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Abstract—In this paper, we derive and discuss a new adaptive
quasi-Newton eigen-estimation algorithm and compare it with the
RLS-type adaptive algorithms and the quasi-Newton algorithm
proposed by Mathewet al. through experiments with stationary
and nonstationary data.

Index Terms—Adaptive estimation, deflation, eigen-subspace,
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I. INTRODUCTION

I T IS well known that the gradient-descent-based adaptive
principal component analysis (PCA) algorithms are slow

to converge. Bannouret al. [3] and Yang [4] derive RLS-type
adaptive eigendecomposition algorithms from neural network
and optimization frameworks, respectively. Strictly speaking,
they are gradient descent algorithms with time-varying,
self-tuning step sizes and are still slow to converge. In [1],
Mathew et al. present a rapidly convergent quasi-Newton
adaptive algorithm derived from a cost function based on
the penalty function method of optimization. This algorithm
sequentially estimates the eigenvector corresponding to the
smallest eigenvalue up to the eigenvector corresponding to the
largest eigenvalue. In many applications, however, we are only
interested in estimating the principal eigenvectors. Reversing
the estimation order of this algorithm (i.e., from the “largest”
eigenvector to the “smallest” eigenvector sequentially) is
not straightforward if we employ the Hessian approximation
method proposed in [1] directly in the quasi-Newton algorithm.

In this paper, using a different method to approximate
Hessian, we derive a novel quasi-Newton-based adaptive
eigensubspace estimation algorithm that first estimates the
principal eigenvector and then estimates the minor eigenvectors
sequentially. Moreover, in our algorithm, the choice of the
penalty coefficient does not need anya priori information
of the data covariance matrix while in the Mathewet al.
algorithm, this choice needsa priori information of data. In
next section, we study the landscape of the cost function.
Section III proposes the new Quasi-Newton algorithm and
gives the convergence analysis. The extensive experiments
with stationary and nonstationary data are given in Section IV.
Section V contains concluding remarks.
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II. L ANDSCAPE OFCOST FUNCTION

Let be a snapshot of wide sense stationary data
sequence at time instant . We want to adaptively com-
pute the first principal eigenvectors and corresponding
eigenvalues of a positive definite symmetric matrix, which is
the covariance matrix of . Without loss generality, we make
the following assumption.

Assumption A1):Matrix is positive definite. The
principal eigenvalues of are each of unit multiplicity.

Let
be the eigenvalues of in decreasing order, and let

denote the corresponding orthonormal eigenvec-
tors. Let and
be the eigenvector and eigenvalue matrices, respectively, of.
In this paper, we only consider zero mean data.

We want to minimize following cost function with respect to

(1)

where

(2)

defines a deflation on , and is a penalty
coefficient.

Chauvin [5] shows that when , the cost function consists
of one local maximum, a set of saddle points, and one global
minimum that is oriented along the first principal eigenvector
of . Our extension analysis shows that using such a deflation
(2), the strict global minimum points of (1) are the principal
eigenvectors of . Similar results have been studied in [2] from
the noise subspace.

Theorem 1: Let A1) hold. Then, all equilibrium points of the
joint objective functions for are up
to an arbitrary permutation of the eigenvectors of, i.e., any
point , where
or , is an equilibrium point of the objective
functions for .

Proof: We need to find a
such that for . We
expand in terms of the entire orthonormal set of eigenvectors
of as . By induction, we are able to get
above result.

Theorem 2: Let A1) hold. Then, the points
, where ,

are the strict global minimum points of the joint objective
functions for . In addition, the points
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Fig. 1. Convergence of the first four principal eigenvectors with the (a) QN1, (b) QN2, (c) PASTd, and (d) RLS algorithms.

, where for
or are unstable equilibrium points of the

objective functions for .
Proof: The proof is given in the Appendix.

III. A LGORITHM DERIVATION AND ANALYSIS

The gradient of with respect to at time instant
is given by

(3)

and the Hessian matrix is

(4)

where is an identity matrix. is an estimate of
at . is updated by the following rank-one equation:

(5)

where is a forgetting factor. For a stationary system,
we choose , and for a nonstationary system, we choose

. The exact value of depends on the specific appli-
cation.

In order to compute the inverse of Hessian efficiently, we de-
fine

(6)

Therefore, the inverse of the Hessian becomes

(7)

Assuming is close to the solution at time instant ,
the inverse of can be approximated as

(8)

After simplification, we get the following adaptive
quasi-Newton algorithm:

(9)

(10)

(11)

(12)
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Fig. 2. Convergence performance of QN1 and QN2 algorithm to compute the
first four eigenvectors under nonstationary data sequences with� = 15 and
� = 0:9955. (a) QN1. (b) QN2.

Fig. 3. Convergence performance of the QN1 and QN2 algorithms to track
the first eigenvector under nonstationary data sequences with� = 1000 and
� = 0:9955.

(13)

The approximate Hessian is obtained by dropping one term of
the Hessian in [1]. We reached an approximate Hessian through
geometric progression approximation. In such a geometric pro-
gression approximation, more terms can be used to keep the ap-
proximate Hessian closer to the exact Hessian.

We have the following result for the convergence of the above
algorithm.

Assumption A2):Each is bounded with probability
one (w.p. 1), symmetric, real, non-negative definite, and

w.p. 1.
Theorem 3: Let A1) and A2) hold. For any and ini-

tial values sufficiently close to the desired eigenvectors,
if process is generated by the quasi-Newton algorithm
(9)–(13), then a) , and b)
for , where is the th eigenvalue of , and
is the corresponding eigenvector of.

Proof: a) can be completed by first proving
and then proving ; b) im-

mediately follows a).

IV. SIMULATIONS

In this section, we compare our adaptive PCA algorithm
(QN1) with the following:

1) the Mathewet al.quasi-Newton algorithm (QN2);
2) the Yang RLS algorithm (PASTd);
3) the Bannouret al.RLS algorithm (RLS).

We demonstrate these comparisons with two different sim-
ulation methods. In both methods, high-dimensional data
sequences are generated.

A. Method 1

In this simulation method, we use the first covariance matrix
from [6] multiplied by 2. We generate samples of 10-dimen-
sional Gaussian data with mean zero and covariance

. The eigenvalues of the this covariance matrixin decreasing
order are

Clearly, the first four eigenvalues are significant, and corre-
sponding eigenvectors are important. We usedirection cosine
(DC) to measure the convergence and accuracy of the adaptive
algorithms. It is defined as

where is the estimatedth eigenvector of corresponding
to the th eigenvalue at the th update, and is the actual
eigenvector of computed by a conventional numerical anal-
ysis method. Clearly, DC if .
We start our algorithm with for

, where denotes theth column of identity
matrix . For other adaptive algorithms, the initial values are
QN2: ; PASTd:

; RLS: .
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Fig. 4. Convergence of the first four principal eigenvectors with the (a) QN1, (b) PASTd, and (c) RLS algorithm for (1) SNR= 10 dB and (2) SNR= 0 dB.

Suppose we do not know anya priori information on data
sequence, we simply choose to compute the first four
principal eigenvectors for all of the adaptive algorithms. Fig. 1
shows the convergence of these adaptive algorithms.

The simulation results demonstrate that QN1 and QN2 algo-
rithms offer faster convergence rates than the PASTd and RLS
algorithms. We also see that the QN2 algorithm does not es-
timate the first three principal eigenvectors when . In
the QN2 algorithm, has to be larger than or
Trace . It turns out that the QN2 algorithm requires a

to estimate all eigenvectors. Clearly, in the
QN2 algorithm, an ad hoc selection ofis risky for applica-
tions where we do not havea priori information on the data co-

variance matrix or where there are jumps in eigenvalues of
in the time-varying data sequences. However, when a large suit-
able penalty coefficient is chosen, the QN2 algorithm exhibits
very similar convergence performance as the QN1 algorithm for
stationary signals.

From experimental results, we also find that the QN1 and
QN2 algorithms have good tracking properties, even for minor
eigenvectors, whereas PASTd and RLS do not have this perfor-
mance. The results are omitted here.

In order to demonstrate the tracking abilities of the two quasi-
Newton algorithms (QN1 and QN2) under a nonstationary en-
vironment, we provide a time-varying scenario in which the co-
variance matrix of data sequences change suddenly. The first
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500 data samples of the data sequence have the covariance,
as described above. After 500 samples, we abruptly change to
covariance , which is obtained from the second matrix in [6]
multiplied by 30. Accordingly, the eigenvalues change from

to

As discussed in Section III, we use forgetting factorto re-
duce the effect of old data and enhance the tracking ability in
the nonstationary case. Therefore, we use iterative equation (5)
to update in the QN1 algorithm. Accordingly, we use

(14)

to update in the QN2 algorithm. Fig. 2 shows the simu-
lation results for both quasi-Newton adaptive algorithms when

and . We observe that the QN2 algorithm
does not track the first principal eigenvector, whereas the QN1
algorithm tracks all of eigenvectors quite well. Fig. 3 shows the
results of QN1 and QN2 algorithms to track the first principal
eigenvector when and . It demonstrates
that the QN1 algorithm converges faster and tracks the changes
in data much better than the QN2 algorithm. It is clear that QN1
is superior to QN2 under a nonstationary environment.

B. Method 2

In this simulation, we follow the experimental setup in [1],
where the data is generated as

The initial phase is uniformly distributed in , and is
white noise with zero mean and unit variance. Scalardeter-
mines the desiredsignal-to-noise ratio(SNR) as .
Here, we choose a window of length and the dimension of
the covariance as 6. We estimate the first principal eigen-
vectors.

The initial values for each algorithm are the same as those
used in Method 1. We run 100 Monte Carlo simulations for
each algorithm. We only compare the QN1 algorithm with the
RLS-type algorithms since the QN2 algorithm has very similar
tracking performance as QN1 under stationary environment for
a large value of . We choose for the QN1 algorithm.
Fig. 4 presents the simulation results for SNR dB and
dB.

We observe that the QN1 adaptive algorithm gives the best
tracking performance, irrespective of a high or low SNR.

V. CONCLUSION

We study the landscape of a cost function and derive a
new quasi-Newton adaptive algorithm for PCA. Comparison
with RLS-type algorithms shows that the QN1 algorithm has
faster and better tracking ability. We especially compare two

QN algorithms (QN1 and QN2) since they offer the fastest
convergence rates under a stationary environment for a large
value of penalty coefficient. Nonstationary experiments show
that the QN1 algorithm has superior tracking performance than
the QN2 algorithm. Further consideration should be given to
the computational complexity of the algorithms since the QN1
and QN2 algorithms have the computational complexity of

, whereas the PASTd and RLS algorithms offer
complexity.

APPENDIX

This Appendix proves Theorem 2. From the objective func-
tion, we define the following energy functions:

(15)

for . Let us assume that for some
, i.e.,

Next, we perturb theth column of by . We observe
that

Clearly, the energy function decrease for some
.

We next prove that if for some , then
the critical points are unstable equilibrium points of (15). We
obtain the Hessian of with respect to as

(16)

We prove the result by induction. We note that
. The eigenvectors of

are . The eigenvalues are for
and for . Clearly, is

positive definite. On the other hand, we observe that

We see that the eigenvectors of are
. However, the eigenvalues are for ,

and for . Clearly, for is an
indefinite matrix. Thus, is a stable equilibrium point for
the energy function , whereas for are unstable
equilibrium points of .
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We next assume that are the stable
equilibrium points for the energy function . Then, for

, we have from (15)

The eigenvectors of
are . The eigenvalues are for

for , and for .
Thus, is positive definite.
On the other hand, if then

The eigenvalues of are
for , and for . Thus,

is an indefinite matrix. We
therefore see that are the stable equilibrium
points of .

We conclude that , where
are stable equilibrium points of the energy

functions (15), whereas ,
where for or are unstable equilibrium
points.
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