Toffoli gate and thus every gate in
generated by the above operations (often referred to ) T . . ;
. . . Shor’s basis; this shows the universality of this set.
as thenormalizer groupis not universal for quantum . . .

: . : , One can verify that in the model proposed in [15]
computation. This leads to the interesting problem of ) 1/4 ;
determining a basis that is both universal and can be It IS Possible to perfornw; ™", and hence this model
implemented fault-tolerantly.

is equivalent to the basis studied in this paper. In
The well-established results on the universality S paper we show that there is a simple proof of
of quantum bases [1,3-5,8] rest primarily on the

universality for this basis, moreover this basis is not
inclusion of at least one “non-elementary” gate, i.e., a equivalentto Shor’s _basis. We_ also note that Aharonov
gate that performs a rotation by an irrational multiple @nd Ben-Or [2] considered universal quantum systems
of . A direct fault-tolerant realization of such a gate, With basic units that have > 2 states (referred to
however, is not possible; this property makes all the @S qubits). Gottesman and Chuang [11] present a
well-known universal bases inappropriate for practical téchnique for the general construction of our fault-
and noisy quantum computation. tolerant implementation of the gates outside of the
The search for universal and fault-tolerant bases hasnormalizer group.
led to a novel basis as proposed in the seminal work of It should be noted that once the existence of a
Shor [20]. It includes the Toffoli gate in addition to the ~ universalfault-tolerant quantum basis is established,
above-mentioned generators of the normalizer group; then any other universal basis available at the phySical
hence, the basis can be represented by the following!evel can be utilized in a fault-tolerant computation:
set{H,02/?, As(oy)}. A fault-tolerant realization of simply approximate _each availgble gate by gates in
the Toffoli gate (involving only the generators of the the _fault-tolerant ur_nversal basis. In this sense, any
normalizer group, preparation of a special state, and Pasis can be considered as fault-tolerant. But such
appropriate measurements) has been shown in [20].IMPlementation is conditioned on the existence of an
Shor realized that this basis is universal, but a proof initial universal fault-tolerant basis that works as a
was not included. Later Kitaev [13] proved the uni- “Seed” for other bases. We restrict the term “fault-
versality of a basis, comprising the se’tl(azl/z), H}, toIeraqt basis” for such bases. ) i
that is “equivalent” to Shor's basis, i.e., the gates in N this paper, we prove the existence of a novel basis
Kitaev's basis can bexactlyrealized using gates in for quantum computation that lends itself to an e_Iega_nt
Shor's basis and vice versa. This result provides the Proof (based solely on the geometry of real rotations in
first published proof of the universality of a fault- three dlmensmns_) of un_lvers_allty and in which all the
tolerant basis. The resulting universality of Shor's ba- 92t€s can be easily realized in a fault-tolerant manner.
sis is implicit in [13]; it is explicitly done in [6], and in
the journal version of [2]. 110); and|1);, refer to the states of the logical/encoded qubits.
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In fact, we show that the addition of only one single- 2 x 2 unitary matrixA can be represented as—=

qubit operation to the set in (1), namely, il -6 = nyox + nyoy + n;o;, wheren = (ny,ny,
L 1 0 n;) € R3 is a unit vector. From commutation relations
z/ = (O én/4> (7 - 5)2 = I, and using this fact exponentiation of

these Pauli matrices can be easily performed to give
leads to a universal and fault-tolerant basis for quan- g6 — =cosp I +ising(i-5). Then, we have

tum computation. Since 1/2 (01/4)20urba3|scon- i hE e (o1tonis
sists of the following three gates g . geane — dlvtez
H, oi'*, As(oy). () and

Proving the universality of Shor’s basis (see [13]) (ei¢ﬁ~0)m — gmeio
seems to be a more complicated process than prov-
ing the universality of the set of gates we suggest here, It should be noted that for every elemebitin SU(2)
and our proof is different from Kitaev’s proof. More-  there exist an angkgy and a unit vectofi; € R3, such
over, we outline a general method for fault-tolerantre- that[17, p. 170]
alizations of a certain class of unitary operations; the o
fault-tolerant realizations of both tl?nt;\l/4 and the Tof- U=ewne.
foli gates are shown to be special cases of this general
formulation.

This paper is devoted to the proof of universality,
followed by a discussion on the fault-tolerant realiza-
tion of theazl/4 gate. We also show that the new basis L 27 12
proposed in this paper is not equivalent to Shor’s basis: o, = o; ooV
the gates in Shor’s basis can &eactlyrealized using HY — o4 o 671/4
gates in our basis but not vice versa. Y

From the similarity transformations (see identi-
ties (3)) it follows that:

o =HolH,

Note that we can also equivalently write

2. Definitions and identities o = dma/2)g-i(ra/2)0;
The identity/ and the Pauls matrices are: So, using our basis (2), it is possible to compaife
1 0 0 1 andH™ for j € {x, y,z} andm € {1, 3 3 4}
1:(0 1) "x=<1 o)
(1 0 (0 —i ) .
=\ 1) o =\i o) 3. A proof of universality

We mention the following useful identities: All that is needed for universal quantum computa-

H:= %\/é(o'x +0,), oy =0y, tion is A1(o,) and SU2) (see [4]). Thus, the proof of
universality of our basis follows from the fact that

and also, with andcrzl/4 form a dense set in S@); i.e., for any ele-

o — (1 0 ) ment of SU2) and desired degree of precision, there
¢ 0 &)’ exists a finite product off ando.’* that approximates
we have it to this desired degree of precisilol? 14
1/2 _1/2 The unitary operation&/’y = o Mot* andU; =
ox=Ho, H and o a/aa / 3 ~1/4 [ 1/4 |
e Y= ARCE ~126 7Y% V4 112 are exactly computable by our
We review some properties of matrices in @u baS|s. As mentloned in Section 1, there are unit vectors

Let 6 = (ox, 0y, 0;). Every traceless and Hermitian 71,72 € R3 and angles.; and 1> such thatU; =
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Fig. 1. Implementingrzl/ 4 fault-tolerantly.

@711 andU, = é7*2720 By calculating the values  For any element of/ € SU(2) Egs. (5) and (6) can be

of n; andx; we geti; = A2 = A and inverted to findx, g andy .
There is no guarantee that, in general, it is possible
cosi = cos g = 5(1+3v/2), to efficiently approximaten arbitrary phase'® by
i = (ﬁ cot%n)%«/ﬁ(ﬁ — 3+, repeated application_s ef the available phd§é.eBgt
using an argument similar to the one presented in [1],
iz = (V2cotgn)§ — 3v2( - 1), we can show that for the given (as defined in (3)),

whered; =ii;/||i;|| and£, $, andz are the unit vec- fqr/\any givene > 0, \(vith only poly1/¢) _iterations of.
tors along the respective axes. One can easily verify € We can get € within ¢. However, since our basis
that7i, andii, are orthogonal (these vectors would 'S already proven to be u_nl_versal, one can make use of
need to be normalized when used in exponentiation). an €ven better result. Asitis shown by Kitaev [13] and
The number 87* is a root of the irreducible monic  Solovay and Yao [21], every universal quantum basis

polynomial B is efficient, in the sense that any un_itary ope_rat_ion in
u(2™), for constanin, can be approximated withisn
P | i ; ;
a by a circuit of size poly-lo¢l/¢) over the basis.

which is not cyclotomic (since not all coefficients
are integers), and thus is an irrational number

(see Appendix A, Theorem A.1). Sinads irrational, 4. A fault-tolerant realization of azl/4

it can be used to approximate any anglasim = ¢,

for somem € N. So we have We provide a simple scheme for the fault-tolerant
(eiﬂ)\.ﬁj.a)m — gmiiijo o, dngiijo realization of theazl/4 gate. The method describes a

o ) ) general procedure that works for any quantum code
Fortunately, this is all that is needed. Since, from ¢, \yhich the elements of the normalizer group can be

orthogonality ofny andnz, it follows that for any i sjemented fault-tolerantly and involves the creation
U € SU(2) there are angles, § andy such that [17, ot special eigenstates of unitary transformations.

P 173]: o To performozl/ 4 fault-tolerantly we use the follow-
U =¢dvviuo ing state:
_ (eiaﬁ1~3) (eiﬁflzﬁ)(eiyﬁlﬁ). (4) oo 1/4H|0) 0) + ein/4|1) -
= 0. =,
The representation in (4) is clearly analogous to Euler vo ‘ NG

rotations about three orthogonal vectors. Expansion (for which we later present the preparation process).
of (4) gives: To applycrzl/4 to a general single qubit staft¢:) using
cOSp = cosp cogy + a), (5) this special statépp), first apply A1(oy) from |v)

to |¢o). See Fig. 1. Then measure the second qubit
_ (i.e.,]@o)) in the computation basis. If the result i,

+ fi2Sinf cosy — ) applyo/? to the first qubit (i.e.}y)). This leads to the

+ n1 x nzsinBsin(y — a). (6) desired operation, as demonstrated in the following:

nsing = n1cosp sin(y + a)
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Fig. 2. Creation of théyg) eigenstate.

0) 4 €7/4]1) A fault-tolerant measurement can be made to distin-
® |po) = («|0) + B|1)) @ ————— . D c .
) ®lgo) = (0 + AIL) V2 guish1+/2(10) + |1)) from 3+/2(|0) — |1)) [20]. This
oy ; measurement can be repeated to verify that we have it
B9 (410) + €74I0) @ 1 P Y
/2 correct. »
] A The fault-tolerant version oé; /4 needs the state
+ («l0) +e77/481)) ®e'”/4ﬁ lgo), Which can be generated using this formalism.
1 . |O) Ry T In fact, |po) is an eigenstate of/, = azl/4axaz_1/4
Pl ® ﬁ AN e'”/4ﬁ~ By commutation properties of the. */* operator, it

is shown thatl/,, can be realized with elements only

Clearly, the above analysis shows that all that is
necessary to performl/ * fault- -tolerantly is the state
lpo) and the ability to doAj(oy) and 01/2 fault-

tolerantly. For a class of quantum codes, called CSS S|nceo'z

codes (see, e.g., [20)11(ox), H ando; /2 can be
done fault-tolerantly [20,10]. We next show how to
generate the stateg) fault-tolerantly.

Fault-tolerant creation of certain particular encoded

eigenstates has been discussed in [20,15]. We present

it in a more general way. Suppose that the fault-
tolerant operatio/, operates as follows:

Uylni) = (=) |m;)

on the stategn;). Thus, U, has the state$n;) as
eigenvectors witht1 as the eigenvalues. Suppose that
we have access to a vectei such that:

IT) =alno) + Bln).

We show that using only bitwise operations, measure-

ments, and thigz), the eigenvectorg;;) can be ob-
tained. Now, to get the eigenvector@d§ we make use
of a|cat) state:

lcat) = 2+/2(]00...0) + 11...1)) = 2v/2(10) + |1)).

See Fig. 2. ApplyingA1(U,) bitwise, on|cat) ® |t)
we obtain:

1)

|cat) ® |T)

AU, 87
L);)(01

)ino) + B(2Z2)na).

from the normalizer group:

1/4

4 ir/4 _1/2
0 =07 /4 = dn/h o2 g,

-1
0y 0

andox can be done fault-tolerantly, so can
U,. We consider the vectdip) (defined by (7)) and
the vector
10) — €7/4]1) |

\/E ’
in short |p;) = (r, H|]> One can verify now that
theselp ;) are eigenvectors df,, (using identities (3)):

lp1) =02 H|1) =

1/4 —1/4 1/4
Uploj) =0 ovar (ol HI j))
1/4 .
=0 *H(=1)7|j) = (=1 |g;).

Since thelp;) vectors are orthogonal, any single qubit
state|y) can be represented as a superposition of the

lpj):
1Y) = a|0) + BI1) = o'|go) + B'l¢1).

So, all the necessary ingredients are hége: and
an appropriate fault-tolerant operatiody,. If the
outcome givegys) rather thanjgg) we can flip the
state:

0) — €7/411)  |0) 4+ €7/41)
V2o N7

Shor’s implementation of Toffoli [20] also uses a spe-
cial case of this general procedure. For performing

lpo) = o:|¢p1) =0
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Toffoli one usesU = A1(o;) ® o, to get the eigen-  in U(2") by acting as an identity operator on the
states: qubits that are not inputs @f;. Let the matrixM;

AND' — (100 o1 10 11 U(2™) representg;. ThenU = M,--- M. If g; is a
| )=3(1000 +1010 +1100 +|111). azl/z gate thenM; is a diagonal matrix with 1 or i

NAND) = 5(1003) + (01 +101) + |110)). on its diagonal. Ifg; is a Toffoli gate thenM; is a
Shor uses they) state of: permutation matrix (which is a 0—1 matrix). Finally,
if g; is a Hadamard gate, the¥; = lﬁM}, where
|¥) = 3V/2(|AND) + [NAND)) the entries ofM/ are integers. This completes the
= (H|0) ® (H|0)) ® (H|0)). proof. O

Thus the special state in [20] can be obtained by the  Now since

same general procedure.
g P JYA_1./3 V2 o0
< 2 0 1+i)’

5. Shor’s basis and{H, 02,1/4, A1(oy)} are not by Lemma 5.1 it cannot be realized exactly by gates
equivalent from Shor’s basis.

In this section we show that Shor’s basis and our
basis{H, 0."*, A1(0,)} are not equivalent. Every gate  Acknowledgements
in Shor’s basis can be exactly represented by a circuit
over our basis, but the opposite is not true. Itis nothard ~ We thank Alexei Kitaev and Peter Shor for helpful
to see that the basi81 = {A1(c./%), H} is equivalent ~ discussions on the subject of this paper. We are
to Shor's basis (see [13,6] and the journal version 9rateful to Dorit Aharonov for her comments on an
of [2]). earlier version of this work.

The following identity shows that our basis can

exactly implement any gate frof;:
yz P v 01 Appendix A. The cyclotomic/rational number
1/

A1) =(I ®afl/4)A1(ax)(I ®af1/4)A1(ax) theorem

1/4 1/2

x (02" @0g"). Theorem A.1. For any ¢ € R, the following two
Hence, with our basis we can exactly implement any statements are logically equivalent
gate from Shor’s basis. We prove that the converse is ® The minimum monic polynomial, (x) € Q[x] for
not true. Toward this end, we show that the unitary @ = €2 exists and is cyclotomic.
operationrrzl/“, can be computed exactly by our basis ® ¢ € Q.
but not by Shor’s basis. First we prove a useful lemma
about unitary operations computable exactly by Shor’s Proof. A number of algebraic theorems will be taken
basis. Note that the set of integer complex numbers is for granted in this proof, in particular, properties
the setZ + iZ of the complex numbers with integer ~ Of cyclotomic polynomialsp, (x). See, for instance,

real and imaginary parts. Dummit and Foote [9] for a more thorough discussion
of these polynomials, as well as general properties of

Lemma 5.1. Suppose that the unitary operatiéhe polynomial rings. _

U(2™) is the transformation performed by a circuit Assumen, (x) exists andng (x) = @, (x) for some

defined over Shor’s basis with inputs. TherU is of nezZr.
the form(%\/ﬁ)fM, whereM is a2™ x 2™ matrix with

only complex integer entries. 0=ma(@) (definition ofme (x))

=&, (x) (by assumption

Proof. Suppose thag, ..., g are the gates of. - l_[ @4(x) (0 times anything is 0
Each gateg; can be considered as a unitary operation din
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=a" -1 (property of cyclotomic polynomials [8] D. Deutsch, Quantum computational networks, Proc. Roy. Soc.
_ d2men L London Ser. A 245 (1989) 73-90.
=€ 1 (definition ofc). [9] D.S. Dummit, R.M. Foote, Abstract Algebra, Prentice-Hall,

nc € Z. Thusc € Q. Inc., Englewood Cliffs, NJ, 1991.

Conversely, assume € Q. ¢ = p/q for some [10] D. Gottesman, Theory of fault-tolerant quantum computation,
p.q € 7. mg(x) exists, sincex? — 1= g2req _ 1 — Phys. Rev. A 57 (1998) 127-137. . o
ei27'[p — 1 = 0. Moreover,ng(x) divides x7 — 1 = [11] D. Gottesman, I.L. Chuang, Demonstrating the viability of

=0. My =

universal quantum computation using teleportation and single-
qubit operations, Nature 402 (1999) 390-393.

[12] L. Grover, A fast quantum mechanical algorithm for database
search, in: Proc. 28th ACM Symposium on Theory of Comput-
ing, 1996, pp. 212-219.

[13] A. Kitaev, Quantum computations: Algorithms and error
correction, Russian Math. Surveys 52 (1997) 1191-1249.

ndlq @4(x) In Q[x]. my(x) x ®@,(x) for somen|q.
Since both are moni@, (x) = ®@,(x). O
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