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Abstract – We analyze access statistics of several popular webpages for a period of several years. The graphs of daily 

downloads are highly non-homogenous with long periods of low activity interrupted by bursts of heavy traffic. These 

bursts are due to avalanches of blog entries, referring to the page. We quantitatively explain this behavior using the 

theory of branching processes. We extrapolate these findings to construct a model of the entire web. According to the 

model, the competition between webpages for viewers pushes the web   into a self-organized critical state. In this re-

gime, the most interesting webpages are in a near-critical state, with a power-law distribution of traffic intensity.  

 

The science of Self Organized Criticality (SOC) [1] was in the 

center of attention for the last two decades because it can ex-

plain power law distributions and bursts of intermittent activ-

ity, observed in many natural and social phenomena. An ap-

parent downside of the SOC models is that they are heuristic. 

Examples include a model of interacting species on a circle for 

biological evolution, a block-spring model for earthquakes, 

and the Bak-Tang-Wiesenfeld (BTW) [2] sandpile model for 

everything. In the present letter, we introduce a new SOC 

model, which is not heuristic, but appears to describe what is 

really happening. Our model deals with web traffic. 

Figure 1 shows access statistics for three popular 

webpages. Access statistics for half a dozen other popular 

webpages that we studied look very similar. The traffic is non-

uniform in time with periods of low activity interrupted by 

bursts. To understand what is going on, we need to know 

where the visitors came from. This we can do by studying the 

referral statistics.  Figure 2 shows the graphs of daily referrals 

to the webpage, whose access statistics is shown in Figure 1(a), 

from four different websites. Plots (a) and (b) of Fig. 2 are 

referrals from Google search and from Mozilla directory. They 

show a low intensity, but constant, stream of referrals. The 

distribution of the number of daily referrals follows a Poisson 

law. We will refer to such referrers as constant referrers.  In 

plots (c) and (d) of Fig. 2, which show referrals from blogs, 

we see bursts of referrals. These bursts start with a peak (at the 

time when the link is blogged) and afterward subside, as the 

blog entry gets older. We will refer to such referrers as tempo-

rary referrers.  
Now we can understand Fig. 1. The webpage in ques-

tion gets traffic from constant referrers, which are responsible 

for all of the traffic between bursts. They play similar role to 

that of the falling grains in the BTW [2] sandpile model. 

Sometimes a visitor, who visited the webpage, following a 

constant referrer, creates a blog entry or makes a forum post-

ing which links to the webpage. A reader of this blog, or fo-

rum, in his turn can link to the webpage in his own blog. If the 

webpage is interesting to many people, it can trigger ava-

lanches of blog and forum postings. These avalanches are re-

sponsible for the bursts seen in Fig.1. Brain [3] and Arbesman 

[4] already discussed this mechanism of web traffic dynamics, 

but did not develop any mathematical theory. Here we con-

struct a mathematical model of web traffic using the theory of 

branching processes [5]. 

Galton and Watson invented the theory of branch-

ing processes [5] in 1875, to explain the extinction of 

prominent British families. They considered a   model 

where in each generation, ( )0p  percent of the adult males 

have no sons, ( )1p   have one son and so on. Using the the-

ory one can compute the probability distribution of the sizes 

of families after any number of generations. If we graphi-

cally represent the family history by connecting each indi-

vidual with his sons, we get a tree-like structure. This is 

where the name “branching process” comes from.  The fate 

of families depends on the average number of 

sons ( )∑= nnpλ .   When 1<λ , the branching process is 

subcritical, that is all families eventually get extinct. 

When 1>λ , the branching process is supercritical, and 

some families do survive (and those, which survive, grow 

exponentially).  

The branching process with 1=λ is called critical. 

All families eventually become extinct, but the distribution 

of the lifetimes of families follows a power law. The distri-

bution of combined offspring (the sum of the numbers of 

suns, grandsons and so on) follows a power law with expo-

nent 1.5. In the case of a subcritical branching process, the 

distribution of combined offspring follows the same power 

law, only with an exponential cutoff. This cutoff becomes 

less and less short as λ  increases, eventually resulting in a 

pure power law when λ  reaches the value of 1. In the case 

of a supercritical branching process, combined offspring of 

a final fraction of families is equal to infinity
1
. Alstrøm [6] 

                                                 
1
 The distribution of combined offspring should not be con-

fused with the distribution of subtrees. In Ref. [10] it was 

reported that the latter distribution is a power law with ex-

ponent 2 for a supercritical process. The distribution of sub-

trees is defined for a family tree after a large but fixed num-

ber of generations. Here one looks at the probability distri-

bution of the sizes of subtrees rooted at a randomly chosen 

site. In the case of a subcritical or critical process the distri-

bution of subtrees is equivalent to the distribution of com-

bined offspring  because when the number of generations is 

sufficiently large every subtree has time to terminate due to 

family extinction. The case of a supercritical process is dif-

ferent: considering only a finite number of generations cuts 

many would be infinite subtrees .   
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had shown that the mean-field version the BTW model is 

equivalent to a critical branching process. The combined off-

spring corresponds to the size of an avalanche in SOC. Note, 

that SOC is not merely a re-invention of the branching proc-

ess, as SOC models have a built in mechanism for tuning the 

branching process into critical state. 
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Figure 1.  Access statistics for three webpages  

(a) http://reverent.org/true_art_or_fake_art.html 

(b) http://reverent.org/sounds_like_faulkner.html 

(c) http://ecclesiastes911.net/disumbrated_art.html 

starting from their creation dates and continuing until July 31 2007. Access statistic of a dozen other popular webpages, that we 

studied, looks very similar.
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Figure 2. Statistics of referrals during two month in 2006 to the webpage, whose access statistics is shown in Fig. 1 (a), from four 

different websites:   

(a) Google search; (b) Mozilla directory; (c) Presurfer - http://presurfer.meepzorp.com ;  

(d) Reality Carnival - http://sprott.physics.wisc.edu/pickover/pc/realitycarnival.html . 

 

 

To make our model tractable we introduce time-

discretization with a unit of one day. The traffic from con-

stant referrers we model as a Poisson process, with the num-

ber of daily referrals from all constant referrers following a 

Poisson distribution with mean Nc. To account for the fact 

that nobody reads old blog entries we assume that people 

read only today's posts. In reality people do read entries that 

are few days or weeks old, as it is evidenced by Fig. 2 (c) and 

(d). It is straightforward to incorporate this into the model, 

but it will only make it more complicated without adding 

much understanding.  Thus, we assume that traffic from tem-

porary referrers lives for one day. We assume that each visi-

tor to the webpage will on the next day link to it in a tempo-

rary referrer with the probability r. We assume that each link 

in a temporary referrer generates, on average, N visitors to 

our webpage. If we start with a single visitor and there are no 

additional referrals from constant referrers - we have a stan-

dard branching process. In the simplest case, when all tempo-

rary referrers refer exactly N visitors, the offspring probabili-

ties are ( ) rNp = , ( ) rp −= 10 and ( ) 0=np for the rest of n.  

As long as ( ) 1<==∑ rNnnpλ , this branching process is 

subcritical and the traffic must always eventually stop.  How-

ever, thanks to constant referrers, many branching processes 

start every day: every visitor, referred by a constant referrer, 

starts a separate branching process.  

The above model is easy to simulate on a computer. 

Figure 3 shows the graph of the number of daily downloads 

produced by such simulation. Although theory of branching 

processes gives quantitative predictions for the distribution of 

the sizes of avalanches, we cannot compare these predictions 

with the data of Figure 1, because avalanches overlap and 

there is no way to separate web accesses resulting from dif-

ferent avalanches.   However, one can compare Zipf’s plots 

of simulated and actual daily and monthly downloads. They 

are shown in Figure 4. The parameters used in the simulation 

were: Nc = 10, r = 0.01, and N = 95 (we assumed an exponen-

tial distribution of the number of visitors from a temporary 

referrer). We experimented with different values of parame-

ters, but the above appear to produce the most similar out-

come to the actual access statistics shown in Fig.1.  With our 

parameters we get 95.0== rNλ , which means that the 

branching process is slightly subcritical. 
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Figure 3. The outcome of one numerical simulation of the branching web traffic model. 
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Figure 4. Zipf’s plot of daily (a) and monthly (b) downloads 

computed using the data of Fig. 1(a) and Fig. 3. 

 

It is interesting to compare Fig. 4 (b) with Nielsen’s 

[7] Zipf’s plot of the number downloads of many different 

webpages (from one website) during one month. Our plot, 

which shows the distribution of daily accesses of a single 

webpage during many months, looks very similar. This sug-

gests that a part of variance in webpage popularity, observed 

in [4], is due to pure chance (variation in monthly webpage 

popularity). However, not all of the variance in popularity is 

due to chance. Notice that in Fig. 4(b) even the worst month 

had hundreds of accesses, while the number of downloads of 

the least popular webpage in Ref. [7] is one. In addition, most 

webpages whose access statistics we studied show low activ-

ity, uninterrupted by any bursts. This happens because apart 

from chance, an important factor in webpage popularity is its 

fitness, or ability to “resonate" [3]. 

Now we will use the understanding gained from 

studying one webpage access statistics, to formulate a model 

of the dynamics of the entire web. Recently we used a similar 

model to develop the mathematical theory of citing [8].  

Let us consider a blogosphere in which Nl blog en-

tries are added daily. The WWW apart from blogs contains 

discussion forums and online newspapers, which play the 

same role as blogs. However, for simplicity, we will call 

them all “blogs.”  According to recent Technorati report (see 

the “Daily posting volume” figure in Ref [9]) the number of 

daily blog postings did not change during the last year. We 

thus, for simplicity, assume that Nl is constant in time.  

Every day bloggers look for links to blog. These 

links are of two types. The links of the first type are the links 

the bloggers copy from recent posts in another blogs (tempo-

rary referrers). We assume that the fraction of such copied 

links is 1–α. Such links are the easiest to find. However, 

bloggers want to be original, to find some new links, which 

they did not see in other blogs. For this purpose, they use 

search engines, web-directories and online encyclopedias 

(constant referrers). We assume that the fraction of such 

found links is α. 

As we already did in the single-page model, we do 

time-discretization with the unit of one day. We assume that 

the bloggers browse today’s entries in the blogosphere and 

randomly copy from them (1–α)Nl links. To accommodate 

our time-discrete model we assume that if a blogger found 

the link today – he will blog it tomorrow. This way for each 

today’s link to the webpage in question tomorrow in blo-

gosphere there will be, on average,  

αλ −= 1   (1) 

links. As long as α > 0, we have a subcritical branching proc-

ess and, thus, each avalanche of blogging is doomed to end.  

The above model contains an unrealistic assumption 

that the webpages do not differ in their ability to attract blog-

gers. We have to revise it. When a blogger searches for what 

to blog today, he browses through other blogs for interesting 

links. He evaluates each link for inclusion in his blog. Each 

page has certain probability for this decision to be positive. 

We call this probability page’s fitness and denote it as φ. 

When the blogger had selected enough links to blog, he stops. 

Due to its definition as a probability, φ is bound between 0 

and 1. Obviously, the average probability of positive decision 

on blogging a considered link is equal to the average fitness 

of a blogged link. It is different from the average fitness of all 

WWW pages, because the fit pages are blogged more often.  

We will denote it as 
b

ϕ .  To collect ( ) lNα−1 links we 

need to make ( )
blN ϕα−1 considerations. Thus, each 

today’s blogosphere link to a page with fitness φ on average 

generates  

( ) ( )
b

ϕϕαϕλ −= 1   (2) 

tomorrow's links. In contrast with the model without fitness, 

where λ, given by Eq.(1),   is less then 1 for all links, now the 

links with fitness  

( )αϕϕ −> 1
b

  (3) 

 are supercritical. To move further we need to compute
b

ϕ . 

Let us assume that the fitness distribution of the 

found links is constant in time and denote it ( )ϕfp .  The 

fitness distribution of blogged links on the nth day we de-

note ( )ϕn

bp . The blogosphere on the day n+1 consists of 

found links and of links copied from the nth day entries. The 

fitness distribution of blogged links on the day n+1 is: 

 

( )
( )

( )
( )

n

b

n

b

f

fn

b

pp
p

ϕ

ϕϕ
α

ϕ

ϕϕ
αϕ

×
−+

×
=+ 11

  (4) 

 

We can compute the asymptotic distribution by replacing 

( )ϕn

bp  and ( )ϕ1+n

bp  in Eq.(4) with ( )ϕbp . After solving 

the resulting equation we get: 

 

( )
( )

( )
b

ff

b

p
p

ϕϕα

ϕϕϕα
ϕ

−−

××
=

11
.  (5) 
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The obvious self-consistency condition is  

( ) .1

1

0

=∫ ϕϕ dpb  (6) 

When we know ( )ϕfp  and α, ( )ϕbp  in Eq. (5) depends on 

one unknown parameter 
b

ϕ . In such case, Eq. (6) can be 

used to find 
b

ϕ and, therefore, ( )ϕbp . 

Let us consider a uniform distribution ( ) 1=ϕfp . 

After substituting Eq. (5) into Eq. (6) and performing integra-

tion we get  

 

( )( ) ( )( )
( )( )

1
1

111ln2
2

=
−

−−−−−

b

bb

ϕα

ϕαϕαα
 (7) 

 

When α  is small, for the equality to hold the logarithm must 

be large and therefore ( )
b

ϕα−1 must be very close to 1. 

We can replace it with 1 everywhere, but in the logarithm. 

After this replacement Eq.(7) reduces to: 

( ) ( )( )121exp11 −−−=− αϕα
b

  (8) 

Thus for small α the factor ( )
b

ϕα−1 is only slightly less 

than 1. By substituting Eq.(8) into Eq.(2) we get 

( ) ( )( )( )ϕαϕλ 121exp1 −−−= . This means that ( )ϕλ   is 

less than 1 for all values of φ and the branching process is 

subcritical. However, for the fittest links it is very close to 

critical. For example, when 1.0=α , we get ( ) 9975.01 ≅λ . 

When we match this model with the single-page model, we 

see that ( ) ϕϕλ ≈=rN . Therefore, our simulation parame-

ters correspond to the value of the fitness of 95.0=ϕ . 

Let us now consider the case ( ) φϕ 22 −=fp . Af-

ter substituting Eq. (5) into Eq. (6) and performing integra-

tion we get 

 

 

( )( )
1

1

1

2

111
1ln

1
16

3

2

=
−



























 −
−

−
+












 −
−













 −
−

b

bbbb

ϕα

ϕ

α

ϕ

α

ϕ

α

ϕ

α
α

    (9) 

 

Similar to Eq.7, Eq.9 is a transcendental equation for 
b

ϕ . 

Obviously, 
b

ϕ is bounded between α−1 and 1. The upper 

bound is in place because the average cannot exceed the 

maximum value of a variable. The lower bound comes be-

cause below it the argument of the logarithm in Eq.(9)  be-

comes negative (or, alternatively, ( )ϕbp  , given by Eq. (5),  

becomes negative for ( )αϕϕ −> 1
b

 ). It is easy to see that 

the function ( )ϕbp , given by Eq.(5), increases for all values 

of φ when 
b

ϕ decreases. Thus, the minimum value 

of ( )ϕbp  for all values of φ, and, consequently, of the inte-

gral ( )∫
1

0

ϕϕ dpb  (which is also the R.H.S. of Eq. 9) is 

reached when 1=
b

ϕ . After substituting 1=
b

ϕ into the 

R.H.S. of Eq. 9, we get that its minimum value is  

( ) ( )( ) ( )32
1211ln6 αααααα −−−−+ . 

One can show that the above expression is always less than 1 

when .10 << α  Similarly by substituting αϕ −= 1
b

 

into the R.H.S. of Eq. 9, we get  its maximum value: α3 . 

Thus when 31≥α we can always find a value 

of
b

ϕ which satisfies Eq. 9. However, when  31<α  

Eq.(9) can not be satisfied by any choice of 
b

ϕ . Remem-

ber, however, that when we derived Eq.(5) from Eq.(4) we 

performed a division by ( )
b

ϕϕα−− 11 , which, in the 

case αϕ −= 1
b

, is zero for 1=ϕ . Thus, Eq.(5) is correct 

for all values of φ, except for 1. In the case when 

αϕ −= 1
b

 and ( ) φϕ 22 −=fp  Eq.(5) (which is correct 

for  1≠ϕ ) gives ( ) αϕϕ 6=bp . We can satisfy Eq.(6) by 

choosing  

 ( ) ( ) ( )ϕδααϕϕ −−+= 1316bp . (10) 

As αϕ −= 1
b

,  Eq.(2) gives ( ) ϕϕλ = . This means that 

the links with the maximum fitness 1=ϕ are exactly critical, 

while the rest of the links are subcritical. 

One can consider a more general fitness distribu-

tion ( ) ( )( )θ
ϕθϕ −+= 11fp . In the cases θ = 0 and θ = 1 

we recover the two just discussed distributions. One can 

show that when ( ) ( )ααθ −×< 12  the asymptotic form 

of ( )ϕbp  is similar to the case of θ = 0. In the opposite case 

it is similar to the case of θ = 1, that is it has a delta function 

part. One can also show that any ( )ϕfp distribution, which 

is finite at 1=ϕ , is similar to the uniform distribution in this 

respect. We do not know what the actual distribution of fit-

ness is, but we see that with a wide class of links’ fitness dis-

tributions the blogosphere self-organizes into a critical state. 

Applications of the model are not limited to the web. 

Recently we used this model to develop a mathematical the-

ory of citing [8]. The only difference is that, instead of blog-

gers copying links from other blogs, scientists are copying 

citations from other papers. One can also apply this model to 

the dynamics of spreading of other elements of culture like 

books, films and fashions. 
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