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An Adaptive Quasi-Newton Algorithm for
Eigensubspace Estimation

Zhengjiu Kang Member, IEEEChanchal Chatterjedember, IEEEand Vwani P. Roychowdhury

Abstract—In this paper, we derive and discuss a new adaptive Il. LANDSCAPE OFCOST FUNCTION

guasi-Newton eigen-estimation algorithm and compare it with the N . .
RLS-type adaptive algorithms and the quasi-Newton algorithm L€t xx € R" be a snapshot of wide sense stationary data

proposed by Mathewet al. through experiments with stationary ~Sequencex} at time instant.. We want to adaptively com-

and nonstationary data. pute the firspp (<V) principal eigenvectors and corresponding
Index Terms—Adaptive estimation, deflation, eigen-subspace, €igenvalues of a positive definite symmetric mathixwhich is
principal component. the covariance matrix dfxy, }. Without loss generality, we make

the following assumption.

Assumption Al):Matrix R is positive definite. The (p <
N) principal eigenvalues aR are each of unit multiplicity.

T IS well known that the gradient-descent-based adaptiveL et \; > Xy > - > Ap > g1 > - > Ay > 0

principal component analysis (PCA) algorithms are sloye the eigenvalues ok in decreasing order, and let (i =
to converge. Bannouet al. [3] and Yang [4] derive RLS-type 1,2 ... N) denote the corresponding orthonormal eigenvec-
adaptive eigendecomposition algorithms from neural netwols. Letd = [#1 P2 -+ ¢n]andA =diag(A; A2 -+ Ay)
and optimization frameworks, respectively. Strictly speakinge the eigenvector and eigenvalue matrices, respectively, of
they are gradient descent algorithms with time—varying;m this paper, we 0n|y consider zero mean data.

self-tuning step sizes and are still slow to converge. In [1], We want to minimize following cost function with respect to
Mathew et al. present a rapidly convergent quasi-Newtor:

adaptive algorithm derived from a cost function based on 5
the penalty function method of optimization. This algorithm J(w'R)= —w' Rw'+p (wiTwi - 1) (1)
sequentially estimates the eigenvector corresponding to the
smallest eigenvalue up to the eigenvector corresponding to tieere
largest eigenvalue. In many applications, however, we are only
interested in estimating the principal eigenvectors. Reversing
the estimation order of this algorithm (i.e., from the “largest”
eigenvector to the “smallest” eigenvector sequentially) ifefines a deflation o, andw' € RN, > 0 is a penalty
not straightforward if we employ the Hessian approximatioggefficient.
method proposed in [1] directly in the quasi-Newton algorithm. chauvin [5] shows that when= 1, the cost function consists

In this paper, using a different method to approximaigf one local maximum, a set of saddle points, and one global
Hessian, we derive a novel quasi-Newton-based adaptiyghimum that is oriented along the first principal eigenvector
eigensubspace estimation algorithm that first estimates @R, Our extension analysis shows that using such a deflation
principal eigenvector and then estimates the minor eigenvectpss, the strict global minimum points of (1) are the principal
sequentially. Moreover, in our algorithm, the choice of thgjgenvectors of. Similar results have been studied in [2] from
penalty coefficient does not need aaypriori information the noise subspace.

of the data covariance matrix while in the Mathet al.  Theorem 1:Let A1) hold. Then, all equilibrium points of the

algorithm, this choice needs priori information of data. In joint objective functions/(w'; R) for i = 1,2,...,p are up

next section, we study the landscape of the cost functiq@. an arbitrary permutation of the eigenvectorsryfi.e., any

S'ectlon Il proposes the new 'QuaS|—NeWton .algonthm' anghint w = [pyday PPy PuyPp] Wherepiy = 0

with stationary and nonstationary data are given in Section Winctions.J(w; R) for i = 1,2,....p.

Section V contains concluding remarks. Proof: We need to find @v* = [wl" w2" ... wP¥]
such thatg;; = Vs J(w'';R) = 0fori,j = 1,...,p. We
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. INTRODUCTION

R — R_waijR (1<i<p) (2)
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Fig. 1. Convergence of the first four principal eigenvectors with the (a) QN1, (b) QN2, (c) PASTd, and (d) RLS algorithms.

W = [pyda) PP - PpPe], wherepgy, = 0 for In order to compute the inverse of Hessian efficiently, we de-

i < por¢y # ¢; are unstable equilibrium points of thefine

objective functions/(w*; R) fori = 1,2,...,p. . : ey
Proof: The proof is given in the Appendix. [ | Qr = —14 +2p (Wk Wi — 1) Iy (6)

Therefore, the inverse of the Hessian becomes

[ll. ALGORITHM DERIVATION AND ANALYSIS -1

o 4 H ™' = (2Qi + 8uwi wiT)

The gradient of/ (w*; R?) with respect tow" at time instant k k kTR

k is given by P Qi 'wiwi Qi 7
gl = 2R w' +4u (WiTwi — 1) wi 3) o PR
g BTk bR * Assumingw?, is close to the solutiow?" at time instant,

the inverse ofy} can be approximated as
1

;=1
@i 2p (Wi wi — 1)
) _ _ o i ; After simplification, we get the following adaptive
wherely is anV x N identity matrix. i}, is an estimate of? quasi-Newton algorithm:

atk. R = R, is updated by the following rank-one equation:

and the Hessian matrix is

l

Ri
In+—F% |, (8

Hj = 2R + 8uwiw§j +4p (W?jwi — 1) I (4)

W1 = Liwj, 9)
k iT i
1 - k-1 1 i _ W Wy T i
R, = Z 29" ijx]T =4 <T> Ry + Exkxkr (5) Ly = —T;i [QN (Wk W 1) In + Rk:| (10)
j=1 . T 2 T . T
) . . Ty = b (Wi Wy, — 1) + 2uwy, W, (Wi Wy, — 1)
where0 < 4 < 1 is a forgetting factor. For a stationary system, .
we choose = 1, and for a nonstationary system, we choose +wy, Rywy, (11)
0 < 8 < 1. The exact value of depends on the specific appli- i [ R i=1 (12)
cation. FT\RT —winlwitU R, 2<i<p
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Direction Cosine

Ry = uRk_l + 1kaf. (13)
k k

The approximate Hessian is obtained by dropping one term of
the Hessian in [1]. We reached an approximate Hessian through
geometric progression approximation. In such a geometric pro-
gression approximation, more terms can be used to keep the ap-
proximate Hessian closer to the exact Hessian.

We have the following result for the convergence of the above
algorithm.

Assumption A2):Each R;, is bounded with probability
one (w.p. 1), symmetric, real, non-negative definite, and

Theorem 3:Let Al) and A2) hold. For any: > 0 and ini-
tial valuesw} sufficiently close to the desired eigenvectors,
if process{w?%} is generated by the quasi-Newton algorithm

(9)—(13), then a)im ..o Wi = ¢;, and b)limy—oo 74 = N;
fori =1,2,...,p, where); is theith eigenvalue of?, and¢;

Direction Cosine

is the corresponding eigenvector Bf

Proof: a) can be completed by first proving
limg— oo Wi, = p;¢; and then provingo; = =1; b) im-
mediately follows a).

IV. SIMULATIONS

In this section, we compare our adaptive PCA algorithm
(QN1) with the following:

1) the Mathewet al. quasi-Newton algorithm (QN2);

2) the Yang RLS algorithm (PASTd);

3) the Bannouet al. RLS algorithm (RLS).
We demonstrate these comparisons with two different sim-
ulation methods. In both methods, high-dimensional data
sequences are generated.

"
100 200 300 400 500

Sample number

(b)

1000

A. Method 1
In this simulation method, we use the first covariance matrix

Fig. 2. Convergence performance of QN1 and QN2 algorithm to compute tfrgm [6] multiplied by 2. We generate samples of 10-dimen-

first four eigenvectors under nonstationary data sequencesuwith 15 and

6 = 0.9955. (a) QN1. (b) QN2.

sional Gaussian datav = 10) with mean zero and covariance
R. The eigenvalues of the this covariance mattiix decreasing
order are

Direction Cosine
i
[5)

11.7996 5.5644 3.4175 2.0589 0.7873
0.5878 0.1743 0.1423 0.1213 0.1007.

Clearly, the first four eigenvalues are significant, and corre-
sponding eigenvectors are important. We dsection cosine
(DC) to measure the convergence and accuracy of the adaptive
algorithms. It is defined as

1 pCi=wi'ei/|willloll i=12...p (SN

wherew?, is the estimatedth eigenvector ofz;, corresponding
to the ¢th eigenvalue at thé&th update, andp, is the actual
eigenvector of? computed by a conventional numerical anal-
ysis method. Clearlylimy . DC;, = 1 if limg— 0o Wi = ¢;.
We start our algorithm wittw) = 0.8 -i; fori = 1,2,...,p

(p < N), wherei; denotes théth column of ¥ x N identity
matrix I ;. For other adaptive algorithms, the initial values are

Fig. 3. Convergence performance of the QN1 and QN2 algorithms to tra e . i1 . i .
the first eigenvector under nonstationary data sequencesaith 1000 and 4 2 W%J =081, R%J = 100 - Iy; PASTd'W%J =08-1;,

6 = 0.9955.

i = 1; RLS:wj), = 0.8 - i;, P§ = 100 - i;.
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Fig. 4. Convergence of the first four principal eigenvectors with the (a) QN1, (b) PASTd, and (c) RLS algorithm for (& $0/8B and (2) SNR= 0 dB.

Suppose we do not know argypriori information on data variance matrix? or where there are jumps in eigenvaluegof
sequence, we simply chooge= 1 to compute the first four in the time-varying data sequences. However, when a large suit-
principal eigenvectors for all of the adaptive algorithms. Fig. dble penalty coefficient is chosen, the QN2 algorithm exhibits
shows the convergence of these adaptive algorithms. very similar convergence performance as the QN1 algorithm for

The simulation results demonstrate that QN1 and QN2 algstationary signals.
rithms offer faster convergence rates than the PASTd and RLS-rom experimental results, we also find that the QN1 and
algorithms. We also see that the QN2 algorithm does not &3N2 algorithms have good tracking properties, even for minor
timate the first three principal eigenvectors when= 1. In eigenvectors, whereas PASTd and RLS do not have this perfor-
the QN2 algorithmy: has to be larger tha,,,./2 or x> mance. The results are omitted here.

Tracé R)/2. It turns out that the QN2 algorithm requireg.a In order to demonstrate the tracking abilities of the two quasi-
Amax/2 ~ 5.8998 to estimate all eigenvectors. Clearly, in théNewton algorithms (QN1 and QN2) under a nonstationary en-
QN2 algorithm, an ad hoc selection pfis risky for applica- vironment, we provide a time-varying scenario in which the co-
tions where we do not hawepriori information on the data co- variance matrix of data sequences change suddenly. The first
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500 data samples of the data sequence have the covafignc®N algorithms (QN1 and QN2) since they offer the fastest
as described above. After 500 samples, we abruptly changetmvergence rates under a stationary environment for a large
covarianceR’, which is obtained from the second matrix in [6jvalue of penalty coefficient. Nonstationary experiments show
multiplied by 30. Accordingly, the eigenvalues change from that the QN1 algorithm has superior tracking performance than
. e . . the QN2 algorithm. Further consideration should be given to

11.7996  5.5644 34175 20589 0.7873 the computational complexity of the algorithms since the QN1

0.5878 0.1743 0.1423 0.1213 0.1007 and QN2 algorithms have the computational complexity of
to O(pN?), whereas the PASTd and RLS algorithms off§p V)
178.8639 101.2184 86.0674 65.3080 22.4001 complexity.

18.3543 11.3537 7.6971 1.4791 2.2881.
APPENDIX

As discussed in Section Ill, we use forgetting fadido re- . . —
X .. This Appendix proves Theorem 2. From the objective func-
duce the effect of old data and enhance the tracking ability in ) . S
. . . .~ fjan, we define the following energy functions:
the nonstationary case. Therefore, we use iterative equation

to updateR;, in the QN1 algorithm. Accordingly, we use ‘ N e S ‘
1 T el E(wh, ... w) = —w sz—i—z:wZ w/w! Rw'
_ k _ R 1 XX R L €
Rk 1 — Rk 11 _ k—1 k 11 (14) j=1
=10 | "7 - Do+ xR xa TR
+u (WZ w' — 1) (15)

to updateR,j1 in the QN2 algorithm. Fig. 2 shows the simu-
lation results for both quasi-Newton adaptive algorithms wheori = 1,...,p (p < N). Let us assume that;, = 0 for some
= 15 andé = 0.9955. We observe that the QN2 algorithm; < p, i.e.,

does not track the first principal eigenvector, whereas the QN1

algorithm tracks all of eigenvectors quite well. Fig. 3 shows the W = [pypays- -+ Pli—1)P(i-1), 0

results of QN1 and QN2 algorithms to track the first principal Plit1)Pli41)s - - - ’p(p)(/)(p)] .

eigenvector whem = 1000 andf = 0.9955. It demonstrates

that the QN1 algorithm converges faster and tracks the changeblext, we perturb théth column of W by é¢;,. We observe
in data much better than the QN2 algorithm. It is clear that QNhat

is superior to QN2 under a nonstationary environment.
Ei (pyd()s -+ P—1)P(i-1): 09()) — Ei (p1y )

2
B. Method 2 s Pli=1yBlim1), 0) = =62 Ay + (62 = 1) — pu.
In this simulation, we follow the experimental setup in [1], _
where the data;, is generated as Clzarl)é,)\ th/e )energy function decrease for sorfie <
. , Vet A@ /1)
z = Asin(0.4rk) + Asin(0.487k + ) + vy, We next prove that ify;, # ¢; for somej = 1,...,p, then
k=1,2,... thecritical points¥ are unstable equilibrium points of (15). We

The initial phase? is uniformly distributed if—r 7, anduy is  CPtIN the Hessian d; with respect tow” as

white noise with zero mean and unit variance. Scalateter- V2 Ei(wh,. .., w')
mines the desiresignal-to-noise ratiqSNR) asl0log(A42/2). v T i
Here, we choose a window of lengfti and the dimension of =—-2R+ Z wiwi R+ Z Rwiwi
the covariance as 6. We estimate the first 4 principal eigen- = =
vectors. T o
The initial values for each algorithm are the same as those +du ("Vz W' - 1) I+8uw'w" . (16)

used in Method 1. We run 100 Monte Carlo simulations for ) )

each algorithm. We only compare the QN1 algorithm with th&/e prove the r2esult by |nduct|02n. W(;note e, Er (1) =
RLS-type algorithms since the QN2 algorithm has very simila‘r%R + 4p(pr — DI + 8ppigagr. The elgenvect(Q)rs of
tracking performance as QN1 under stationary environment f8w: £1(P161) @ré¢u, ... . The elgenvaIuQes argupy for
alarge value of:. We choosg: = 1000 for the QN1 algorithm. ¢1 a.r.]d2()\1.—. Ar) for ¢, (r > 1). Clearly, Vi, E1(p161) is
Fig. 4 presents the simulation results for SNR10 dB ando  POsitive definite. On the other hand, we observe that

dB. 2 - _ 2 _
We observe that the QN1 adaptive algorithm gives the best Vi Brlprr) = ZRJQFM(I?” DI
tracking performance, irrespective of a high or low SNR. +8uprprdr (r>1).

We see that the eigenvectors (W?N]El(pr(f),,) are
¢1,- .., Pn. However, the eigenvalues ar(A; — A,.) for ¢,

We study the landscape of a cost function and deriveaad8p? for ¢,.(r > 1). Clearly,V2 , E1(p,¢,) forr > lisan
new quasi-Newton adaptive algorithm for PCA. Comparisandefinite matrix. Thusp; ¢, is a stable equilibrium point for
with RLS-type algorithms shows that the QN1 algorithm habe energy functiorF;, whereasp; ¢, for » > 1 are unstable
faster and better tracking ability. We especially compare twaguilibrium points ofE; .

V. CONCLUSION
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We next assume thdlp1¢1,...,pi—1¢;—1) are the stable [6] T. Okada and S. Tomita, “An optimal orthonormal system for discrimi-
equilibrium points for the energy functio&;_;. Then, for nant analysis,Pattern Recognitvol. 18, no. 2, pp. 139-144, 1985.
¢y = ¢i, we have from (15)
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