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Abstract —We describe an adaptive algorithm based on stochastic
approximation theory for the simultaneous diagonalization of the
expectations of two random matrix sequences. Although there are
several conventional approaches to solving this problem, there are
many applications in pattern analysis and signal detection that require
an online (i.e., real-time) procedure for this computation. In these

applications, we are given two sequences of random matrices {Ak} and

{Bk} as online observations, with limk→∞E[Ak] = A and limk→∞E[Bk] = B,
where A and B are real, symmetric and positive definite. For every

sample (Ak,Bk), we need the current estimates Φk and Λk respectively
of the eigenvectors Φ and eigenvalues Λ of A–1B. We have described

such an algorithm where Φk and Λk converge provably with probability
one to Φ and Λ respectively. A novel computational procedure used in
the algorithm is the adaptive computation of A–½. Besides its use in the

generalized eigen-decomposition problem, this procedure can be used
on its own in several feature extraction problems. The performance of
the algorithm is demonstrated with an example of detecting a high-
dimensional signal in the presence of interference and noise, in a
digital mobile communications problem. Experiments comparing
computational complexity and performance demonstrate the
effectiveness of the algorithm in this real-time application.

Index Terms —Adaptive generalized eigen-decomposition,
interference cancellation.

————————   ✦   ————————

1 INTRODUCTION

WE describe an adaptive algorithm based on stochastic approxi-
mation theory for the simultaneous diagonalization of the expec-
tations of two random matrix sequences. While there are several
algorithms for the adaptive computation of eigenvectors of ran-
dom symmetric matrices [1], adaptive algorithms for simultaneous
diagonalization and generalized eigenvector computation are few.
However, there are applications of pattern recognition and signal
detection where the simultaneous diagonalization of data correla-
tion or covariance matrices are needed. Examples in pattern rec-
ognition are dimensionality reduction for classification by several
criteria [3] based upon linear discriminant analysis, Bhattacharyya
distance measure, divergence, and Chernoff distance measure.
Other examples include signal detection in the presence of inter-
ference and noise for digital mobile communications and broad-
casting [8].

1.1 Need for Adaptive Algorithms and Systems
The generalized eigen-decomposition problem BΦ = AΦΛ consists
of evaluating the generalized eigenvector matrix Φ and the gener-
alized eigenvalue matrix Λ. It involves the matrix pair (pencil)
(A, B), where A and B are assumed to be real, symmetric and posi-
tive definite; commonly referred to as a symmetric-definite pencil [4].
In this situation, the generalized eigenvalue problem breaks down
to a regular eigenvalue problem for the matrix A–1B.

Although a solution to the problem may be obtained by a con-
ventional (numerical analysis) method, there are several applica-
tions in pattern analysis, signal detection and automatic control
where an online (i.e., in real-time) solution of generalized eigen-
decomposition is desired. In these real-time situations, the matri-
ces A and B are themselves unknown. Instead, there are available

two sequences of random matrices {Ak} and {Bk} with limkÆ•E[Ak] =

A and limkÆ•E[Bk] = B, where Ak and Bk represent the online obser-

vations of the application. For every sample (Ak, Bk), we need to

obtain the current estimates Φk and Λk of Φ and Λ respectively,

such that Φk and Λk converge strongly to their true values. Thus,
we require a computationally efficient adaptive algorithm involv-
ing simple matrix-vector multiplications, that keeps pace with the
incoming data.

The conventional approach for evaluating Φ and Λ requires the
computation of (A, B) after collecting all of the samples, and then
the application of a numerical procedure [4]; i.e., the approach
works in a batch fashion. There are three problems with this ap-
proach. Firstly, the dimension of the samples may be large so that
even if all of the samples are available, performing the generalized
eigen-decomposition may be difficult or may take prohibitively
large amount of computational time; e.g., O(kd3) computation,
where k = number of iterations required by the algorithm, and d =
dimension of the samples. Secondly, the conventional schemes can
not adapt to slow or small changes in the data (e.g., a few incom-
ing samples). When a new sample (Ak, Bk) is added, it is quite sim-
ple to get the corresponding new correlation matrices (Anew, Bnew)
as Anew = (nA + Ak)/(n + 1) and Bnew = (nB + Bk)/(n + 1), where n is
the total number of samples used to compute (A, B). However, all
the computations for solving BnewΦ = AnewΦΛ need to be repeated
to obtain Φ and Λ. Thirdly, for the adaptive approach, we may be
able to make the computation concurrent to the data acquisition
process, and, at every instant, the current estimates Φk and Λk of Φ
and Λ respectively are available. The conventional approach, on
the other hand, will not only involve the time delay needed to
collect all of the samples to compute A and B, but also involve the
subsequent time required to compute BΦ = AΦΛ. In addition, the
conventional approach will not, in general, exploit the fact that, in
several applications, the time variation of the optimal Φ and Λ are
gradual [8]. So the approach is not suitable for real-time applica-
tions where the samples come incrementally or in an online fashion.

1.2 Examples of Classification With Adaptive
Generalized Eigen-Decomposition

In pattern recognition, there are problems where we are given
samples x and y ∈ ℜd from different populations, and we seek the
optimum linear transform W ∈ ℜdXp (p ≤ d), such that the scatter of
x in the transformed space is maximized with respect to the corre-
sponding scatter of y. The scatters are usually measured by using
the correlation matrices of x and y in the transformed space as
WTAW and WTBW respectively, where A and B are the correlation
matrices of x and y respectively.

The well-known problem of linear discriminant analysis (LDA)
[3] seeks a transform W for samples from a finite set of pattern
classes, such that the interclass distance (measured by the scatter
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of the patterns around their mixture mean) is maximized, while at
the same time the intraclass distance (measured by the scatter of
the patterns around their respective class means) is as small as
possible. The objective of this transform is to group the classes into
well separated clusters. The former scatter matrix, known as the
mixture scatter matrix is denoted by B, and the latter matrix,
known as the within-class scatter matrix, is denoted by A [3].
When the first column w of W is needed (i.e., p = 1), the problem
can be formulated in the constrained optimization framework as

Maximize wTBw subject to wTAw = 1. (1)

A solution to (1) leads to the generalized eigen-decomposition
problem Bw = λAw, where λ is the largest generalized eigenvalue
of B with respect to A.

Applications of real-time training and recognition, such as the
training and detection of machine printed (e.g., inkjet, hot-
stamped and laser-marked) characters in manufacturing lines [2],
require an online feature extraction and classification method.
Since LDA is a powerful feature extraction tool, our adaptive algo-
rithm is suited to this problem. Off line computation of the LDA
transform requires large amounts of storage, and can only con-
sider a finite number of samples. Computing the LDA transform
online by the conventional method is slow, and may reduce the
manufacturing speed. Adaptive algorithms offer an efficient
means of estimating the LDA transform for every sample.

While the LDA solution is used for the separation of a given
class in the presence of a set of pattern classes, we next discuss an
analogous problem of detecting a desired signal in the presence of
interference. Here, we seek the optimum linear transform W for
weighting the signal plus interference such that the desired signal
is detected with maximum power, and minimum interference.
Given the matrix pair (A, B), where B is the correlation matrix of
the signal plus interference (plus noise), and A is the correlation
matrix of interference (plus noise), we can formulate the signal
detection problem as the constrained maximization problem [8] in
(1). Here, we maximize the signal power, and minimize the power
of the interference. The solution for W consists of the p ≤ d largest
generalized eigenvectors of the matrix pencil (A, B) [8].

As an example of a system where online signal detection us-
ing adaptive generalized eigen-decomposition scheme is neces-
sary, we study the problem of signal detection in digital mobile
communications. The problem occurs when the desired user
transmits a signal from a far distance to the receiver (base),
while another user simultaneously transmits very near to the
base. For common receivers, the quality of the received signal
from the desired user is dominated by interference from the user
close to the base [8]. Due to the high rate and large dimension of
the transmitted data, the system demands an accurate detection
method over a few data samples.

If we use the conventional method, signal detection will require
a significant part of the time slot allotted to a receiver, accordingly
reducing the effective communication rate. Adaptive generalized
eigen-decomposition algorithms, on the other hand, allow the
tracking of slow changes in the incoming data [8], and directly
performs signal detection, thereby overcoming the conventional
method of stringent power control, and improving the capacity of
the transmission method. Experiments with high dimension prac-
tical data for signal and interference (see Section 4) show the effec-
tiveness of our algorithm.

In summary, we require the following from our adaptive gen-
eralized eigen-decomposition algorithm:

1) the algorithm should adapt to small changes in the data;
2) the computation involved in the algorithm is inexpensive

such that the statistical procedure can keep pace with the in-
coming data stream;

3) the estimates obtained from the algorithm should converge
strongly (with probability one) to their asymptotic values;
and

4) numerical performance with high dimension data for finite
number of samples should be comparable to the closed form
solution.

1.3 State of the Art Methods
for Generalized Eigen-Decomposition

The conventional method to solve the generalized eigen-
decomposition problem consists of two steps, each involving a
symmetric eigenvalue computation. First, we compute the eigen-
vectors E and eigenvalues Θ of A, from which we obtain A–½ as EΘ–½.
Next, we solve a symmetric eigenvalue problem A–½B(A–½)TΨ  = Ψ
Λ, where Ψ = (A½)TΦ. Note that A–½B(A–½)T is real and symmetric,
and Ψ is real. For an orthonormal Ψ, we have ΨTΨ = ΦTAΦ = I.
Therefore, Φ is real and orthonormal with respect to A. Further-
more, ΦTBΦ = Λ which is diagonal, real and positive definite. This is
also known as the simultaneous diagonalization [4] of matrices A and
B. The method requires an iterative procedure to obtain a solution.

A second approach is a recursive method due to Mao and Jain
[6]. If we are given two sets of pooled or stored matrices {Ai, i = 1, ...,
n1} and {Bi, i = 1, ..., n2}, then the following procedure can be used
to compute the eigenvectors of A–1B. Using the set {Ai, i = 1, ..., n1},
we compute the eigenvectors and eigenvalues of A from which we
obtain A–½. Next, we consider a set {A–½Bi(A

–½)T, i = 1, ..., n2}, which
is used to compute the eigenvectors of A–½B(A–½)T. Eigenvectors of
A–1B are obtained from the two results. In its current formulation,
this method can not be used for a sequence or flow of data since
complete convergence of the eigenvectors and eigenvalues of A are
required before the second step can be used. Thus, although useful
for high dimension data, the method requires a pooled data for
training, which may be unrealistic in many real-time environ-
ments. We have given a more direct solution to this problem.

Since the above algorithms can not compute the eigenvectors
and eigenvalues of A–1B for a sequence of inputs, we need an
adaptive algorithm. In our method, we directly (adaptively) com-
pute a matrix Wk for each sample Ak, where Wk tends to a symmet-
ric positive definite matrix A–½ with probability one (w.p.1) as k →
∞. Next, we consider a sequence {Ck = Wk–1BkWk–1}, which is used to
adaptively compute a matrix Vk, where Vk tends to the eigenvector
matrix of limkÆ•E[Ck] w.p.1 as k → ∞. In this study, we use the
Sanger's adaptive eigen-decomposition algorithm [7] for this step,
although any other adaptive eigen-decomposition algorithm can
be used. In conjunction, the two steps yield WkVk, which is proven
to converge w.p.1 to Φ as k → ∞. Thus, the two steps can proceed
simultaneously and converge strongly to the eigenvector matrix Φ.

In applications where the estimates are required after every
sample, we demonstrate the computational advantages of adap-
tive algorithms. In evaluating time complexity, we consider the

commonly used form of Ak k k
T= x x  and Bk k k

T= y y  where {xk} and

{yk} are d-dimensional vector sequences. The conventional method
performs a Cholesky decomposition followed by eigen-
decomposition, and hence requires O(kd3) computation, where k is

the number of iterations required by the algorithm to converge [4].
In comparison, the adaptive method (see Section 3) uses matrix-
vector multiplications, and requires O(max(dp2, d2)) computation

to evaluate p generalized eigenvectors. It is well-known that ma-
trix-vector multiplication is much faster than eigen-decomposition
used in the conventional method. Furthermore, the adaptive algo-
rithms can be easily implemented in commonly available hardware.

The error analyses for the conventional (numerical analysis)
methods are well-studied [4]. However, the proof of convergence
of our algorithm (see Section 3) demonstrate that the estimates



284 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  3,  MARCH  1997

asymptotically converge to their actual values. The performance of
this class of adaptive algorithms for finite samples is a subject of
ongoing research [1], [2] and an analysis is beyond the scope of
this paper. However, our experiments (see Section 4) indicate that
even for a small number of samples in the signal detection exam-
ple, our algorithm converges to within 1% of the principal gener-
alized eigenvector computed by the conventional method, while
maintaining its computational advantages.

1.4 The A–½ Algorithm
A key procedure in the generalized eigen decomposition algo-
rithm is the adaptive computation of A–½. Besides its application in
the current problem, this step can be used, on its own, in several
feature extraction problems such as the evaluation of the quadratic
discriminant function [2] for Gaussian data. We, therefore, de-
scribe a novel algorithm for this computational step, and offer a
rigorous proof of convergence. Our method of proof relies on the
results given by Ljung [5] concerning with probability one conver-
gence of stochastic approximation algorithms.

In Section 2 we describe the new A–½ algorithm with a proof of
convergence. Section 3 describes the adaptive algorithm for the
computation of eigenvectors and eigenvalues of A–1B from two
random matrix sequences. Section 4 has simulation results for a
signal detection problem in digital mobile communications. Sec-
tion 5 has the concluding remarks.

2 ADAPTIVE COMPUTATION OF A–½

AND A STOCHASTIC APPROXIMATION PROOF

Given a sequence of symmetric random matrices Ak ∈ ℜdXd for k =
1, 2, ... with limkÆ•E[Ak] = A, the algorithm for the adaptive com-
putation of A–½ is

W W I W A Wk k k k k k= + -- - -1 1 1h c h, (2)

for W0 symmetric and nonnegative definite. The algorithm for W0

nonpositive definite is discussed later. In (2), {ηk} is a scalar gain
sequence.

Note that there is no unique solution for A–½. Let A = ΦΛΦT be

the eigen decomposition of A, with Λ = diag(λ1, ..., λd). A solution

for A–½ is ΦD, where D diag d= ± ±- -l l1
1 2 1 2/ /, . . . ,e j. However, in

general, this is not a symmetric solution, and for any orthonormal
matrix R, ΦDR is also a solution. It can be shown that there are 2d

symmetric solutions of the form ΦDΦT. Defining

L- - -= ±1 2
1
1 2 1 2/ / /, . . . ,diag dl le j , we obtain the unique symmetric

and positive definite solution for A–½ as ΦΛ–½ΦT. We shall prove

that Wk→A–½ with probability one (w.p.1) as k → ∞, where A–½ =
ΦΛ–½ΦT.

In stochastic approximation theory, we study the asymptotic
properties of (2) in terms of the ordinary differential equation

(ODE) dW/dt = limkÆ•E[I – WAkW]. In particular, we observe that:

1) Wk can converge only to stable stationary points of the ODE;
2) if Wk belongs to a domain of attraction of a stable stationary

point W* infinitely often with probability one (w.p.1), then
Wk converges w.p.1 to W* as k → ∞; and

3) the trajectories of the ODE are the “asymptotic paths” of Wk

generated by (2).

The method of proof requires the following steps:

1) establish a set of conditions to be imposed on A, Ak, and ηk,
2) find the stable stationary points of the ODE, and
3) demonstrate that Wk belongs to a compact subset of the do-

main of attraction of a stable stationary point infinitely often.

Note that for the following lemmas and theorems, all proofs are
presented in [2].
DEFINITIONS. A sequence {Ak} is said to be in general position if every

matrix Ã = [Ak ... Ak+d–1] with d consecutive matrices has rank d.
The sequence is in uniform general position if the smallest sin-
gular value of Ã is uniformly bounded away from zero.

We need the following assumptions:
ASSUMPTION (A1). Each Ak is bounded w.p.1, symmetric, real and non-

negative definite, with  limkÆ•E[Ak] = A, where A is positive definite.

ASSUMPTION (A2). {ηk ∈ ℜ+} is a decreasing sequence such that

hkk
= •

=

•Â 0
, hk

r

k
< •

=

•Â 0
, for some r > 1, and

lim supk k kÆ•
-

-
-- < •h h1

1
1e j .

ASSUMPTION (A3). The sequence of matrices Ak for k = 1, 2, ... is in
uniform general position.

We shall use Theorem 1 of Ljung [5] for the convergence proof.
The theorem deals with nonlinear stochastic algorithms of the
form Wk = Wk–1+ηkh(Wk–1, Ak), which include (2). The assumptions
of the Theorem on h(⋅) are [5].

L1. The function h(W, Ak) is continuously differentiable with re-
spect to W and Ak. The derivatives are, for fixed W and Ak,
bounded in k.

L2. The so called mean vector field h W E h W Ak kb g c h= Æ•lim ,

exists and is regular; i.e., locally Lipschitz. The expectation is

with respect to the distribution of Ak for a fixed value of W.

We modify the result of Ljung (Theorem 1) [5] to suit the present
algorithm in the following lemma.
LEMMA 1. Let A1-A3 hold. Let W* be a locally asymptotically stable (in

the sense of Lyapunov) solution to the ordinary differential equa-
tion (ODE)

dW
dt

I WAW= - (3)

with domain of attraction D(W*). Then if there is a compact sub-
set S of D(W*) such that Wk ∈ S infinitely often, then we have Wk

→ W* with probability one as k → ∞.

Let λ1(W) denote the largest, and λd(W) denote the smallest ei-
genvalue of W. Let (λ1(A), ..., λd(A)) denote the eigenvalues of A in
decreasing order. In the following lemma, we determine the do-
main of attraction D(W*) of an asymptotically stable solution W*,
and also show that {Wk} visits a compact subset S of D(W*) infi-
nitely often.
LEMMA 2. Let Φ and Λ respectively denote the eigenvector and eigen-

value matrices of A. Let A1-A3 hold. Then for (2), the following
hold:

1) The point W* = ΦΛ–½ΦT is (uniformly) asymptotically stable.
2) The domain of attraction of W* includes

D(W*) = {W ∈ ℜdXd: W = WT and λd(W) > –λ1(A)–½}. (4)

3) There exists a uniform upper bound for λ1(Wk) for all k.
4) There exists a uniform upper bound for ηk such that λd(Wk) ≥ 0

uniformly for all k.

The lemma also gives an upper bound for λ1(W0) that we need
to satisfy at the start of the algorithm.

The convergence of algorithm (2) can now be stated as a direct
corollary of the above lemmas.
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THEOREM 1. Let A1-A3 hold. Let W0 and η0 be within the uniform upper
bounds stated in Lemma 2. If W0 is assigned random weights such
that W0 is symmetric and nonnegative definite, then with prob-
ability one, algorithm (2) will converge, and Wk → W* as k → ∞,
where W* = ΦΛ–½ΦT is the unique symmetric positive definite
solution for A–½.

Unlike (2), if W0 is nonpositive definite, then we change (2) as
follows

W W W A W Ik k k k k k= + -- - -1 1 1h c h, (5)

for W0 symmetric and nonpositive definite. This algorithm is dis-
cussed in [2].

3 ADAPTIVE ALGORITHM FOR EIGENVECTORS
AND EIGENVALUES OF A–1B

In this section, we shall describe an adaptive algorithm for the
computation of the eigenvector matrix Φ and eigenvalue matrix Λ
for A–1B, from two random matrix sequences {Ak} and {Bk}. We
assume that {Ak} satisfies assumptions A1-A3 described in Sec-
tion 2. The assumptions on {Bk} are

ASSUMPTION (A4). Each Bk is real, symmetric, and bounded w.p.1, such
that lim

k kE B B
Æ•

= , where B is positive definite.

Note that if B is assumed nonpositive definite, then a simple
transform B + cA where c is a positive scalar constant will trans-
form B to a positive definite matrix. It is easy to show that both B
and B + cA have the same generalized eigenvectors with respect to
A, with eigenvalues λi and λi + c respectively.

As described before, the algorithm consists of two steps. The
first step estimates A–½ with the new algorithm from an input se-
quence {Ak}. The second step estimates the eigenvector matrix Ψ =
A½Φ of the symmetric matrix A–½BA–½ from a new sequence ob-
tained from {Bk} and the current estimate of A–½ from the first step.
Combining the two steps, we obtain an estimate of A–½A½Φ  = Φ.
Thus, the two steps can proceed simultaneously, and together they
converge strongly to Φ.

In the second step, we use the Sanger's algorithm [7] modified
to the current context. Note, however, that we can use any other
algorithm for eigenvector computation. The reasons for using
Sanger's algorithm are:

1) it converges for random starting values and for a wide
choice of gains {γk} (see (6)),

2) it computes the eigenvectors ordered by decreasing eigen-
value, and

3) it can be relatively easily implemented with only local op-
erations [7].

Let {Ck} denote a sequence of symmetric real random matrices
with limkÆ•E[Ck] = C. The modified Sanger's algorithm is

V V C V V V C Vk k k k k k k
T

k k= + -- - - - -1 1 1 1 1g UTe j, (6)

where UT[⋅] sets all elements below the diagonal of its matrix ar-
gument to zero, thereby making the matrix upper triangular, and
{γk} satisfies assumption A2. Due to the convergence of the
Sanger's algorithm [7], if V0 is assigned random weights, Vk will
converge w.p.1 to a matrix whose columns are the eigenvectors of
C, ordered by decreasing eigenvalue.

The stochastic approximation algorithm for the computation of
the eigenvector matrix Φ of A–1B, from random matrix sequences
{Ak} and {Bk} is as follows:

Step 1. Use algorithm (2) or (5) with input {Ak}, where Wk → A–½

w.p.1 as k → ∞.
Step 2. For each k, compute Ck = Wk–1BkWk–1.
Step 3. Use algorithm (6) with input {Ck}, where Vk tends to the

eigenvectors of limkÆ•E[Ck] = A–½BA–½ w.p.1 as k → ∞.
Step 4. For each k, compute the eigenvector matrix Φk = WkVk.

Notice that the eigenvectors of A–1B are ordered by decreasing
eigenvalue.

The following theorem and discussion presents the proof of
convergence of the entire algorithm.
THEOREM 2. Let A1-A4 hold, and {γk} satisfy A2. If V0 is assigned ran-

dom weights, then for the input sequence {Ck} algorithm (6) will
converge, and Vk→Ψ w.p.1 as k → ∞, where Ψ = A½Φ.

From the convergence of Wk and Vk, we obtain limkÆ•Φk =
limkÆ•Wk limkÆ•Vk = A–½A½Φ = Φ w.p.1.

Instead of the eigenvector matrix Φ of A–1B, if the eigenvalues li

for i = 1, ..., d, of A–1B are required, we use the following stochastic
approximation algorithm

q q d qi i k i
T

k i ik k k B k k( ) ( ) ( ) ( ) ( )= - + - - - -1 1 1 1φφ φφe j
for i = 1, …, d. (7)

We can prove (see [2]) that θi(k) → λi w.p.1 as k → ∞ for i = 1, ..., d.

4 EXPERIMENTAL RESULTS

In our experiments, we use a signal detection problem in digital
mobile communications. The problem occurs when the desired
user transmits a signal from a far distance to the receiver (base),
while another user simultaneously transmits very near to the base
providing significant interference to the desired signal. The solu-
tion involves the design of a system that efficiently and accurately
detects the desired signal in the presence of interference and re-
ceiver noise. An adaptive signal detection solution overcomes the
conventional method of stringent power control, and improves the
capacity of the transmission method. A particular method that is
proven effective [8] is adopted here.

4.1 Data Model
In this application the duration of each transmitted code from the
desired user is td, and the interference from other users is of dura-
tion ti. The total duration of each transmitted code that is received
at the base is td + ti = t, which is known as a bit period. In most ap-
plications, ti is much larger than td. In order to detect the signal
accurately, a common method is to receive the signal with m an-
tennas [8]. Hence, at any instant, we have m signals, and we can
define two correlation matrices—signal correlation matrix B over
duration td, and interference correlation matrix A over duration ti.
It can be shown [8] that the optimum weight matrix W that maxi-
mizes the signal power (leading to accurate signal detection) con-
sists of the p < m generalized eigenvectors of B with respect to A
corresponding to the p largest generalized eigenvalues. For a
practical system, our goal is to detect the signal (i.e., determine W)
in as few bits as possible. For the state of the art, accurate detection
in 5-15 bits (depending on the dimensionality of the signal) is con-
sidered acceptable [8]. We use our adaptive procedure to estimate
W from a sequence of samples by adopting two separate schemes
for obtaining the data sequence.

SCHEME 1. Here we time sample the signal from each antenna over

the entire bit period t. For each antenna, we obtain nd sam-

ples of the desired signal plus interference, and ni samples
of the interference from other users for the bit period t. Due
to m antennas, and due to the real and imaginary compo-
nents of the transmitted code, for each time sample, we ob-
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tain a data vector of dimension d = 2m. Thus, for each bit pe-

riod, we obtain nd signal vectors yk (from the desired user)

giving us nd signal correlation matrices Bk k k
T= y y , and ni

interference vectors xk (from other users) giving us ni inter-
ference correlation matrices Ak k k

T= x x . We start the algo-

rithm after the first signal and interference vectors are re-
ceived.

SCHEME 2. Here we take f frequency samples for the duration td of
the desired signal. The frequency samples from all m anten-

nas are concatenated to obtain one desired signal vector yk

with the corresponding frequency domain correlation ma-
trix Bk k k

T= y y . Due to the real and imaginary components
of the signal, the dimension of the signal vector is d = 2fm.

We repeat this process over the duration ti of the interfer-
ence by taking f frequency samples over a sliding interval of

duration td. Since ti is usually much larger than td, we obtain
several interference samples for each bit period, each of di-

mension d = 2fm. Thus, for each signal vector yk (here, nd = 1

for each bit period), we obtain ni interference vectors xk

giving us ni interference correlation matrices Ak k k
T= x x .

4.2 Numerical Results for Scheme 1
We obtained numerical data from a practical mobile communica-
tions setup described in [8]. In this example, the bit period
t = 127µs with td = 10µs and ti = 117µs. The number of antennas
m = 8 giving us data vectors of dimension d = 16. Here, we sam-
pled the signal at 0.5µs interval. We obtained nd = 20 signal vectors
yk, and ni = 234 interference vectors xk.

We first computed the signal and interference correlation ma-
trices B and A respectively, by averaging all Bks and Aks collected
over five bit periods. We shall refer to the generalized eigenvectors
and eigenvalues computed from this B and A matrices as the actual
values. The four largest generalized eigenvalues of B with respect
to A are 25.88, 14.76, 1.80, and 1.60. Clearly, the first two general-
ized eigenvalues and the corresponding generalized eigenvectors
are important. We used the adaptive algorithm to compute the
first and second generalized eigenvectors and eigenvalues of B
with respect to A. The results are given in Fig. 1. In order to meas-
ure the accuracy of the estimated generalized eigenvectors, we
computed the direction cosine given by

Direction Cosine = w wk
T

kf f/ ,

where wk is the estimated generalized eigenvector at kth recursion
of the adaptive algorithm, and φ is the actual generalized eigen-
vector computed from all collected samples by the conventional
method.

Fig. 1 shows that the estimated first generalized eigenvector
converged to 95.4% of its actual value in two bit periods, and to
99.0% in five bit periods. The first generalized eigenvalue con-
verged to 25.278 (i.e., 97.7% of its actual value) in just two bit peri-
ods, and to 25.708 (i.e., 99.3% of its actual value) in five bit periods.
The second generalized eigenvector converged to 98.6% of its ac-
tual value in two bit periods, and to 99.8% of its actual value in
five bit periods. The second generalized eigenvalue converged to
14.181 (i.e., 96.1% of its actual value) in two bit periods, and to
14.732 (i.e., 99.8% of its actual value) in five bit periods.

We also compared computational time for the conventional
method with each recursion of the adaptive method by counting
the MATLAB flops (floating point operations). The MATLAB algo-
rithm required 80,882 flops for generalized eigen-decomposition

and sorting by decreasing eigenvalue. In comparison, by using
Bk k k

T= y y  and Ak k k
T= x x , one recursion of the adaptive algorithm

needed 6,432 flops for the first and second generalized eigenvector
computation.

Fig. 1. Convergence of first and second estimated generalized eigen-
vectors and eigenvalues for 16-dimensional signal data.

4.3 Numerical Results for Scheme 2
Here we take f = 9 frequency samples equally spaced between
–0.4MHz to +0.4MHz for the td = 10µs microseconds of the signal
duration. For each bit period, we obtain nd = 1 signal vector yk of
dimension d = 144, and ni = 72 interference vectors xk also of di-
mension 144.

We collected all signal and interference samples for 16 bit peri-
ods, and computed the signal and interference correlation matrices
B and A respectively. The four largest generalized eigenvalues of B
with respect to A are 3.3927, 0.2003, 0.1035, and 0.0981. Although
the first generalized eigenvalue and the corresponding generalized
eigenvector are important, we computed the first two generalized
eigenvectors and eigenvalues. The results are shown in Fig. 2.

Fig. 2. Convergence of first and second estimated generalized eigen-
vectors and eigenvalues for 144-dimensional signal data.

We see (from Fig. 2) that the first generalized eigenvector con-
verged to 92.6% of its actual value in 10 bit periods, to 98.0% in 14
bit periods, and to 99.3% in 16 bit periods. The first generalized
eigenvalue converged to 3.1174 (91.9% of its actual value) in 10 bit



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  3,  MARCH  1997 287

periods, to 3.3257 (98% of its actual value) in 14 bit periods, and to
3.3739 (99.4% of its actual value) in 16 bit periods. The second gen-
eralized eigenvector converged to 85.3% of its actual value in 16
bit periods. The second generalized eigenvalue converged to
0.1800 (90% of its actual value) in 16 bit periods.

The MATLAB algorithm required 48,388,500 flops for general-
ized eigen-decomposition and sorting by decreasing eigenvalue.
By using Bk k k

T= y y  and Ak k k
T= x x , one recursion of the adaptive

algorithm required 343,873 flops for the first (principal) general-
ized eigenvector estimation, and 472,609 flops for the first two
generalized eigenvectors estimation.

5 CONCLUDING REMARKS

We described an adaptive algorithm for the estimation of the gen-
eralized eigenvectors and eigenvalues of the symmetric-definite
matrix pencil (A, B) from a sequence of samples {Ak} and {Bk}. The
method is useful in applications that require an efficient general-
ized eigenvector evaluation for every sample (Ak, Bk). A proof of
convergence of the algorithm is given by using stochastic ap-
proximation theory. The usefulness of the algorithm is demon-
strated by detecting a high-dimensional signal in the presence of
interference and noise, in a digital mobile communications prob-
lem. Experiments comparing computational complexity and per-
formance show the effectiveness of the algorithm over conven-
tional methods in this real-time application.
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