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Abstract. Coplanar camera calibration is the process of de-
termining the extrinsic and intrinsic camera parameters from
a given set of image and world points, when the world
points lie on a two-dimensional plane. Noncoplanar cali-
bration, on the other hand, involves world points that do not
liec on a plane. While optimal solutions for both the camera-
calibration procedures can be obtained by solving a set of
constrained nonlinear optimization problems, there are sig-
nificant structural differences between the two formulations.
We investigate the computational and algorithmic implica-
tions of such underlying differences, and provide a set of ef-
ficient algorithms that are specifically tailored for the copla-
nar case. More specifically, we offer the following: (1) four
algorithms for coplanar calibration that use linear or iterative
linear methods to solve the underlying nonlinear optimiza-
tion problem, and produce sub-optimal solutions. These al-
gorithms are motivated by their computational efficiency and
are useful for real-time low-cost systems. (2) Two optimal
solutions for coplanar calibration, including one novel non-
linear algorithm. A constraint for the optimal estimation of
extrinsic parameters is also given. (3) A Lyapunov type con-
vergence analysis for the new nonlinear algorithm. We test
the validity and performance of the calibration procedures
with both synthetic and real images. The results consistently
show significant improvements over less complete camera
models.
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Lens distortion — Nonlinear optimization

1 Introduction

There is a vast literature on noncoplanar camera calibration
where the world points lie on a three-dimensional (3D) sur-
face. However, not much importance is given to coplanar
camera calibration, where the world points lie on a two-
dimensional (2D) plane. This is in spite of the fact that there
are several industrial and military applications that require
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coplanar calibration [16,26,27]. In this study, we survey
the coplanar camera calibration problem, and in the process
present new and provably convergent algorithms for the so-
lution of extrinsic (external camera geometric) and intrinsic
(internal camera geometric and camera optics) parameters.

Coplanar camera calibration is used frequently in com-
mercial and military applications. In metrology problems
[16,27], we commonly measure the dimensions of small
(semiconductor) objects under high magnification, where the
part dimensions are much greater than their surface eleva-
tions. In remote sensing of the earth’s surface [26], the image
data is acquired from either an aircraft or a spacecraft plat-
form, whose distance from the earth’s surface may be much
larger than the surface topography. In both these situations,
the calibration problems are essentially coplanar.

An optimal solution of all camera calibration parameters
requires nonlinear optimization. In our discussions, “opti-
mality” refers to the orthonormality constraints that the ex-
trinsic (rotation) parameters must satisfy (see Sect. 2). In
some respects, the coplanar calibration problem is more
complex than the noncoplanar case. While the number of
parameters to be estimated is the same in both cases, the
number of usable orthonormality constraints is fewer for the
coplanar case. We have available only three orthonormal-
ity constraints (see Sect. 3) in comparison to six constraints
(see Sect. 2) for the noncoplanar case. Besides, some stan-
dard techniques in photogrammetry such as the absolute and
exterior orientation methods [16,23] can be used to solve
the noncoplanar extrinsic parameters (see [8]), while such
methods are inapplicable in the coplanar case.

In this study, we extend a number of linear and nonlin-
ear methods of noncoplanar calibration to the coplanar case.
The extensions involve novel steps that are special to the
coplanar problem. We also present new linear and nonlinear
methods of coplanar calibration. We offer a rigorous proof
of convergence for the new nonlinear method. In summary,
we describe two types of algorithms for coplanar camera
calibration: (1) four linear and iterative linear algorithms
which produce efficient but sub-optimal solutions, and (2)
two nonlinear algorithms which produce optimal solutions,
and including a novel nonlinear algorithm with an analytical
proof of convergence.
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In the next four sections, we review the following as-
pects of coplanar calibration: (1) image center parameters,
(2) scale factor parameter, (3) lens distortion parameters,
and (4) methods to solve the coplanar camera calibration
problem.

1.1 Image center parameter

Ideally the image center is the intersection of the optical
axis of the camera-lens system with the camera’s sensing
plane. For real lenses, optical axis is not so easily defined,
and different definitions of image centers [30] depend on
whether the lens has fixed or variable parameters, and on
how the variable parameters are mechanically implemented.
Examples are (1) for a simple lens, there can be two axes
of symmetry — optical and mechanical. The optical axis is
the straight line joining the centers of curvature of the two
surfaces of the lens, whereas the mechanical axis is deter-
mined by the centerline of the machine used to grind the
lens’ edge. The angle between these axes is called decen-
tration [30]. (2) In a compound lens, the optical axes of
multiple lens elements may not be accurately aligned due to
decentration of each lens element, resulting in multiple pos-
sibilities for the optical axis. (3) In adjustable and variable
focal length lenses, the misalignment between the optical
and mechanical axes change as the spacing between the lens
elements are changed.

There are both offline and algorithmic methods of com-
puting the image center parameters. Some offline methods
are: (1) measuring the center of the radial lens distortion
[20,30], (2) determining the normal projection of a view-
ing point onto the imaging plane [28,30], (3) measuring the
center of the camera’s field of view [30], (4) passing a laser
beam through the lens assembly and matching the reflection
of the beam from the lens with the center of the light spot
in the image [20,30], (5) measuring the center of cos**" ra-
diometric falloff or the center of vignetting/image spot [30],
(6) changing the focal length of a camera-lens system to
determine image center from a point invariant in the im-
age [20,30]. Most algorithmic methods [7,8,10,11,15] usu-
ally use the orthonormality condition of the extrinsic param-
eters or use nonlinear minimization [20,29,30] to compute
the image center. Since a smaller number of constraints are
available in the coplanar case, we cannot compute the image
center and scale factor parameters from the orthonormality
conditions alone.

1.2 Scale factor parameters

Another intrinsic parameter commonly considered is the
scale factor s. Array sensors such as CCD/CID sensors ac-
quire the video information line by line, where each line
of video signal is well separated by the horizontal sync of
the composite video. Usually, the vertical spacing between
lines perfectly matches that on the sensor array, giving us
no scale factor in the vertical direction. The pixels in each
line of video signal are re-sampled by the ADC, which in
reality, samples the video lines with a rate different than the
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camera and causes the image to be scaled along the horizon-
tal direction, i.e., s # 1. Hence, the problem of determining
scale factor s.

Some researchers [20,27,30] suggest that s can be ap-
proximately determined from the ratio of the number of sen-
sor elements in the image column direction to the number of
pixels in a line as sampled by the processor. However, due
to timing errors, inconsistency of the ADC, and possible tilt
of the sensor array, this is not so accurate. A more accurate
estimate of s is the ratio of the frequency that sensor ele-
ments are clocked off of the CCD to the frequency at which
the ADC samples.

We found a number of methods to compute the scale fac-
tor parameter by offline techniques. These methods are (1)
measuring the frequency of the stripes generated by the in-
terface of ADC-clock and camera-clock that create the scale
factor problem [20], (2) measuring the distortion in an im-
age of a perfect circle into an ellipse [25], (3) computing the
power spectrum of the image of two sets of parallel lines [1],
(4) counting the grid points in an image of a grid pattern [6].

All of the above-mentioned methods can be used to ob-
tain initial estimates of the image center and scale factor pa-
rameters for the algorithms discussed here. In addition, we
have given algorithmic methods to obtain the image cen-
ter and scale factor parameters as a part of the parameter
estimation procedure.

1.3 Lens distortion parameters

Another intrinsic parameter commonly studied is the effect
of image distortion due to a nonlinear lens system. Many
researchers [17,20,22,29] have observed that ignoring lens
distortion is unacceptable in doing measurements. However,
most of these studies are for the noncoplanar case only. For
example, Beyer [3] demonstrated the effects of higher or-
der radial and tangential distortion models in a noncoplanar
setup. By using a first-order radial model, accuracy in im-
age space of 1/7'" of the pixel spacing is obtained, and by
using a third-order radial and first-order decentering distor-
tion model, this accuracy is enhanced to 1/46" of the pixel
spacing. Faugeras and Toscani [10] and Weng et al. [29]
used wide-angle lenses and also found that adding nonradial
distortion components improved accuracy for noncoplanar
calibration. In this study, we include radial, tangential and
thin-prism lens distortions in the coplanar calibration model.

1.4 Methods for coplanar camera calibration

In the literature of camera calibration, there are plenty of
methods of noncoplanar camera calibration that can be ex-
tended to the coplanar case. However, the extensions in-
volve novel steps pertaining to the coplanar problem. Most
of these methods transform the collinearity condition equa-
tions such that the parameters are estimated by solving linear
equations. Many earlier studies using this approach primarily
considered the extrinsic parameters, although some intrinsic
parameters, such as image center, are considered only for
the noncoplanar case. These methods are usually efficient.
However, the solutions are sub-optimal and they generally



86

ignore nonlinear lens distortion. Yakimovsky and Cunning-
ham [32] and Ganapathy [11] used the pin-hole model and
treated some combinations of parameters as single variables
in order to formulate the problem as a linear system. How-
ever, in this formulation, the variables are not completely
linearly independent, yet are treated as such.

Grosky and Tamburino [15] used a linear method after
correcting lens distortion with a bivariate polynormial model.
The coplanar case is considered, although it is necessary for
the user to supply up to three additional constraints. Tsai [27]
and Lenz and Tsai [20] considered a two-stage algorithm
using a radial alignment constraint (RAC) in which most
parameters are computed in closed form. A small number
of parameters such as the focal length, depth component of
the translation vector, and radial lens distortion parameters
are computed by an iterative scheme. If the image center
is unknown, it is determined by a nonlinear approach [20]
based on minimizing the RAC residual error. Although the
solution is efficient, and radial lens distortion parameters
are computed, the method does not estimate tangential lens
distortion parameters. Furthermore, by taking the ratio of the
collinearity condition equations, the method discards radial
information in these equations. For example, Weng et al.
[29] suggest that ignoring radial information can result in a
less reliable estimator. Moreover, the solution is sub-optimal.
However, Lenz and Tsai [20] have offered one of the few
algorithms for the coplanar case.

Analytical photogrammetry offers various methods [4,5,
9,13,16,18,23] to solve the noncoplanar calibration problem,
most of which are based on a parametric recursive proce-
dure known as the nonlinear least squares method [16,23].
Using the Euler angles for the rotation matrix (see Eq. 38),
two collinearity condition equations are obtained for each
observation. The nonlinear equations are linearized using
Newton'’s first-order approximation. The linear equations are
solved and updated by an iterative procedure. Several iter-
ations of the solution must be made to eliminate errors due
to the linearization procedure. Initial estimates are a pre-
requisite for this recursive procedure to succeed. Faig [9],
Wong [31] and Malhotra and Karara [18] used the above
method for a general solution of all noncoplanar calibra-
tion parameters. The direct linear transformation method of
Abdel-Aziz and Karara [18] also uses this technique. Simi-
lar formulations are used by Beyer [3] and Weng et al. [29].
These methods yield optimal solutions and very accurate
parameter estimates. However, many researchers [15,17,27]
observe that these methods require a considerable computa-
tional effort. We extend the photogrammetric formulation to
the coplanar calibration problem.

In Sect. 2, we describe the camera calibration model.
Section 3 describes the linear and iterative linear methods of
coplanar camera calibration. Section 4 discusses two nonlin-
ear methods of coplanar calibration including a new method
with its analytical proof of convergence. Section 5 has the
experimental results. Section 6 has the concluding remarks.

2 Camera calibration model

We discuss the camera calibration model consisting of ex-
trinsic and intrinsic parameters. The extrinsic parameters
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Table 1. Camera calibration parameters discussed in this study

Parameters Type Description

R Extrinsic Rotation matrix for camera orientation

t Translation vector for position of camera center
f Intrinsic  Focal length

i0, Jo Intrinsic Image center displacement

5 Scale factor

kiy...;ky, Intrinsic Radial lens distortion

D1, D2 Decentering lens distortion

81482 Thin-prism lens distortion

consist of a 3x3 rotation matrix R which defines the camera
orientation, and the 3x1 translation vector t which defines
the position of the camera center. The intrinsic parameters
consist of the effective focal length f of the camera, center of
the image array (ip, jo), horizontal scale factor s of the im-
age array, radial lens distortion parameters {k;, kz,..., %k},
tangential lens distortion parameters {p;, p; }, and thin-prism
lens distortion parameters {si, s, }.

2.1 Extrinsic parameters and focal length

Here, we describe the geometry of the calibration system.
Since the world points lie on a 2D plane, we assume, without
loss of generality, that it is the z-coordinate that is unimpor-
tant. The geometry involves three coordinate systems (see
Fig. 1): (1) a world coordinate system (X, Y., Z,) cen-
tered around a point O, and including a point (z,y) ly-
ing on the (X, Y,,) plane, (2) a camera coordinate system
(X, Y., Z.) with origin at optical center O, with Z_-axis
the same as the optical axis, and (3) a 2D image array sys-
tem ([, J) centered at a point O, in the image plane, with
(I,J) axes aligned with (X,,Y.), respectively, and includ-
ing a point (i, 7). Let f be the effective focal length of the
camera. The collinearity condition equations are [13,18,23]

me+riy+t .
f 11 12Y 1) _ i, and (1)
T31T + T30y + 13
TuT+ TRy it .
f =7 (2)
T3 T+ T3y + 13
where
l'? 11 T2 T13
R=|rl|=|rarnmrs 3)
r] T3l T3 T33

is a 3x3 rotation matrix which defines the camera orienta-
tion, and tT = [¢;tyts] is a translation vector which defines
the position of the camera center. An important constraint
in calibration algorithms is the orthonormality constraint of
the rotation matrix R given by

R'R=RR" =TI 4)
The extrinsic and focal length parameters to be calibrated

are b={R,t, f}.
2.2 Lens distortion parameters

As a result of imperfections in the design and assembly of
lenses, the image of a plane object lies, in general, on a
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Fig. 1. Mapping of world point (z, y) to image point (g, j)
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Fig. 2. Lens distortions: (A) radial pincushion, (B) radial barrel, and (C)
tangential

slightly curved field [23] (see Fig. 2), wherein objects at the
edge of the field of view appear somewhat smaller or larger
than they should. Types of lens distortions commonly seen
are radial [4,23] and tangential [5,23]. Two common radial
distortions are pincushion and barrel distortions. Pincush-
ion distortion results, for example, when a lens is used as a
magnifying glass, whereas barrel distortion results when the
object is viewed through a lens at some distance from the
eye. Tangential distortions are usually caused by (a) decen-
tering of the lens (decentering distortion) [4,5,9,24,29], and
(b) imperfections in lens manufacturing or tilt in camera sen-
sor or lens (thin-prism distortion) [9,29]. One of the effects
of tangential distortion is that a straight line passing through
the center of the field of view may appear in the image as
weakly curved line (see Fig. 2). Clearly, these distortions
are disturbing in applications where the ultimate task is to
map a 2D object in uniform scale from its acquired image.
One commonly used model for correcting lens distortion
is that developed by Brown [4,5]. Let (d;,6,) be the cor-
rections for geometric lens distortions present in distorted
image coordinates (i4, j4). Let (¢, 7) be the ideal undistorted
image coordinates of a 2D point (z,y). With r3 = i3 + 53, §;
and 5:,- are expressed by the following series [4,5,23,29]:

0; =iy (klri + kgrf} + ...+ k',.n'ri"“)
+ (p1(r3 +263) + 2pyiaja) (L+pard +...)

+(s1r3+..) ©)

d; = Jja (klr:} + kg:f‘f} + ...+ k,.nri"“)
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+ (2prigja + p2(r5 +258)) (L +pari +...)
+(s2rg +.) (6)

Here, 1y is the order of the radial distortion model. Terms
including coefficients {k;, k2, k3, . . ., kr, } account for radial
distortion, {p;, p2, ps, . . .} represent decentering distortions,
and {s;, 82,...} represent thin-prism distortions. We define
the distortion vector d as

d’ = [ki ks ... kyy p1 2 81 82]. @)

Image coordinates are corrected for lens distortion by the
expressions below:

i =1i4+w'd, where
w = [igrd dgrd . igri 2+ 243 2igja 5 0], and  (8)
j=7ja+Ww'd, where
W = [Gar2 jary .. jar3® 2igja r3+2530 2] 9)

The lens distortion parameter to be calibrated is d.

2.3 Image center and scale factor parameters

Consider a frame buffer image point (i, j) with respect to
the center O, of the image buffer. Let the actual image center
be at (ig, jo). Let (ig, jg) be the location of the distorted
image point with respect to (zg, jp). Let s be the horizontal
scale factor of the image. Then, we obtain [10,11,20,27,29]

id=8_1(éf—ig) andjd=(jf—jo). (10)

The parameters to be calibrated are m = {4y, jo, s}.

24 Discussion

Figure 3 below provides the steps for transforming the frame
buffer image point (iy,js) to the ideal undistorted image
point (%, 7) and to the 2D world point (z, ).

Given frame buffer image coordinates (i7, js), the dis-
torted image coordinates (i4, j4) obtained from Eq. 10 are
functions of the image center and scale factor parameters
m,ie.,

ig = ig(m) andjg = jg(m). (11)

Finally, the ideal undistorted image coordinates (z,j) ob-
tained from (Z4, j4) by applying Eqs. 8 and 9 are functions
of the lens distortion parameters d. Thus, the complete trans-
formation from frame buffer coordinates (iy,jr) to ideal
undistorted coordinates (Z,7) is a function of both m and
d:

¢ =1(d,m) and j = j(d, m). (12)

3 Linear and iterative linear algorithms
for coplanar calibration

Since the world points lie on a 2D plane, we assume, with-
out loss of generality, that it is the z-coordinate of the
world points that is unimportant. Due to this assumption,
the last column of the rotation matrix R is not available
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({r ’-JF) Frame Buffer Image Point

Image Center and Scale Factor Correction
Parameters: m={4y, j» 5}

(4;,j;) Distorted Image Point

Lens Distortion Correction
Parameters: d

(i,7) Ideal Undistorted Image Point

Perspective Projection and Rotation/Translation
Parameters: b={R.t, f}

!

(x,¥) 2D World Point

Fig. 3. Steps for transforming frame buffer image point (if,js) to ideal
undistorted image point (¢, §) and to 2D world point (z, )

in the collinearity condition Eqs 1 and 2. Instead of all the
orthonormality constraints described in Eq.4, we have avail-
able three constraints:

"'"%1 """"%1 '+"""%1 = l,rlz2+7"%2+r%2 =1,
Tz +rarn +r3ra =0, (13)

‘We discuss four methods of parameter computation by solv-
ing linear equations. The first method is due to Tsai [27],
and uses the ratio of the two collinearity condition Egs. 1
and 2. The remaining three methods utilize both collinearity
condition equations. These are coplanar extensions of Gana-
pathy’s [11], Grosky and Tamburino’s [15], and Chatterjee et
al. [8] noncoplanar solutions. Table 2 shows the parameters
computed by these methods.

In our discussion of the algorithms, some of the steps
may fail for the degenerate case r3; = m32 = 0. This case
will happen if the camera axis is perpendicular to the world
X, — Y, plane. A slight tilt in the camera axis with respect
to the X, — Y, plane will avoid this condition. Thus, we
assume 73 # 0 and 73, # 0 in all our algorithms. If these
conditions do not hold, then a unique solution of f and
t3; may not exist in steps 5 and 6 of Tsai’s algorithm, and
step 2 of Ganapathy’s and Grosky-Tamburino’s algorithms.
Instead, a solution for f/{; can be obtained.

3.1 Tsai’s method

Tsai [27] designed a method that includes the radial lens
distortion parameters in his camera model and provided a
two-stage algorithm for estimating the camera parameters. In
his method, most parameters are computed in a closed form,
and a small number of parameters such as focal length, the
depth component of the translation vector, and the radial lens
distortion parameters are computed by an iterative scheme.

Tsai introduced an RAC, which results from the observa-
tion that the vectors (24, 74), (¢, 7), and (rj z+r2y+ty, rojzc+

C. Chatterjee, V.P. Roychowdhury: Algorithms for coplanar camera calibration

ryy+t;) in Fig. 1 are radially aligned when the image center
is chosen correctly. Algebraically, the RAC states that

(ta, Ja)/ /G, 5/ [(riz + T2y + t1, roaz + Ty + 12), (14)
where // denotes parallel vectors. Here, we assume that the
image center (ip,jo) and scale factor s are either ignored
or known in advance by any one of the offline methods

described in Sect. 1. The frame buffer image coordinates
(i5,7s) can be corrected for these parameters by Eq.10 to
obtain the distorted image coordinates iy = s~ (2 5 —tp) and
Ja = Jjy — jo. The method considers radial lens distortion
only. By applying Eqgs. 8 and 9 to the collinearity condition
equations, we obtain

(—T““my ”‘) =i=ig (Lekird+ . tkyr)
T3 T+ T3y + 13

=g (1+vid), (15)
and

(T21I+T22’y +13

T+ Ty +f.‘3) J=Jd ( 174 o'

=ja (1+v3d), (16)

where 72 = i3 + 52, v] = [r2 r4 ... r7°], and @7 =
[k1 k2 ... ky] are the radial lens distortion parameters.
Then, by dividing the first equation by the second, we ob-
tain

TN + T2y + 1 :z_d a7
T + Ty + ta Jd

From Eq. 15, we obtain the following objective function:

JM)= Y (ruijaz+Tijay+ jats — raigz

all calib.points
. . 2
—Ttay — tat2)”, (18)

where b = {ry;,712, 721,722, t1,t2 } are the extrinsic parame-
ters. Tsai’s algorithm consists of the following steps.

1. By minimizing J in Eq.18, we compute the extrinsic
parameters from the following linear equation:

[a jay ja —iaz —iay|b = [ial, (19)
where

We use the linear least squares method to solve for b.
2. Compute £, from the following equations derived from
the constraints in Eq.13:

S — /82 — 4(bbs — baby)?

ty| = 20
“ 2 (bibs — baby)’ 0
or
1t 2
2|= 3
V(b1 +bs)* + (by — ba)*+1/ (b1 — bs)*+(by + bs)’
where by, ...,bs are obtained in Step1 as

by =rulta, by =rafts, bs=ti/ty, by =rulta,
bs =rTolt, and S = b +b3 + b} + b



C. Chatterjee, V.P. Roychowdhury: Algorithms for coplanar camera calibration

Table 2. Coplanar calibration parameters computed by the linear methods
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Method Parameters Computed Parameters Not Computed

Tsai R:"sf:k:ls"':klﬂ i‘;u:.’.f:u_-S,Pl:Pz:S].-ﬁz

Ganapalh}' Rs"sf I'U:!.?{J.'"-';s'k"]:'".-k:?‘[]splﬂ;i}Z:‘g]:"—".2
GFOSKY & Tamburino Rs t,f,b‘ f’U:j{J!kls'-'sk?ﬂ!p]!plsslssl
Chatterjee et al. R.t, f,s,ki,... . kw0, 01,02,81,82 0,0

3. Determine the sign of t,. For any (z, y) and correspond-
ing (ig, ja), if Sign(b;z+byy+bs) and Sign(iy) are same,
then Sign(t,) = +1, otherwise Sign(t2) = —1.

4. Determine the extrinsic parameters:

_ _ __ ./ 2 _ .2
T =toby, T2 =taby, T3 =—/1 =1y — 1y,

To1 = taby, T = tabs,

€2y

r = Sign(riray + TioT)y /1 — 13 — 3,

T31 = T12T23 — T22T13, T32 = T21T13 — T11T23,
T3y =TT — T21T12, t1 =12b3.

Ignoring lens distortion, i.e., d = 0, compute approxi-
mate values of focal length f and depth component #3 of
translation vector from the following equation (derived
from Eqs. 15 and 16):

I:’(Tllﬂ? + 112y +11) _id:| [

(raz + 1y +1t3) —ja| |ts

f} _ [id(?':u T +T32Y)

“ | da(raiz + r321)

] .2

Here, 711,712,721, 722,731,732, 81,12 are obtained from
Step4.

5. Compute accurate estimates of focal length f, depth com-
ponent ¢3 of translation vector, and radial lens distortion
parameters d from the following nonlinear equations by
using a standard nonlinear minimization scheme such as
the steepest descent [21]:

Fruz + 7y + 1) — taig — A7 Vaia(raz + 327)
~t307 Vgig — ig(raz + r2y) =0, (23)

f(raiz + 1y + 1) — taja — AT vgja(rsiz + r3y)
~t3d7 Vajq — ja(raiz +ray) = 0,

where v, is defined in Eqgs. 15 and 16, and ryy, 712, 721,
32, T31, T32, 1, tp are obtained from Step4.

The method is computationally efficient and also in-
cludes the radial lens distortion parameters. This makes the
method widely applicable to a variety of applications. How-
ever, the solution is sub-optimal and does not impose the
orthonormality constraints Eq.13. Furthermore, the image
center and scale factor parameters are not included in the so-
lution. Lenz and Tsai [20] proposes a nonlinear method for
solving the image center parameters by minimizing the RAC
residual error. Moreover, by taking the ratio of the collinear-
ity condition equations (see Eq.17), the method only con-
siders the tangential component of the collinearity equations
and ignores the radial component. Furthermore, the tangen-
tial lens distortion parameters are ignored. Besides, our ex-
periments reveal poorer estimates of parameters with this
method.

3.2 Ganapathy’s method

We extend the noncoplanar solution of Ganapathy [11] to the
coplanar case. Here, we assume that the image center (4g, jo)
and scale factor s are either ignored or known in advance
by any one of the offline methods described in Sect. 1. We
further assume that lens distortion is ignored or corrected
in advance. We use the following unconstrained objective
function derived from Eqgs. 1 and 2:

JM)= Y (fruz+ froy+ fti —raiz —raiy — ity)?

all calib.points

+Z (fraiz + frooy + ftz — ra1jz — raajy — jta)?,

all calib.points

(24)

where b = {""11 s 71247215 722, 7315 T32,4 t 3 tz, t3, f} are the ex-
trinsic parameters and focal length. Here (7,;) are ideal
undistorted image coordinates corrected for lens distortion,
image center, and scale factor by using Eqgs. 8,9 and 10. The
method consists of the following steps.

1. Minimizing J in Eq.24, we obtain the following linear
equation in unknown parameter vector b:

cy00 —iz —iy 10 b= i
=]
where

002y —jz —jy01 25)
b7 = [f?"u fria fra fra ra ra fh ffz}

3 ta f3  f3 t3 t3 t3 13

We use the linear least squares method to solve for b.
2. Impose the orthonormality constraints Eq. 13, and obtain
the parameters below:

~biby +b3by
bsbg !

f? f?
Bl =4/ 13 2+ 282 T\ s PR
by + b5 + fobs b + by + fobg

where b” = [by by bs by bs bs by by | is obtained in
Step 1.

3. The sign of #; can be determined from the camera po-
sition with respect to the world coordinate system. As
drawn in Fig. 1, the sign of {3 is negative (positive) if
the origin of the world coordinate system O,, is in front
(behind) the camera. An algorithmic method to deter-
mine the sign of ¢3 is given in [27].

4. Obtain the remaining parameters from the following
equations:

fr= (26)




taby taba tabs t3by
TMi=—, T =—F, ' = Tan = ———
11 f sy 112 f s 121 f y 122 f y
t3bs tab
tlst, t3=% 27

a1 = t3bs, T3z =tabs, Ti3 =TT — 3T,

T23 = T31T12 — T11T32, T33 = T11T22 — 721712,
The method is very efficient, but it produces a sub-
optimal solution including an ambiguous solution for ¢5.

Furthermore, the image center, scale factor, and lens dis-
tortion parameters are not considered.

3.3 Grosky and Tamburino’s method

We extend the noncoplanar solution of Grosky and Tam-
burino [15] to the coplanar case. In this algorithm, we as-
sume that lens distortion can be ignored or corrected in ad-
vance, and the image center parameters (ig, jo) are ignored
or computed in advance by applying an offline method in
Sect. 1.1. Ignoring image center and lens distortion, from
Eq.10, we get i = s~ 'iy and j = j;. From the collinearity
conditions (Eqs. 1 and 2), we obtain

™Mz +rpy+h 1.
b =8 iy,
T31T + T3y + 13

and

1L+ Ty + ts i
A [ 28
f (T31$+T32y+fg) 1 ( )

From Eq.28, we obtain the following objective function:
J(b,s)= Z (sf:ru:c +sfrizy+sfti —raisr
all calib.points
. . 2
—T‘331er — T,th'_:,)
+ ) (fruz+ fray+ fto —mjse
all calib.points
) Y
T3y — jts) (29)

where b = {r;, 712,721,722, 731, 732, t1, 2, t3, [} are the ex-
trinsic parameters, focal length, and scale factor. The method
consists of the following steps.

1. Minimizing J in Eq.29, we obtain the following linear
equation in unknown parameter vector b:

ERpm Y L

where

b7 = [3fT11 8fria frar fra T31 T3 sfty &] .
t3 3  t3 oty t3 t3 13 f3

We use the linear least squares method to solve for b.

2. Impose the orthonormality constraints Eq. 13, and obtain
the parameters below:

_ | bsbs (65 — B1) + bubz (85 — )
"7\ bsbe (82 — 02) — babs (62 — 02

(€29
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LGS A1) (32)
bsbs (B2 — b2) + byb, (B2 — B2)

3] = o , (33)
VB + B3 + s f2

where b” = [b; by b3 by bs bs by bg ] is obtained from
Step 1.

3. The sign of #; can be determined from the camera po-
sition with respect to the world coordinate system. As
drawn in Fig. 1, the sign of {3 is negative (positive) if
the origin of the world coordinate system O,, is in front
(behind) the camera. An algorithmic method to deter-
mine the sign of ¢3 is given in [27].

4. Obtain the remaining parameters from the following

equations:
ll—sf: 12—3f; Zl—f: 2= 1
tjbj‘ tjbg
t)=—F, ta = —, (34)
Y

r31 =tabs, T3 =iabs, T3 =TT —THT,
To3 =T3T12 — T11T32, T33 = T11T22 — T21T12.

The method is very efficient, but it produces a sub-
optimal solution. It also computes the scale factor parameter
s. However, the image center, and lens distortion parameters
are not computed.

3.4 Chatterjee et al. method

We extend Chatterjee et al.’s noncoplanar algorithm [8] to
the coplanar case. The method also includes the lens dis-
tortion parameters in the estimation algorithm. However, it
assumes that the image center parameters (ig, jo) are ignored
or computed in advance by an offline method in Sect. 1.1. A
starting estimate of scale factor parameter s is required. After
ignoring image center and scale factor, we correct for lens
distortion by using Eqgs. 8 and 9 to obtain ideal undistorted
image coordinates which are functions of d (see Eq.12) as
i = i(d) and j = j(d), where d” = [kika ... kryD1D28182].
Both radial and tangential lens distortions are considered.
The algorithm is based on the following unconstrained ob-
jective function:

J(b,d) = Z (friz + frioy + ft1 — rajiz — raiy — its)?

all calib.points

+ Z (fraz + froy+ fta — raijz

all calib.points
—T32jy = jts)*, (35)

where b = {rii,72,721,72, 731, ™, 11,1, 13, f}. The
method consists of the following iterative algorithm consist-
ing of two linear least squares steps. We start the algorithm
with d = 0. We iterate between Steps 1 and 2.

1. Compute b with d held constant. Correct the image co-
ordinates for lens distortion d by using Egs. 8 and 9.
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From Eq.35, we obtain the following linear equation in
unknown parameter vector b:

zy00 —iz —iy 10|, |2
{Oﬂzy—jm—ijI b=1j (36)
where
b = | fru friz fra fra o ft ft
ts t3 t3 t3 ta t3 t3 t3 |
We use the linear least squares method to solve for b.
2. Compute d with b held constant. From Egs. 8 and 9

and Eq. 35, we obtain the following linear equation in
unknown parameter vector d:

T
w
(bsz +bsy + 1) |:wT

d

_ (bla: -f-bgy + b‘;) — id(bgz + bsy + 1)

| (baz + bay + bg) — Jalbsz +bsy +1) |’
where w and W are defined in Eqs. 8 and 9 respectively,
and b is obtained from Step 1.

(37

At the end of the iterations, all extrinsic parameters and focal
length are obtained from Steps 2-4 in Sect. 3.2. Although
the method is iterative, it is efficient because each step in-
volves linear equations only. However, the method gives
us a sub-optimal solution, and does not compute the image
center parameters. Our experiments suggest, that the method
performs quite well when the scale factor is unknown. At the
end of iterative Steps 1 and 2, we use Steps 2—4 of Sect. 3.3
to obtain the scale factor as well as all extrinsic parameters
and focal length.

4 Nonlinear algorithms for coplanar calibration

In this section, we describe two algorithms to estimate all
calibration parameters such that the orthonormality condi-
tions Eq. 13 are fully satisfied. Both methods are based on
nonlinear optimization, and yield optimal solutions. The first
method is a coplanar extension of the noncoplanar methods
in photogrammetry [13,18,23,29] in which an unconstrained
objective function, with transcendental terms, is used. The
second method is a novel technique that uses an objective
function that is constrained by the orthonormality conditions
Eq. 13. We refer to this method as the Constrained Optimiza-
tion algorithm. For both methods, we partition the parameter
space into blocks of parameters, and use the Gauss-Seidel
[2,14] technique of nonlinear minimization. In the Gauss-
Seidel method, the objective function is iteratively mini-
mized for each parameter block with the remaining held
constant. This procedure is particularly attractive because
(1) of its easy implementation, (2) it reduces the nonlinear
minimization to a smaller parameter space, and (3) it lends
itself to a comprehensive theoretical convergence analysis.

From the perspective of optimization theory, a nonlinear
procedure should satisfy the following desirable features:
(1) use a good starting estimate obtained by an alternative
procedure, (2) an efficient optimization scheme that satisfies
all constraints, and (3) a proof of convergence at least to a
local minimum solution. Here, we address all these issues
in our nonlinear algorithms. Any one of the linear methods
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discussed in Sect. 3 can be used as an initialization step to
obtain starting estimates of parameters. We also provide an
analytical proof of convergence for the Constrained Opti-
mization algorithm in Sect. 4.3.

4.1 Photogrammetric method

This method is a coplanar extension of the noncoplanar algo-
rithms in analytical photogrammetry [13,16,18,23,29]. Here,
we represent the rotation matrix R by Euler angles w, ¢,
and k [16,23], where w is the clockwise rotation angle (tilt)
around X, -axis, ¢ (pan) around Y,-axis, and k (swing)
around Z,,-axis (Eq.38; see top of next page). The collinear-
ity condition equations (1,2) can then be represented in terms
of the Euler angles {w,¢,x} to obtain an unconstrained
objective function (Eq.39; see top of next page) where
b = {w,¢,k, 1,12, 13, f}:dT = [k1, ..., kryy P1, P2, 815 82],
and m = {io,jo,s}. The frame buffer image coordinates
(iy,7s) are corrected for image center and scale factor pa-
rameters m by using Eq. 10, and for lens distortion param-
eters d by using Eqgs. 8 and 9 to obtain ideal undistorted
image coordinates (z, 7). Thus, the ideal undistorted image
coordinates (z, j) are functions of both m and d as shown in
Eq.12. We start the algorithm with an initial estimate of m,
and with d = 0. The algorithm iterates between the following
three steps.

1. Compute b with d and m held constant. Correct the
frame buffer image coordinates (iy,j;) by image cen-
ter and scale factor parameters m by using Eq. 10, and
then by lens distortion parameters d by using Egs. 8 and
9 to obtain ideal undistorted image coordinates (z, 7).
Then, minimize J in Eq.39 with respect to b. This is an
unconstrained nonlinear minimization problem, whereby
the objective function is minimized by a nonlinear proce-
dure such as steepest descent or quasi-Newton methods
[2,21].

2. Compute d with b and m held constant. Correct the
frame buffer image coordinates (i, jy) by image center
and scale factor parameters m by using Eq. 10 to obtain
distorted image coordinates (ig4, jz)- Then, from Eqgs. 39
and 8 and 9, we obtain the following unconstrained linear
equation in unknown parameter vector d:

‘f;]ch [Cl_ﬂ, (40)

W €2 — Jd

where w and W are defined in Eqs. 8 and 9, respectively,
and b is obtained from Step 1,

P ( (cos ¢ cos K)x + (8in w sin ¢ cos K + cos w sin K)y + £ )
cp = y
! (sin @)z + (— sinw cos Py + t5 '

and

P ((— COS ¢ sin k) + (— sin w sin ¢ sin & + cos w cos K)Y + &z )
Ca = .
z (sin @) + (— sinw cos @)y + 3

3. Compute m with b and d held constant. This is an un-
constrained nonlinear minimization problem whereby the
objective function J in Eq.39 is minimized with respect
to m = {ig, jo,8}. The frame buffer image coordinates
(is,7y) are corrected for lens distortion by Egs. 8 and 9
as
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—Ccoswsingcos K +sinwsink
COS w Sin ¢ Sin K + Sinw cos K (38)

COS W CO8 ¢

COS P COs K sinw sin ¢ cos K + cos w sin K
R=|—cos¢sink — sinw sin ¢ sin K + COS W COS K
sin ¢ — sinw cos ¢

J(b,d,m) = E i(d,m) — f (

all calib.poin

(cos ¢ cos K)x + (sinw sin ¢ cos £ + cosw sin K)y + £ 2
(sin @)z + (— sinw cos @)y + t3

> (J(d m -7 (&

all calib.points

i(m) = ig(m) + w(m)” d and j(m) = j,;(m) + W(m)"d,

where w and W defined in Eqs. 8 and 9 respectively are
functions of m. Also, iz = 3—1(1‘; —ig),Ja = (G5 — Jo)
and 13 = s72(iy — i)’ + (j; — jo)* are all functions
of m = {4g, jo, s}. The steepest descent or quasi-Newton
methods [21] may be used to solve for m in the nonlinear
objective function J in Eq.39.

At the end of the iterations, the extrinsic rotation matrix
R is computed from (w, ¢, k) by using Eq. 38. The algorithm
yields an optimal solution and solves all calibration param-
eters. However, it requires precise starting estimates to con-
verge correctly, since the periodic transcendental terms in the
objective function may lead to false minima. The method is
also computationally complex.

4.2 Constrained-optimization method

This algorithm uses the following constrained objective
function obtained from the collinearity condition Eqs. 1 and
2

J(b,d, m)
Y (fruz+ froy+ ft1 — ryiz — raiy — its)’

all calib.points

+ Y (fruz+ froy+ fto — raje — rajy — jits).
all calib.points

under orthonormality constraints (Eq.13), 41)

where b = {ry1,m15, 721,70, 731, T2, t1, oy by, £}, AT = [Ky,
oy Krgs D1, P2, 81, 821, m = {4g, Jo, 8}. The frame buffer im-
age coordinates (¢7, jr) are corrected for image center and
scale factor parameters m by using Eq. 10, and for lens dis-
tortion parameters d by using Eqgs. 8 and 9 to obtain ideal
undistorted image coordinates (¢, 7). Thus, the ideal undis-
torted image coordinates (¢, 7) are functions of both m and
d as shown in Eq. 12. Furthermore, the orthonormality con-
straints Eqs. 13 are imposed during the optimization process.
‘We define the parameter block b containing extrinsic param-
eters and focal length as
bl = | ST 2 fra fro o fti fo | @2)
s t3 f3 t3 B3 t3 f3 1y
We can now write the three constraints in Eq. 13 in terms of
the elements of b. Let

cos ¢ sin k)x + (— sinw sin ¢ sin K + cos w cos K)y + i3 2 (39)
(sin @)z + (— sinw cos @)y + t3 ’

b” = [by by bs by bs bg by bs ] .
Then, the constraint for coplanar camera calibration is

h(b) = (bsby + beb2)(bsb1 — bsby) + (bsbs + beba)(bsbs — bsbs)
=0. (43)

We start the algorithm with an initial estimate of m (see
Sects. 1.1 and 1.2), and with d = 0. The method consists of
iterations between the following three steps.

1. Compute b with d and m held constant. Correct the
frame buffer image coordinates (i 7, j;) by image center
and scale factor parameters m by using Eq. 10, and then
by lens distortion parameters d by using Egs. 8 and 9 to
obtain ideal undistorted image coordinates (z, 7). Then,
minimize J in Eq.41 with respect to b under constraint
43. We solve for b from the following constrained linear
equation:

zy00 —iz —iy 10| |1
00zy—jz—jy01|P= || (44)

under constraint

h(b) = (bsb; + beb2)(bsb1 — bsby) + (bsbs + bgbs)
X (bgb3s — bsba) =

Any constrained minimization method such as quasi-
Newton with penalty function or augmented Lagrangian
[21] can be used.

2. Compute d with b and m held constant. Correct the
frame buffer image coordinates (iy, j;) by image center
and scale factor parameters m by using Eq. 10 to obtain
distorted image coordinates (i4,j4). Then from Eqgs. 41
and 8 and 9, we obtain the following unconstrained linear
equation in unknown parameter vector d:

T
(bsz + bey + 1) [;T] d

- {bl$+b2y+b7}_id(b5m+b5y+ l) (45)
T | (B3z + bay + bg) — Ja(bsT + bey + 1)

where w and W are defined in Egs. 8 and 9 respectively,
and b is obtained from Step 1.

3. Compute m with b and d held constant. This is an un-
constrained nonlinear minimization problem where the
objective function J in Eq.41 is minimized with respect
to m = {ig, jo,8}. The frame buffer image coordinates
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(ig,jr) are corrected for lens distortion by Egs. 8 and 9
as:

i(m) = ig(m) + w(m)”d and j(m) = j4(m) + W(m)"d,

where w and W defined in Eqgs. 8 and 9, respectively are
functions of m. Also, i; = s—l(if —ig),Jja = Gy — Jo)
and 3 = s7%(iy — i9)> + (j; — jo)* are all functions of
m = {iy,jo, s}. The steepest descent or quasi-Newton

methods [21] may be used to solve for m = {4y, jo, s} in
the following nonlinear equations:

(ia(m) + wm)” ) (bsz + by + 1) + (b1 + byy + by)

=0, (46)
(ja(m) + W(m)7d) (bsz + bey + 1) + (bsz + by + by)
=0,

where b is obtained from Step 1, and d from Step 2.

At the end of the iterations, all extrinsic parameters and focal
length are obtained from Steps 2—4 in Sect. 3.2. The method
is computationally complex, but it produces an optimal so-
lution and computes all calibration parameters.

4.3 Convergence analysis
for the constrained optimization algorithm

A convergence analysis of the Constrained Optimization al-
gorithm is necessary because the constraint h(b) = 0 in
Eq.43 is nonconvex. The lemmas and theorem below dis-
cuss: (1) conditions for the objective function J in Eq.41 to
(strictly) decrease in successive iterations, (2) a closed-form
expression for the amount of decrease in each iteration, and
(3) convergence of the nonlinear algorithm to a local min-
imum solution. Proofs for all lemmas and theorem 1 are
given in the Appendix.

Lemma 1. The Constrained Optimization algorithm reduces
the objective function J in Step 1.

Lemma 2. The Constrained Optimization method strictly re-
duces the objective function J in Step2.

Lemma 3. The Constrained Optimization algorithm reduces
the objective function J in Step 3.

Theorem 1. Suppose that J has a strict local minimum point
x* = (b*,d",m*). Let {X; = (bg,ds,my)} be the sequence
generated by the Constrained Optimization algorithm. If Xy
is sufficiently close to X*, then {X} converges fo X*.

5 Experimental results

We test the algorithms on two sets of data: (1) synthetic
data corrupted with known noise, and (2) real data obtained
from a calibration setup. We evaluate the accuracy of each
algorithm according to the square root of the mean square
error in both image components:

image error (IE)

n=l1 n=l1

N N
I 2
~ (Z 572 (in = in(®,d, WP + Y _ Gn — Jn,d, m)J“) !
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(47)

where (i,,7j,) are points measured from the image and
(in(b,d,m), j,(b,d, m)) are computed from calibration pa-
rameters (b, d, m).

5.1 Experiments with synthetic data

We generated synthetic data with a known set of extrinsic
and intrinsic camera parameters. We first produced a 10x 10
(i.e., N = 100) grid of points to simulate the image points.
The image is 512 columns and 480 rows. We placed the
image points in the 10x 10 grid at equal distance from each
other and from the edges of the image in both column and
row dimensions. We generated the rotation matrix R from
Euler angles w = ¢ = k = 15° according to Eq.38. We
placed the optical center ¢ = O, at (5,3,15). The translation
vector t is obtained as t = —Re = (—2.99, —6.22, —14.54),
and focal length f = 300. World points are obtained from the
collinearity conditions (Egs. 1 and 2). Given image points
(2, 7), the world points (z,y) is obtained from (Eqs. 1 and
2) as

(psv — ps)(P3 — u) — (pgu — p2)(Ps — V)

= (48)
(psv — ps)(pru — p1) — (Psu — P2)(P7v — pa)’
Y= (pru — p1)(ps — v) — (p7v — ps)(p3 — u)
(psv — ps)(pru — p1) — (Psu — P2)(P7v — pa)’
where
_fru_fri _Jt _fra fra
b= t y D2 = t39p3—t3:P4— £ Ds = t3’
[tz T3] 732
= — = —\ d = —.
Ds £ y P71 & ] ts

Lens distortion is then added to this image points ac-
cording to first- and second-order radial distortion models
with coefficients k; = 10~7 and k; = 10~ . We next add
image center and scale factor parameters to the image points
with ip = 5,j0 = 4 and s = 1. Finally, we add independent
quantization noise from a uniform distribution on the inter-
val (—0.5,0.5) pixel to the image points. With the calibration
parameters described before, we generated 100 test data sets,
where each data set contains IV = 100 (10 x 10 grid) image
and world points and different quantization noise.

We use all four linear methods and two nonlinear meth-
ods to estimate the calibration parameters and image error
(see Eq.47). For each algorithm, from the 100 data sets, we
obtained 100 estimates of each parameter and 100 image
errors. We next compute their mean and standard deviation.
Finally, we compute the relative error of each parameter as
follows:

|a — &

relative error of parameter a= Tl

(49)

where a is the true parameter value (described above), and
A is the estimated parameter value which is the mean of the
100 parameter estimates. Image error (IE) is also computed
as the mean of the image errors from 100 data sets.
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Table 3. Relative errors Eq.49 of parameters and standard deviations of parameter estimates for synthetic data

Tsai

Ganapathy

Grosky

Chatterjee

Photogrammetry

Constrained

711
T2
L]
721
T2
723
731
32

T33

ol

io
Jo
ky
k2
IE

0.0045 (0.0002)
0.0137 (0.0002)
0.0880 (0.0011)
0.0142 (0.0003)
0.0039 (0.0003)
0.0410 (0.0010)
0.0463 (0.0011)
0.0713 (0.0010)
0.0018 (0.0004)
0.0812 (0.0028)
0.0313 (0.0026)
0.0075 (0.0534)
0.0054 (1.0867)

0.8473 (0.0000)
280.76 (0.0000)
5.1504 (1.0381)

0.0045 (0.0002)
0.0135 (0.0002)
0.0104 (0.0004)
0.0137 (0.0002)
0.0035 (0.0002)
0.0093 (0.0006)
0.0100 (0.0005)
0.0093 (0.0005)
0.0014 (0.0003)
0.0827 (0.0022)
0.0307 (0.0022)
0.0054 (0.0317)
0.0011 (0.6747)

0.7797 (0.0284)

0.0024 (0.0001)
0.0156 (0.0002)
0.0176 (0.0004)
0.0065 (0.0002)
0.0037 (0.0002)
0.0278 (0.0008)
0.0251 (0.0006)
0.0258 (0.0007)
0.0037 (0.0003)
0.0805 (0.0021)
0.0382 (0.0025)
0.0295 (0.0373)
0.0427 (0.8259)
0.0094 (0.0003)

0.6960 (0.0283)

0.0024 (0.0001)
0.0153 (0.0002)
0.0195 (0.0004)
0.0068 (0.0002)
0.0034 (0.0002)
0.0252 (0.0008)
0.0253 (0.0006)
0.0223 (0.0007)
0.0035 (0.0003)
0.0790 (0.0021)
0.0386 (0.0025)
0.0241 (0.0378)
0.0311 (0.8579)
0.0093 (0.0003)

0.0934 (0.0000)
6.7209 (0.0000)
0.4023 (0.0213)

0.0004 (0.0004)
0.0025 (0.0002)
0.0026 (0.0005)
0.0009 (0.0003)
0.0007 (0.0003)
0.0051 (0.0009)
0.0041 (0.0008)
0.0050 (0.0007)
0.0007 (0.0004)
0.0124 (0.0022)
0.0065 (0.0021)
0.0043 (0.0492)
0.0065 (0.8863)
0.0035 (0.0042)
0.1630 (0.0023)
0.0018 (0.0003)
0.0296 (0.0000)
3.3463 (0.0000)
0.3087 (0.0225)

0.0005 (0.0020)
0.0014 (0.0020)
0.0029 (0.0035)
0.0006 (0.0031)
0.0005 (0.0030)
0.0059 (0.0116)
0.0048 (0.0063)
0.0072 (0.0092)
0.0014 (0.0015)
0.0055 (0.0072)
0.0092 (0.0686)
0.0057 (0.4486)
0.0066 (0.9297)
0.0051 (0.2675)
0.1954 (0.0048)
0.0004 (0.0032)
0.0177 (0.0000)
2.8410 (0.0000)
0.3230 (0.0237)

Table 4. Parameter estimates and their standard deviations for real data

Tsai

Ganapathy

Grosky

Chatterjee

Photogrammetry

Constrained

k2
IE

—0.1533(0.0003)

0.9748 (0.0006)
0.1618 (0.0037)

—0.9721(0.0005)
—0.1782(0.0006)

0.1525 (0.0031)
0.1775 (0.0028)

—0.1339(0.0039)

0.9750 (0.0006)
15.025(0.0107)
14.795(0.0079)

—142.37(2.4527)

1158.71(20.08)

—2.3252X10~7

6.5583X10° 12
2.3148 (1.8947)

—0.1536(0.0002)
0.9758 (0.0006)
0.1637 (0.0014)

—0.9723(0.0002)

—0.1779(0.0003)
0.1432 (0.0026)
0.1684 (0.0027)

—0.1375(0.0013)
0.9761 (0.0005)
15.039 (0.0075)
14.796 (0.0050)

—134.26(2.2340)
1093.00 (18.06)

0.9164 (0.2113)

—0.1533(0.0003)

0.9740 (0.0003)
0.1668 (0.0019)

—0.9732(0.0003)
—0.1781(0.0002)

0.1456 (0.0017)
0.1715 (0.0016)

—0.1400(0.0020)

0.9752 (0.0003)
15.012 (0.0165)
14.809 (0.0028)

—136.74(1.5386)

1112.13 (12.66)
1.0027 (0.0011)

0.9146 (0.2101)

—0.1535(0.0003)
0.9754 (0.0004)
0.1581 (0.0024)

—0.9719(0.0003)

—0.1780(0.0003)
0.1541 (0.0019)
0.1784 (0.0017)

—0.1300(0.0026)
0.9753 (0.0003)
15.036 (0.0178)
14.790 (0.0035)

—144 .28(1.5070)
1177.30 (12.50)
0.9991 (0.0013)

2.9753X10-8
3.4495X107 14
0.3690 (0.1147)

—0.1540(0.0001)

0.9756 (0.0001)
0.1564 (0.0005)

—0.9726(0.0001)
—0.1776(0.0001)

0.1502 (0.0006)
0.1743 (0.0006)

—0.1290(0.0005)

0.9762 (0.0001)
15.514 (0.0028)
15.159 (0.0018)

—141.38(0.3628)

1153.57 (3.358)
1.0000 (0.0003)
3.9983 (0.0034)
3.0018 (0.0030)
1.0465X10~8

1.9450X10~ 1

0.2034 (0.0093)

—0.1534(0.0002)

0.9746 (0.0006)
0.1600 (0.0014)

—0.9724(0.0002)
—0.1779(0.0001)

0.1512 (0.0010)
0.1760 (0.0010)

—0.1324(0.0014)

0.9749 (0.0006)
15.096 (0.0532)
14.861 (0.0023)

—143.15(0.2941)

1162.60 (4.448)
1.0006 (0.0005)
3.6464 (0.0092)
2.8708 (0.0047)
09753X108

1.7532X10~ 1

0.2355 (0.0084)

The results of this experiment are given in Table 3. For

the Tsai, Chatterjee and nonlinear methods, we fit a second-
order radial lens distortion model to the calibration data. We
start all algorithms with image center ip = jo = 0, scale
factor s = 1, and lens distortions k; = k2 = 0.

We observe the following from Table 3.

. The Tsai method is sensitive to the scale factor parameter

5, and the image center parameters iy and jy. Although
the actual image center is igp = 5, jo = 4, we start the al-
gorithms with ¢y = jp = 0. Consequently, the Tsai method
produces a larger image error. By taking the ratio of the
collinearity condition equations 1 and 2, Tsai has dis-
carded the radial information in these equations. This is
also reflected in the higher image error.

. The Ganapathy and Grosky methods are very similar

in parameter accuracy and in image error. The Grosky
method produces the additional scale factor parameter.
Both these methods ignore lens distortion and image cen-
ter parameters.

3. The Chatterjee method also computes the lens distortion

parameters, and produces better image error among all
linear methods. However, the Chatterjee method is itera-
tive linear, whereas the Ganapathy and Grosky methods
are single-step linear methods. The Tsai method uses
nonlinear minimization for the lens distortion parame-
ters.

4. Accuracy of parameters is comparable for all four lin-

ear methods. All linear methods ignore the image cen-
ter parameters. Furthermore, all four linear methods are
sub-optimal, i.e., they do not satisfy the orthonormality
conditions (Eq.13).

5. The best estimates of all parameters (by an order of

magnitude) are obtained from the nonlinear (Photogram-
metric and Constrained Optimization) methods. Further-
more, the nonlinear methods also satisfy the orthonor-
mality constraints (Eq.13), and are, therefore, optimal.
Moreover, the nonlinear methods compute all parameters
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including the image center parameters. The image errors
are also better for the nonlinear algorithms.

6. The variations in the parameter estimates are small (as
shown by the standard deviations). This demonstrates
that the algorithms are consistent and repeatable in esti-
mating parameters.

5.2 Experiments with real data

Real data is generated from test calibration points created by
accurately placing a set of 36 dots in a square grid of 6x6
dots on a flat surface. The center to center distance between
the dots is 7.875 mm. The diameter of each dot is 3.875 mm.
The calibration pattern is mounted on a custom-made cal-
ibration stand. The centroid pixel of each dot is obtained
by image processing to subpixel accuracy. Although we ob-
served high lens distortion for wide angle lenses, we used a
35-70 mm zoom lens because of its frequent use in applica-
tions, and a depth of field that can focus within a range of
0-60 mm. We used an off-the-shelf camera in a monoview
setup. The camera resolution is 512x480 pixels and the dig-
itizer gives digital images with 16 bits/pixel. We acquired 10
images of the calibration points, thereby generating 10 data
sets with NV = 36 image and world points in each data set.
For each algorithm, we estimated the parameters and com-
puted image errors from 10 data sets. We next computed
their mean and standard deviation.

For the Tsai, Chatterjee and nonlinear methods, we fit a
second-order radial lens distortion model to the calibration
data. We start all algorithms with image center i = 70 =0,
scale factor s = 1, and lens distortions k; = k» = 0. The
results are shown in Table 4. As seen with the synthetic
data, image error improves due to the nonlinear algorithms as
compared to the linear methods. Furthermore, the estimates
are consistent and repeatable for all algorithms as shown by
their standard deviations.

6 Concluding remarks

In this paper, we discussed six methods of coplanar camera
calibration. The methods range in computational complexity
and accuracy of estimates. The four linear methods discussed
in Sect. 3 are computationally efficient, but they lack the ac-
curacy of the parameter estimates and produce sub-optimal
solutions. Besides, these methods cannot compute all cal-
ibration parameters. The two nonlinear methods discussed
in Sect. 4 are computationally complex, but the parameter
estimates are very accurate and the solutions are optimal.

Appendix

Proof of Lemma 1

With d and m held constant, the objective function J in
Eq.41 has the form

bY Qb — 2b” @ under constraint A(b) =0, (50)

where
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This is a constrained minimization problem that can be de-
scribed in terms of Lagrangian L and Lagrange multiplier A
as

L(b, ) = b7 Qb — 2bTa + Ah(b). (51)
At (k + 1) iteration after Step 1:
J(bry1, dg, mg) — J(bg, dg, my)
=bl, Qurbrs — 2bl, c — b Qrby +2bl ar. (52)

Here, we assume that the solution bz, obtained in Step 1
satisfies the first-order necessary conditions A(bg4;) = 0 and
Vb L(bg1, Ar+1) = 0. Further, note that in every iteration,
b;. satisfies h(by) = 0. Thus, from Eq.52 we obtain

J(bpy1, dg, mg) — J(bg,dg, my)
= L(bgs1; A1) — Lbg, Agir). (53)

Here, L is the Lagrangian in Eq.51. Since by, satisfies the
first-order necessary conditions, we have

{brs1; Ape1 } = argmingy zy L(b, A). (54)

Let us denote L(bg,1, Aky1) 88 Lyin(k). Then, from Eq.54
we have, L(bri1, Ags1) — Linin(k) = 0 giving us J(bg., dp,
my) < J(bg,dg, mg). In order to obtain an expression for
Lin(k), note that from the first order necessary conditions
we obtain

Vb L(ri1; Arr1)=2(Qubrs1 — 0+ Ars1 Veh(brai))=0. (55)

Note that bY V,h(b) = 4h(b) = 0. Then, from Eq.55 we
have: b{, c; = bi, Qxbr,;. Combining these results, we
obtain: L(bgs1, Ags1) = Linin(k) = —bi, Qibrs. |

Proof of Lemma 2

With b and m held constant, the objective function J in
Eq.37 has the form

d’pd — 24" 3, (56)
where

N N
P= Z BTB,, 8= Z Blv,,

n=1 =1

Bn = (bSIn + bﬁyﬂ, + ]-) WT

(blmﬂ. + bzyﬂ. + b?) - iﬂ.(bimn + bﬁyﬂ. + 1)

Vo = (b3$n + b&yn + b&) - jﬂ{bsmn + bﬁyn + ]-)

(See Eq.45).
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Here P is positive definite for (ry +4) linearly independent
calibration points. At (k + 1) iteration after Step 2:

J(Bper, Ay, mg) — J(bpyr, dp, my)
=d}, Piy1disr — 2d7,, B
—d} Proidy +2d7 Bra. (57)
Let Py = ZE;IZ;HI be the Cholesky decomposition of

Pi.1,and let yi.1 = Z; 2 ager, Where Z) exists since Py
is positive definite. Then, from Eq.57, we have

J(bri1, gy, mg) — J(bgsy, di, mg)
|Zk+1dk+1 — Vk+1 ||2 - | Zk+1dk — Yr+1 ||2 (58}

Note that Z;,1dg. = vr.1 is the least square solution of
d;.; in Step2 making || Zy.1dk.1 — Yx+1|| = 0. Clearly,

J(bpir, gy, mg) — J(bgsy, di, mg)
= —|| Zrerdi — Yean| (59)
and J(bgs1, dpsr,my) < J(bpsr, di,my) for dpyy #die. O

Proof of Lemma 3

Computation of m with b and d held constant is an uncon-
strained minimization problem. Clearly, J(bg,1, dg1, Mgei)
< J(bgs1, disr, my), where

J®ri1, Ay, myg) — J(bgy,

rs1, Mpsr) = Gr(bra, my) > 0. O

d.‘:+1 3

Proof of Theorem 1

The constrained minimization of the objective function J(b,
d, m) in Eq.41 can be described in terms of Lagrangian L
and Lagrange multiplier A as

L(b,d,m, A) = J(b,d, m) + Ah(b). (60)
From Lemmas 1-3, we have

J(Opir, Ay mypyy) < J(bgay,diyr, mg) < J(bgyr, di, my,)
< J(bg, d;, my)

for all k£ and dg.; # dj. Furthermore, J(Xg11) = J(Xg) — Zk,
where

Ik = (L(hk! dk- mk, /\k+]) - L]’]Iill) + ||Zk+ldk — (Yk+l ||2
+gk(Dri1, dir, my) > 0.

Here, J(Xg+1) < J(xz) and J(Xg.1) > O implies that there
exists J* < oo, such that J(x;) converges to J*. Fur-
thermore, J(xx) = J(Xo) — Yoy Z:. Since J(x) — J*,
S o Zi < oo, which implies that z; — 0 as k — oo.

Assume that x; is sufficiently close to x* such that S =
{x=(b,d,m) : J(x) < J(xo) and h(b) =0} is compact, and
J 18 uniquely minimized on § by x*. By the above, we have
that {x;.} C S.

We claim that there exists a subsequence {x;_} of {xz}
such that x;;, — x*. To see this, suppose {x;} is bounded
away from x*. Note that x* is the unique minimum point
in S satisfying the first-order necessary conditions; that is,
there exists A* such that
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VaL(b*,d*, m*, A*) =0,

Vi L(b*,d*,m"*, \*) =0,

VaL(b*,d*, m", A\*) =0,

VmL®d*,d*,m", A*) =0.
Note that

ViaL(bg, di, mg, Apyr) =0,
Vo L(br, di, mp, Arir) = 2(Qrbr — o + Ak Vph(by)),
VaL(brir, dg, My, Aeyr) = 225 (Zrardy, — Yisn).

Since VL, VL and V4L are continuous, and (b, dg, m;)
€ S, we have that Vi L(bg, di, mg, Ary1) and VaL(bg,,
d;., my, Axy1) are bounded away from 0. Therefore, it is
clear that ||Zp.d; — -y;m||2 is bounded away from O.
Similarly, L(bg,dg, mg, Apr1) —Lnin(k) (see Lemma 1) is
bounded away from 0. Hence, zx = ||Zpe1dr — ea1]|* +
(L(bg,di,mk, Ape1) — Liyin(k)) + gr(bpsr,dger,myg) is
bounded away from O, which contradicts z; — 0, proving
our claim.

Since J is continuous, J(Xi,) — J(x*), which implies
J* = J(x*). Hence, J(x;) = J(x*), which in turn implies
that x;. — x*, since x* is the unique local minimum of J on
S. O
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