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Abstract. We prove the security of theoretical quantum key distribution against the
most general attacks which can be performed on the channel, by an eavesdropper who
has unlimited computation abilities, and the full power allowed by the rules of classical
and quantum physics. A key created that way can then be used to transmit secure
messages such that their security is also unaffected in the future.

Key words. Quantum key distribution, Quantum information, Information versus dis-
turbance, Quantum security, BB84.

1. Introduction

Quantum key distribution [3], [2] uses the power of quantum mechanics to suggest the
distribution of a key that is secure against an adversary with unlimited computation
power. Such a task is beyond the ability of classical information processing; thus, it
is the main success of the original idea of Wiesner [34] who suggested using quantum
mechanics to perform cryptographic tasks. The extra power gained by the use of quantum
bits (quantum two-level systems, “qubits”) is due to the fact that the state of such a system
cannot be cloned. (Of course, one could use higher level quantum systems as well.) On
the other hand, the security of conventional key distribution is based on the (unproven)
existence of various one-way functions, and mainly on the difficulty of factoring large
numbers, a problem which is assumed to be difficult for a classical computer, and is
proven to be easy for a hypothetical quantum computer [32].

The quantum key distribution (QKD) scheme considered in our work is the protocol
of Bennett and Brassard [3], known as the BB84 protocol. The legitimate users of this
(actually, of any) QKD protocol are conventionally called Alice (the sender) and Bob
(the receiver). Their aim is to create and share a secret key.

There are several classes of attacks (see for instance [8] and [7]) on QKD that can be
performed by an eavesdropper having full control of the channel. The simplest ones are
known as individual-particle attacks [17] in which the transmitted qubits are attacked
separately, so that the eavesdropper can be left with some optimal classical information
about each transmitted quantum bit. The eavesdropper can use this classical information
in order to learn some information about the final secret key. In contrast, in the most
general attack, called the “joint attack”, all transmitted quantum particles are attacked
together, and the eavesdropper’s goal is to learn as much information as possible about
the final key, rather than about each transmitted qubit. A special class of the joint attack,
the “collective attack” [8], was shown to provide more information to the eavesdropper
than an individual-particle attack [5]. We further explain the differences between the
individual-particle attacks, the collective attacks, and the most general attacks (the joint
attacks) in Section 2.2, when we describe the two steps of Eve’s attack. Various proofs
of security were previously obtained against collective attacks [8], [9], [7], [29] (which
is a most important subclass of the joint attack), and we continue this line of research
here to prove the ultimate security of QKD, against any attack (under the conventional
assumptions of theoretical QKD, as explained below). Note that the eavesdropper is
assumed to have unlimited technology (e.g. unlimited computing power, a quantum
memory, a quantum computer), while the legitimate users use practical tools (or, more
precisely, simplifications of practical tools). Such assumptions are required since the
aim of the invention of QKD is to obtain a practical key distribution scheme, which is
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proven secure against any attack, even one which is far from being practical with current
technology.

To prove security against such a super-strong eavesdropper, conventionally called Eve,
we develop some important technical tools and we reach some novel results: We obtain
a new information versus disturbance result, where the power of quantum information
theory is manifested in an intuitive and clear way. We show explicitly how the random-
ness of the choice of bases, and the randomness of the choice of test-bits provides the
desired security of QKD. We adopt and generalize sophisticated tools invented in [7]:
“Purifications” which simplify Eve’s states, a bound on accessible information (using
Trace-Norm-Difference of density matrices) which avoids any complicated optimization
of Eve’s possible measurements, and a connection between Eve’s accessible informa-
tion and the error-rate she induces. We add some more simplifications (which were not
required in the analysis of collective attacks in [7]): a reduction to a scheme in which all
qubits are used by Alice and Bob, and a symmetrization of Eve’s attack.

This paper complements the result of Bennett, Mor and Smolin [5]: That paper shows
that individual-particle attacks are strictly weaker (less informative to the eavesdropper)
than joint attacks,1 and the current paper shows that security can still be obtained even
when the eavesdropper applies the strongest joint attacks. The current paper also com-
plements the work of Bennett, Brassard, Crépeau and Maurer [4]: That paper shows that
privacy amplification provides security when the eavesdropper is restricted to perform
only individual-particle attacks, and the current paper shows that privacy amplification
provides security when the eavesdropper is not restricted, and can apply any joint attack
on the particles.

Two other security proofs ([26], [27] and [24], [23]) were reported just prior to ours [6].
The security result of Lo and Chau [24] (note that some of the details were completed
or improved in [23]) uses novel techniques and is very important, but it is somewhat
limited: The QKD protocol which is analyzed in [24] requires that the legitimate users
have quantum memories and fault-tolerant quantum computers, technologies which are
not yet available to the legitimate users, and are not expected within the next 10 or
20 years, while the QKD protocol which is analyzed here, the BB84 protocol, is now
demonstrated with some partial success in many labs (see many references in Gisin’s
reviews [36], [20]). Some of the ideas used in [24] appeared earlier (e.g. the quantum
privacy amplification [16], the quantum repeaters [28], [29], and the use of fault tolerance
quantum error correction for performing quantum privacy amplification [28], [29]) but
Lo and Chau succeeded in using them to yield a novel proof of security from classical
random sampling techniques. The security result of Mayers [26], [27] is similar to ours
in the sense that it proves the security of a much more realistic protocol against an unre-
stricted eavesdropper, and provides explicit bounds on the eavesdropper’s information.
It continues earlier works such as a solution to the error-free case [35].

Our proof is different from Mayers, was derived independently and may shed more
light on the subject. We analyze the density matrices which are available to the eavesdrop-
per and we prove that it is extremely rare that these density matrices carry non-negligible

1 Many of the leading researchers in experimental quantum cryptography are unfamiliar with this work
of Bennett, Mor and Smolin and still wrongly state that individual-particle attacks could be as strong as
collective/joint attacks.
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information about the secret key, and, at the same time, Alice and Bob agree to form a
secret key. In other words, it is extremely rare that Alice and Bob agree to form a secret
key about which these density matrices reveal non-negligible information.

Two additional proofs were announced more recently [33], [1]. Shor and Preskill’s
proof [33] proposes a way to extend Lo and Chau’s proof so that it becomes applicable
to a more practical protocol, hence bypasses the main limitation of Lo and Chau’s proof.
A written draft of the proof of Ben-Or is expected in the near future [1].

We base our work on standard assumptions of QKD: (1) We assume the correctness
of quantum theory and its relativistic generalizations, as these were verified with incred-
ible accuracy in many experiments. (2) Alice and Bob share an unjammable classical
channel. This assumption is usually replaced by the demand that the classical channel is
“unforgeable”; an unforgeable channel can be modified by an eavesdropper but Alice and
Bob will notice that, with probability exponentially close to 1. If Alice and Bob share
a much shorter secret key to be used for authenticating a standard classical channel,
they can indeed obtain an unforgeable channel (hence the protocol is then a quantum
key expansion protocol, although everyone still calls it QKD). (3) Eve cannot attack
Alice’s and Bob’s laboratories. She can only attack the quantum channel and listen to
all transmissions on the classical channel. (4) Alice sends quantum bits, i.e. two level
systems. This assumption cannot be fully met in any experimental scenario, but can only
be approximated.

We prove, under those assumptions, the security of the BB84 protocol [3], against
any attack allowed by the rules of quantum physics. We prove security for instances in
which the error rate in the transmission from Alice to Bob is up to 7.56%.

Although experimental QKD is very common (see for instance Gisin’s reviews [36],
[20]), at the present time no experimental system whatsoever is proven unconditionally
secure. Some security analyses which take into account corrections due to having more
than two levels in the quantum systems have been provided [12], [11], but research in
this area is still in its early stages. In fact, many experimental systems are totally insecure
due to the photon-number-splitting attack [11].

Quantum cryptography [34], [3] is described in several publications, some of which
also introduce the notations in a more expository way. Readers unfamiliar with the basics
of quantum information processing are referred to any recently published textbook on
the subject, e.g. [30] and [21]. Here we focus on QKD [3], [2] and specifically on the
BB84 protocol [3].

In BB84 we let

|0〉0 ≡ |0〉,
|1〉0 ≡ |1〉,
|0〉1 ≡ (1/

√
2)(|0〉 + |1〉),

|1〉1 ≡ (1/
√

2)(|0〉 − |1〉)
define four states, such that the first two are orthogonal in one basis (known as the
computation basis, or the “z” basis), and the other two are orthogonal in another basis
(the “x” basis). (Using these “spin” notations the bases are |〉0 ≡ |〉z and |〉1 ≡ |〉x .) Note
that the two bases are conjugate, namely, applying a measurement in one basis on a state
belonging to the other basis gives a fully random outcome. In the BB84 protocol Alice
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and Bob use these four possible quantum states. Therefore, we refer to these states as
the BB84 states.

The quantum part of the communication in the BB84 protocol contains one step—
Alice sends Bob a string of qubits, each in one of the four BB84 states (chosen randomly
by Alice). To simplify the analysis, we assume all qubits are sent to Eve, and then Eve
sends all qubits to Bob.2

The rest of the protocol involves sending classical communication via the unjammable
channel. First Alice sends Bob the basis used for each photon. By comparing bases after
Alice sends such a state for each qubit and Bob receives the qubit, a common key can
be created in instances when Alice and Bob used the same basis. Comparing the bases
must be performed after Bob receives the qubits, so that the eavesdropper cannot benefit
from having this knowledge while still holding the qubits. The common key obtained
from the above steps is known as the “sifted key”. A final key is then obtained from the
sifted key, after performing several more steps: testing the error rate on some test bits,
chosen at random; throwing away these test bits, while Alice and Bob can now have
some good estimation of the error-rate on the remaining shared bits (called information
bits); correcting errors on these information bits, and amplifying the privacy, by creating
a shorter final key.

Alternatively, if Bob has a memory where he can keep his qubits unchanged after
receiving them (we call such a memory “a quantum memory”), a simpler protocol for
obtaining a sifted key is obtained: Bob waits with the received qubits till he learns the
basis, and then measures in the right bases. The sifted key is twice as big in this case or
the initial string of qubits can be shortened to half, if the final length of the sifted key is
to remain the same.

We prove here the security of that simplified protocol in which only the bits relevant
for the sifted key are discussed; we call it the “used-bits-BB84”. We formally describe
the used-bits protocol (in detail) in the next section. The proof of the security of the
original BB84 protocol (in which Bob does not have a quantum memory) easily follows
due to a simple reduction, as we show in Appendix A.

In the most general attack on the channel, Eve attacks the qubits in two steps. First, she
lets all qubits pass through a device that weakly probes their state via a quantum unitary
transformation. Then, after receiving all the classical data, she measures the probe. Eve’s
goal is to learn as much information as possible about the final key without causing Alice
and Bob to abort the protocol due to a failure of the test. We consider here any attack
chosen by Eve, described by these two steps, and we prove security against any such
attack. We formally explain Eve’s most general attack in the next section.

The issue of the security criteria is non-trivial since one obvious security criterion,
namely that “Eve’s information given that the test passed, is negligible”, does not work;
this criterion cannot be proven, as a counterexample exists.3 Another natural security
criterion saying that “either Eve’s average information is negligible or the probability
that the test is passed is negligible”, also does not work (for a similar reason). The

2 In case Eve can only hold each qubit for a short time and must release it before she gets the next, she is
less powerful, so our proof of security covers that case as well.

3 Namely, there is an attack such that Eve’s information is large even when the test is passed (although in
such cases the test is passed very rarely). Such attacks are studied in Section 2.3.
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criterion that we prove in this work says that “the event where the test is passed AND
Eve’s information is not negligible, is extremely rare”. This security criterion is formally
presented in the next section.

We will moreover show that the final key is reliable: the keys distilled by Alice and
Bob (after error correction and privacy amplification) are identical except for some
exponentially small probability.

Section 2 provides a formal description of the used-bits-BB84 protocol, the most
general attacks and the security and reliability criteria. The rest of the paper contains
three main steps leading to the desired proof of security: In Section 3 we reduce the
problem of proving security to a simpler problem of optimizing over all attacks sym-
metric to the bit values 0 and 1. In Section 4 we analyze the information bits in the
bases actually used by Alice and Bob, and we prove our main information versus dis-
turbance theorem for symmetric attacks; the eavesdropper information about the final
key is bounded by the probability of errors induced in the other bases (namely, errors
induced if the other bases were used by Alice and Bob). We then obtain in Section 5
an exponentially small bound on Eve’s information, proving that the security criterion
(2.1) described in Section 2 is always satisfied in QKD, provided a good code for er-
ror correction and privacy amplification is used. Finally, we analyze a specific code,
the random linear code, and we prove security for instances in which the error rate in
the transmission from Alice to Bob is up to 7.56%. We also analyze the conditions
under which this code can provide data relevant to experimentalists who choose some
parameters (such as the number of photons used for the communication) and would
like to obtain bounds on Eve’s information, on the probability of errors in the final
key and on the resulting bit-rate of the protocol. Such explicit bounds are presented
here for any error rate equal to or smaller than 5.50%. We summarize these results in
Table 5.1.

We conclude the paper by summarizing the tools used here, and by suggesting that
some of them could be relevant for other proofs as well. Various technical details and
proofs of several lemmas are provided in the appendices.

2. Notations, the Protocol, Eve’s Attack,
the Security Criteria and the Main Results

2.1. The Used-Bits BB84 Protocol

We describe the used-bits protocol in detail, splitting it into creating the sifted key and
creating the final key from the sifted key. This simplified protocol assumes that Bob has
a quantum memory.

I. Creating the sifted key:

1. Alice and Bob choose a large integer n � 1. The protocol uses 2n bits.
2. Alice randomly selects two 2n-bit strings, b and i , and sends Bob, via a quantum

communication channel, the string of 2n qubits:

|i〉b = |i1〉b1 |i2〉b2 · · · |i2n〉b2n .
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3. Bob tells Alice when he receives the qubits. [If he received less than 2n qubits he
adds any missing qubit, but in an arbitrary state. If he received more than 2n qubits
he ignores any extra qubit, e.g. if qubit number 17 did not arrive Bob will add it (by
choosing its value and basis at random), and if two qubits arrived instead of one
when Bob expects qubit number 17, then Bob will ignore one of them. Obviously,
such cases will contribute to the error rate, ptest.]

4. Alice publishes the bases she used, b; this step should be performed only after Bob
received all the qubits.

Bob measures the qubits in Alice’s bases to obtain a 2n-bit string j .
We refer to the resulting 2n-bit string as the sifted key, and it would be the same

for Alice and Bob, i.e. j = i , if natural errors and eavesdropping did not exist.

II. Creating the final key from the sifted key:

1. Alice chooses at random a 2n-bit string s which has exactly n zeros and n ones.
There are

(2n
n

)
such strings to choose from.

2. From the 2n bits, Alice selects a subset of n bits, determined by the zeros in s, to
be the test bits. Alice publishes the string s, along with the values of the test bits
(given by an n-bit string iT ). The values of Bob’s bits on the test bits are given
by jT .

The other n bits are the information bits (given by an n-bit string i I ). They are used
for deriving a final key via error-correction codes (ECC) and privacy-amplification
(PA) techniques.

Later, Alice will send the ECC and PA information to Bob, hence Bob needs
to correct his errors using the ECC data, and to obtain a final secret key equal to
Alice’s using the PA data.

3. Bob verifies that the error-rate ptest = |iT ⊕ jT |/n in the test bits is lower than
some pre-agreed allowed error-rate pallowed, and aborts the protocol if the error-rate
is larger. The maximal possible allowed error-rate is found in Section 5.4.

4. Bob also publishes the values of his test bits ( jT ). This is not crucial for the protocol,
but it is done to simplify the proof.

5. Alice selects an (n, k, d) linear ECC C with 2k code words of n bits and a minimal
Hamming distance d between any two words, along with the ECC parities on
the information bits. The strategy is that Alice announces an r × n parity-check
matrix PC of C by announcing its r = n − k rows of n bits v1, . . . , vr . This
means that the code contains any i such that i · vq = 0 for any q ∈ {1 · · · r}.
Formally speaking, C = {i ∈ {0, 1}n | i P�

C = 0}, with P�
C the transpose of PC .

Alice then also announces the r -bit string ξ = i I P�
C whose bits are the parities

of her (random) information string i I with respect to the parity-check matrix (so
the qth bit ξq of ξ is ξq = i I · vq for all 1 ≤ q ≤ r ). Bob does not announce
anything.

We now explain how the code C is chosen. The condition on C is that it corrects
t ≥ (pallowed+εrel)n errors, for some positive (pre-determined) reliability parameter
εrel. If an ECC has Hamming weight d ≥ 2t + 1 it will always correct t errors, and
thus the condition d ≥ 2(pallowed + εrel)n + 1 is sufficient. Meaning that, any code
satisfying this criterion is good for Alice and Bob.
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For Random Linear Codes a better bound exists, and d ≥ (pallowed+εrel)n+1 is
also sufficient as noted in [27]. It is not promised that such a code always corrects
t errors, but it is promised that it corrects t errors with probability as close to 1 as
we want (provided we choose a sufficiently large n).

6. Bob performs the correction on his information bits jI as follows: he finds the n-bit
string jBob such that jBob P�

C = ξ and such that the Hamming distance between
jBob and jI is minimal. As long as there are at most t errors in jI (i.e. | jI ⊕ i I | ≤ t)
the obtained string is unique, and Bob finds the right string, namely, jBob = i I . Note
that we are not concerned here with the efficiency of finding jBob, but a practical
protocol ought to be efficient as well.

7. Alice selects a privacy amplification function (PA) and publishes it. The PA strat-
egy is to publish m strings, of length n each. These privacy-amplification parity-
check strings vr+1, . . . , vr+m shall be used as the rows of an m×n parity matrix PPA
so that the final secret key is a ≡ i I P�

PA, with at = i I ·vr+t+1 (for 0 ≤ t ≤ m−1).
This strategy is similar to error correction except that the m-bit string (namely, the
final key) i I P�

PA is kept secret.
The PA strings must be chosen such that the minimal distance v̂ between any PA

parity string v and any string in the span of their union with the parity-check strings
of the ECC (the dual to the code) is at least v̂ ≥ 2(pallowed+εsec)n. (This is important
for preventing Eve from learning much from the error-correcting procedure, and
furthermore from learning something about the correlations between the bits of the
final key.) Note that, by definition, the minimal distance of the space spanned by the
ECC and PA strings v1, . . . , vr+m , which we denote d⊥, is less than the distance
v̂; hence if we demand d⊥ ≥ 2(pallowed + εsec) n, the above desired criterion,
v̂ ≥ 2(pallowed + εsec) n, is automatically satisfied (due to v̂ ≥ d⊥).

8. Bob calculates a = i I P�
PA to finally get the key.

2.2. Eavesdropping

In the most general attack on the channel, Eve attacks the qubits in two steps. First she
lets all qubits pass through a device that weakly probes their state via a quantum unitary
transformation. Then, after receiving all the classical data, she measures the probe. Note
that Eve can gain nothing by measuring the probe earlier, or by measuring the qubits
while passing through her. Any such measurement can also be performed by attaching
a probe, applying a unitary transformation, and measuring the probe (or part of it) at
a later stage. Since there is no gain in performing a measurement before learning all
the classical information that is transmitted throughout the protocol, the optimal attack
(without loss of generality) is to perform all measurements after receiving all classical
information. Furthermore, Eve gains nothing by sending Bob a state that is not a 2n qubit
state, so without loss of generality, we assume she sends exactly 2n photons: If Eve sends
less than 2n qubits, Bob will add the missing qubits in an arbitrary state (see item I-3
in the protocol), so Eve could have done it herself. If Eve sends more than 2n qubits,
Bob ignores the extra qubits, and again Eve could have done it herself. (An important
remark though: the allowed error-rate in these cases must still be limited as described in
this work. However, in real applications the natural losses of qubits become very high
due to transmission across long distances. If one does not wish to limit the distance too
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much, and wishes to have security even if losses are much higher than pallowed, then this
is still possible. See a brief explanation in Appendix A.)

It is important to enable an analysis of Eve’s most general attack. Thus we formally
split Eve’s attack into her transformation U and her measurement E .

Eve’s transformation, U : Eve attacks the qubits while they are in the channel between
Alice and Bob. Eve can perform any attack allowed by the laws of physics, the
most general one being any unitary transformation U on Alice’s qubits and Eve’s
probe (an ancilla initially in a state |0〉E).

We are generous to Eve, allowing her to attack all the qubits together (in practice, she
usually needs to release the preceding qubit towards Bob before she has access to
the next one).

Without loss of generality we assume that all the noise on the qubits is caused by
Eve’s transformation.

A remark: In individual-particle attacks and in collective attacks Eve’s transformation
is restricted so that each transmitted qubit is attacked using a separate, unentangled
probe, so that the analysis of U is much simplified. In collective attacks the next
step is as general as it is for the joint attacks (so that Eve can measure all probes
together). In contrast, in individual-particle attacks Eve is only allowed to measure
each probe separately from the others.

Eve’s measurement, E : Eve keeps the probe in a quantum memory, meaning that she
keeps its state unchanged. After Eve receives all the classical information from
Alice and Bob, including the bases of all bits b, the choice of test bits s, the test bits
values, iT and jT , the ECC, the ECC parities ξ , and the PA, she tries to guess the
final key using her best strategy of measurement. The measurement can be done
by adding a second ancilla, and performing a standard projection measurement on
Eve’s probe and the ancilla. This measurement is alternatively described (without
the need for this second ancilla) by the so-called “generalized measurement” or
“POVM”, E , which is a set of positive operators Ee such that

∑
e Ee = 1. When

the measurement is applied onto a density matrix ρ the outcome e is obtained
with probability p(e) = Tr(ρEe). We fix4 the set of possible outcomes e, so
that it is the same for all the POVMs used by Eve after she learns iT , jT , b, s
and ξ .

For more information about POVMs and their connection to standard projection mea-
surements in an enlarged Hilbert space, see [31] and [30].

Eve’s goal is to learn as much information as possible about the final key without caus-
ing Alice and Bob to abort the protocol due to a failure of the test. The task of finding
Eve’s optimal operation in these two steps is very difficult. Luckily, to prove secu-
rity that task need not be solved, and it is enough to find bounds on Eve’s optimal
information (via any operation she could have done): In order to analyze her optimal
transformation we find bounds for any transformation U she could perform, and in order
to analyze her optimal measurement we find bounds for any measurement E she could
perform.

4 This fixing is allowed due to Davies’ theorem [15].
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2.3. What Does Security Mean?

We consider here any attack chosen by Eve, described by U and E . Let us explain what
we mean by saying that security shall be proven.

As we already mentioned in the Introduction, the issue of the security criteria is non-
trivial. One obvious security criterion, namely that “Eve’s information given that the
test passed, is negligible”, can be proven wrong (for QKD), and, furthermore, another
natural security criterion saying that “either Eve’s average information is negligible or
the probability that the test is passed is negligible”, also does not work.

The criterion that we shall prove here says that “the event where the test is passed
AND Eve’s information is not negligible, is extremely rare”.

To be more precise we now formally present these security criteria. We first provide
some relevant information-theoretic notations (for some more basic definitions see Ap-
pendix B.1). Let A be the random variable whose values are Alice’s final key, a = i I P�

PA,
and let E be a random variable whose values e are the outputs of Eve’s measurement
E . Note that e are outcomes of a measurement that itself is a function of all the classi-
cal data provided to Eve, the ECC and PA (that can be given to Eve in advance), and
also iT , jT , b, s and ξ . However, we usually consider any attack, therefore for any fixed
parameters of the attack, {U, E}, the resulting e are regular classical values of a regular
classical random variable E , so all standard rules of classical information theory (as
described in Appendix B.1) apply to them. Note that our proof never needs to assume
that the ECC data P�

C and the PA data P�
PA are random, or even that these are initially

unknown to Eve. Therefore these can be chosen in advance and be considered as fixed
parameters of the protocol.

Let T be the random variable presenting whether the test passed or failed (T is “pass”
if |iT ⊕ jT | ≤ npa and is “fail” otherwise, with pa denoting the allowed error rate
pa ≡ pallowed). Let cT = iT ⊕ jT and cI = i I ⊕ jI be the error syndromes on the test
and the information bits. Let I (A;E) be the mutual information between Alice’s final
key and the results of Eve’s measurement. Since some classical data is given to Eve,
let IEve ≡ I (A;E | iT , jT , b, s, ξ) be the information Eve has about the key given a
particular PA, ECC (that remain fixed parameters), iT , jT , b, s and ξ (the parity string
on the information bits, ξ = i I P�

C ). This information might be large for some specific
values (for instance, if b is fixed, and Eve has accidently guessed all the bases correctly),
but on average it ought to be negligible in order for the key to be secret. The average
information obtained by Eve if a key was always created by Alice is 〈IEve〉 ≡ I (A;E |
IT , JT ,B,S, 
), where IT , JT , B, S and 
 are the random variables associated to the
random outputs iT , jT , b, s and ξ = i I P�

C . This information cannot be proven to be
small, because the fact that the test must be passed is not taken into consideration.

We can now formally present our security criteria. In order to get a better intuition of
what security really means, we also formally present in Appendix B.2 the two security
criteria mentioned above, criteria that are not met by the QKD protocol. We even prove
via counterexamples, the SWAP attack and the half-SWAP attack, that these security
criteria indeed do not work.5 The SWAP and the half-SWAP examples motivate a more

5 If Eve is applying the SWAP attack, her information given that the test is passed will not be small, and
the first criterion is not satisfied; if Eve is applying the half-SWAP attack, she gets a lot of information (half
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precise definition of security (first used in [27]) that does work properly, and shall be
used in the current work.

2.3.1. The security criterion. We show in this paper that the event where the test is
passed and Eve obtains meaningful information about the key is extremely unlikely. This
is proven here for any attack {U, E}. Formally, our security criterion is

P
[
(T = pass) ∧ (IEve ≥ Ainfo e−βinfon)

] ≤ Aluck e−βluckn , (2.1)

with Ainfo, βinfo, Aluck and βluck positive constants. Note that this is a criterion for ex-
ponential security, and a less strict criterion can be defined if one is willing to accept
polynomial security (say, with a huge polynomial such as n1000). However, exponential
criteria are preferable when possible, and we succeed in proving here an exponential
security criterion.

2.3.2. An alternative security criterion. We define I′Eve to be equal to IEve when T =
pass and to be equal to 0 otherwise. Then the event

[
(T = pass) ∧ (IEve ≥ Ainfo e−βinfon)

]
is identical to the event [I′Eve ≥ Ainfoe−βinfon]. The security criterion can now be written
more concisely as

P[I′Eve ≥ Ainfoe−βinfon] ≤ Alucke−βluckn.

The expectancy of I′Eve which is

〈I′Eve〉 =
∑

iT , jT ,b,s,ξ

I′Eve(iT , jT , b, s, ξ)p(iT , jT , b, s, ξ),

can now be used to define an important security condition:

〈I′Eve〉 ≤ Ae−βn, (2.2)

with A and β positive constants. As the following lemma shows, the security criterion,
(2.1), is implied by this security condition.

Lemma 2.1. If 〈I′Eve〉 ≤ Ae−βn for A > 0 then

P[I′Eve ≥ Ainfoe−βinfon] ≤ Alucke−βluckn

for all Ainfo, Aluck, βinfo, βluck such that Ainfo Aluck = A, βinfo + βluck = β and Aluck > 0.

(Note that the security criterion (2.1) is therefore implied since the event [(T = pass)∧
(IEve ≥ Ainfo e−βinfon)] is identical to the event [I′Eve ≥ Ainfoe−βinfon].)

Proof. I′Eve is never negative. Therefore, by Markov’s inequality [10] (that is P[X ≥
α] ≤ 〈X〉/α for any non-negative random variable X ),

P[I′Eve ≥ Ainfoe−βinfon] ≤ 〈I′Eve〉
Ainfoe−βinfon

≤ Ae−βn

Ainfoe−βinfon
= Alucke−βluckn.

the bits on average), and yet passes the test with high probability, so the second criterion is not satisfied. In
contrast, the criteria we use in this paper are satisfied by any attack whatsoever.
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We gain two things by using this alternative security criteria. The first is some addi-
tional intuition about the security parameter, and the second is a final form of the criterion
which is the one we actually prove here in the paper.

By definition, 〈I′Eve〉 =
∑

iT , jT ,b,s,ξ
I′Eve(iT , jT , b, s, ξ)p(iT , jT , b, s, ξ) is equal to∑

iT , jT :|iT⊕ jT |≤n pa

∑
b,s,ξ I (A;E | iT , jT , b, s, ξ)p(iT , jT , b, s, ξ), thus, it is easy to cal-

culate that

〈I′Eve〉 = I (A;E | IT , JT ,B,S, 
,T = pass)P[T = pass] (2.3)

(see Appendix B.3.1 for the details of this calculation). This expression provides some
intuition regarding the security criterion, (2.2): It says that if either the probability to
pass the test is negligible or Eve’s information given that the test is passed is negligible,
then security is promised.

Using cT (the error syndrome on the test bits) and using the random variable CT ≡
IT ⊕ JT (the random variable corresponding to the error syndrome), we can also write

〈I′Eve〉 =
∑

cT |T=pass

P [CT = cT ] I (A;E | IT ,CT = cT ,B,S, 
) (2.4)

(see Appendix B.3.1 for the details of this calculation as well). This is true since the
random variable C is equivalent to the random variable J when the random variable I is
given, and since summing over all the events {cT | T = pass} provides exactly the event
{T = pass}.

This last expression, (2.4), tells us that the security criterion (2.2) is satisfied if∑
cT |T=pass

P [CT = cT ] I (A;E | IT ,CT = cT ,B,S, 
) ≤ Ae−βn. (2.5)

Thus, this last equation is yet another form of the security criteria. Indeed, in Lemmas 5.5
and 5.6 in Section 5 we obtain an exponentially small bound on 〈I′Eve〉. This inequality then
implies that the security criterion (2.1) is satisfied, for all attacks without any restriction
whatsoever, therefore proving the security of the used-bits-BB84 and the original BB84
protocols.

To improve the intuition about the different security criteria (those that work for QKD
and also those that do not work) we prove in Appendix B.3.2 that the Half-SWAP attack
can easily be dealt with, once we use our security criteria; meaning that the security
criteria are still satisfied.

2.4. The Main Result: A Security Proof

In this paper we provide a proof of the security of the used-bits BB84 protocol against
any attack on the channel.

Formally we prove the following:

If the allowed error-rate pa , some positive number εsec, and the ECC+PA codes
are chosen such that pa + εsec ≤ v̂/2n with v̂ = minr+m

r ′=r+1 dH (vr ′ , V exc
r ′ ) where

dH is the Hamming distance, vr ′ is a parity-check string, and V exc
r ′ is the 2r+m−1

space which is the span of the ECC and PA excluding vr ′ (namely, the span
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of v1, . . . , vr ′−1, vr ′+1, . . . , vr+m), then for any Ainfo > 0, Aluck > 0 such that
Ainfo Aluck = 2m and any βinfo and βluck such that βinfo + βluck = ε2

sec/4,

P
[
(T = pass) ∧ (IEve ≥ Ainfo e−βinfon)

] ≤ Aluck e−βluckn, (2.6)

where T = pass iff |cT | ≤ npa and IEve = I (A;E | iT , jT , b, s, ξ).

2.5. Reliability

It will moreover be shown here that if the ECC corrects pa + εrel errors then the final
m-bit key is reliable: The keys distilled by Alice and Bob are identical except for some
exponentially small probability Arel e−βreln , with Arel = 1 and βrel = ε2

rel/2.
We shall eventually present here an example of a family of ECC+PA codes such that

the final key is secure and reliable, as long as the error rate pa is less than 7.56%, and such
that the bit-rate approaches one when the error-rate approaches zero. Furthermore, we
present a different range of these codes such that for large enough6 but reasonable n the
final key is secure and reliable, as long as the allowed error rate pa is less than 5.50%; in
Table 5.1 we provide some specific numbers that might be interesting to experimentalists
who design a QKD protocol.

3. Eve’s Attack

In the used-bits BB84 protocol Alice encodes a string i in the bases of her choice b in
the state |i〉b which she sends to Bob via a quantum channel; Bob measures a string j
using the same set of bases. In order to perform her attack, Eve prepares a probe, E, in a
known (ancillary) state, which without loss of generality can be written as a vector |0〉E
and performs a unitary transformation U on the state

|0〉E|i〉b,
where |i〉b is assumed to have been intercepted by Eve. The resulting state U |0〉E|i〉b can
be expressed in a unique way as a sum

U |0〉E|i〉b =
∑

j

|E ′
i, j 〉b| j〉b, (3.1)

where the vectors |E ′
i, j 〉b are non-normalized vectors in Eve’s probe space:

|E ′
i, j 〉b = b〈 j |U |0〉E|i〉b. (3.2)

Eve then sends the disturbed qubits to Bob, keeping her probe in her hands. We call the
state above

|ψ ′
i 〉 ≡

∑
j

|E ′
i, j 〉b| j〉b, (3.3)

the “Eve–Bob’s state”, because it is the state in the hands of Eve and Bob together.

6 Namely, not asymptotically large. For instance, n of the order of 104 or 105.
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Of course, Eve does not know the basis b when she performs her attack U with initial
probe |0〉E. Actually, Eve–Bob’s state is not known to any of the players: Alice knows i
and b, Eve knows U (namely, the set of states |E ′

i, j 〉b) but she knows neither i nor j nor
b, while Bob knows nothing prior to obtaining b from Alice (except his knowledge of
the protocol). In the next steps Alice sends b to Bob (and Eve), and Bob measures and
obtains his sifted key j . Then Alice sends s to Bob (and Eve) and both Alice and Bob
disclose the test bits iT and jT . The information bits are still kept secret.

This section deals with two issues: 1. symmetrizing Eve’s attack; 2. the attack on all
bits versus the attack induced on the information bits.

Section 3.1 presents the symmetrized attack. Section 3.2 presents important properties
of the symmetric attack. Section 3.3 proves that symmetric attacks are at least as good
for Eve as any other attack can be. Section 3.4 distills the attack on the information bits,
and finally, Section 3.5 analyzes the symmetrized attacks when test bits and information
bits are treated separately.

3.1. Symmetrizing Eve’s attack

For any attack {U, E}, we now define a different attack {U sym, E sym}, which can be at
least as good (for Eve) as the attack {U, E}, it is symmetric to bit flips, and it is simpler to
analyze. The symmetric attack {U sym, E sym} is obtained by enlarging Eve’s probe, adding
a second probe, M, containing 2n qubits in a state (1/2n)

∑
m |m〉M, and transforming

it and measuring it as described below. The attack is “symmetric” in a sense that it is
unaffected by the choice of i by Alice, and this is true for any basis b.

The symmetrization is done here in a physical way, namely, as a process that Eve
can actually do if she wants to.7 The symmetrization process can be done in a way
that is always beneficial for Eve, and, therefore, any attack, no matter how good it
is, is no better than its optimal symmetrization. Thus, without loss of generality, it is
sufficient to prove security against all symmetric attack. In order to understand the
design of these symmetric attacks intuitively (starting from any attack), we note that
for the original attack, applying the attack (U ) to a state i ⊕ m gives U |0〉E|i ⊕ m〉b =∑

j ′ |E ′
i⊕m, j ′ 〉b| j ′〉b =

∑
j |E ′

i⊕m, j⊕m〉b| j ⊕ m〉b with j = j ′ ⊕ m. The symmetrization
is achieved by Eve in practice in several steps.

We first present the symmetrization as if Eve knows the bases b: When the ad-
ditional ancilla state is |m〉M she applies her original attack after “shifting” i by m
(namely XORing i with m, via bitwise Controlled-NOT gates): U |0〉E|i ⊕ m〉b|m〉M =∑

j |E ′
i⊕m, j⊕m〉b| j ⊕ m〉b|m〉M. Now we can see that averaging the original attack over

i is equivalent to averaging the shifted attack over all values m. The averaging over m is
easily obtained due to starting with a quantum state which is an equal superposition of all
values of m, |0x 〉M ≡ (1/2n)

∑
m |m〉M. Then Eve could always measure m and continue

with the same POVMs (where each POVM is a function of the values of iT , b, . . .) as
in the original attack obtaining her original asymmetric attack up to a shift of all val-
ues by XORing them with m. We refer to this attack as the “trivial symmetric attack”
{U sym, E trivial}. We can also define a slightly stronger and more general attack in which

7 One can also view the symmetrization as a virtual process. This makes some differences, but we do not
consider this case here.
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Eve measures m on her additional probe, but continues with any POVM she finds ap-
propriate. We call this attack the “simple symmetrized attack”. Obviously, for a given U
(and its modified attack, U sym), the optimal simple symmetrical attack is better than the
trivial symmetric attack, because potentially more informative POVMs are chosen. The
most general symmetric attack {U sym, E sym} generalizes this simple symmetric attack,
as Eve can choose any measurement (rather than measuring m first). Clearly, the optimal
symmetric attack (for a given U ) is therefore at least as informative as the trivial and the
simple symmetric attacks.

Note that in the trivial symmetric attack, when Eve’s second probe is measured yielding
an outcome m, we get back the original attack, up to a shift by m. If the error-rate in the
original attack U is averaged over all i and the error-rate in the new attack is averaged
over all m, the resulting average error-rate is the same. Thus, the trivial symmetric attack
induces the same error-rate, and gives Eve the same information as the original attack.
However, as we just explained, in the symmetrized attack {U sym, E sym} Eve can also use
the state |m〉 in other ways than just measuring m. This modification cannot change the
error-rate due to causality (Eve’s measurement can be done after Alice and Bob completed
their protocol). On the other hand, the optimal symmetrization (optimal POVM, E sym,
for each value of iT , b, . . .) will be at least as good as the trivial one, meaning that for
any value of iT , b, . . ., it would not decrease Eve’s information, while it could increase
it. As a result of these two intuitive observations dealing with symmetrized attacks is
sufficient, and any other attack cannot be better for Eve. We render these observations
formally sound later in Section 3.3, but we first must deal with the general case in which
the basis b is not known to Eve by the time she performs the symmetrization.

The fact that Alice’s state is also defined by a basis b which is unknown to Eve makes
the required symmetrization slightly more complex, because we would like to obtain i⊕m
no matter what the basis is. This is done as follows: We define the new attack in terms of
a previously fixed basis; we will choose the computational basis, i.e. the basis {|i〉0} (for
b = 0, the zero string). For each qubit sent by Alice, Eve attaches a new ancillary bit;
her new ancilla (Eve’s second probe, M) is thus a 2n qubit register, whose basis states
are called |m〉M. She then applies independently to each pair of qubits (Alice’s qubit
plus the attached qubit from the probe M) the unitary transform satisfying the equalities
S|0〉0|0〉 = |0〉0|0〉, S|1〉0|0〉 = |1〉0|0〉, S|0〉0|1〉 = |1〉0|1〉 and S|1〉0|1〉 = −|0〉0|1〉
(if the computational basis is |0z〉, |1z〉 then this corresponds to performing a controlled
σxσz transformation on each of Alice’s qubits using the corresponding ancillary bit as the
control bit). If we evaluate S on basis vectors of the alternate basis |0〉1 ≡ (1/

√
2)(|0〉+

|1〉) and |1〉1 ≡ (1/
√

2)(|0〉 − |1〉), we get immediately S|0〉1|0〉 = |0〉1|0〉, S|1〉1|0〉 =
|1〉1|0〉, S|0〉1|1〉 = −|1〉1|1〉 and S|1〉1|1〉 = |0〉1|1〉; as a consequence, for each such
pair of qubits, we can summarize the effect of S on basis states by the equality (where
i , m and b are 0 or 1)

S|i〉b|m〉 = (−1)(i⊕b)m |i ⊕ m〉b|m〉.
On 2n such pairs of qubits, the exponents simply add up and, for any string i , m and b
of 2n bits we get

SAM|i〉b|m〉M = (−1)(i⊕b)·m |i ⊕ m〉b|m〉M, (3.4)

S†
AM|i〉b|m〉M = (−1)(i⊕b⊕m)·m |i ⊕ m〉b|m〉M, (3.5)
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where the subscript for S means it acts on Alice’s qubits (A) and the second probe (M),
where the second equation is deduced from the first by using the fact that S†S = 1, and
with S being a 24n × 24n matrix.

The symmetrized attack is therefore defined by the initial state of the additional probe
|0x 〉M ≡ (1/2n)

∑
m |m〉M, and by the unitary transform

U sym ≡ (1E ⊗ S†
AM)(UEA ⊗ 1M)(1E ⊗ SAM), (3.6)

where UEA is Eve’s original attack on Alice’s qubits (A) and Eve’s first probe (E), S
is applied onto Alice’s qubits and Eve’s second probe, and 1E and 1M are the identity
on Eve’s first and second probe space, respectively. This completes the definition of the
symmetrized attack.

3.2. Some Basic Properties of Symmetric Attacks

3.2.1. The “Basic Lemma of Symmetrization”. For any attack U , and for any basis b,
we write U sym slightly differently now by defining |E sym ′

i, j 〉b via

U sym|0〉Eve|i〉b = U sym|0〉E|0x 〉M|i〉b ≡
∑

j

|E sym ′
i, j 〉b| j〉b,

where both probes |0〉E and |0x 〉M have been put together (adjacent to each other) on the
left side, to clarify the definition of these |E sym ′

i, j 〉b.

Given any attack U , with its |E ′
i, j 〉b the symmetrization leads to these E sym ′

i, j ’s that can
now be described via the original E ′

i, j ’s as follows:

Lemma 3.1. For any basis string b,

|E sym ′
i, j 〉b = 2−n

∑
m

(−1)(i⊕ j)·m |E ′
i⊕m, j⊕m〉b|m〉. (3.7)

We refer to this lemma as the Basic Lemma of Symmetrization.

Proof. In order to calculate smoothly, we write (again) |0〉E|i〉b|0x 〉M (instead of
|0〉E|0x 〉M|i〉b) in the order the Hilbert spaces appear in (3.6) defining U sym:

U sym|0〉E|i〉b|0〉M = 2−n(1E ⊗ S)†(U ⊗ 1M)(1E ⊗ S)

[∑
m

|0〉E|i〉b|m〉
]

= 2−n(1E ⊗ S)†(U ⊗ 1M)

[∑
m

(−1)(i⊕b)·m |0〉E|i ⊕ m〉b|m〉
]

= 2−n(1E ⊗ S)†
[∑

m, j

(−1)(i⊕b)·m |E ′
i⊕m, j⊕m〉b| j ⊕ m〉b|m〉

]

= 2−n
∑
m, j

(−1)(i⊕b)·m(−1)( j⊕m⊕b⊕m)·m |E ′
i⊕m, j⊕m〉b| j〉b|m〉

= 2−n
∑

j

∑
m

(−1)(i⊕ j)·m |E ′
i⊕m, j⊕m〉b| j〉b|m〉,

which proves the lemma.
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The lemma tells us (intuitively) that Eve gets a similar replacement of E ′
i, j by E ′

i⊕m, j⊕m
whether she symmetrizes with respect to the computational basis or with respect to any
other basis. This means that symmetrization with respect to the output bits 0 or 1 results
also in some form of symmetry with respect to the bases.

3.2.2. Symmetrization and the error-rate. For any attack (symmetric or not) the prob-
ability that Bob measures the string j in basis b if Alice sent i is given by p( j | i, b) =
〈E ′

i, j | E ′
i, j 〉b. In particular, for symmetric attacks psym( j | i, b) = 〈E sym ′

i, j | E sym ′
i, j 〉b. As

a consequence of the Basic Lemma of Symmetrization (Lemma 3.1) we can now estab-
lish a link between psym( j | i, b), the probability that (under the symmetrized attack)
Bob measures j in basis b if Alice sent i , and p( j | i, b), the corresponding probability
for the original attack. For a given b and i , the probability of some specific j = i ⊕ c
becomes the probability of c. Thus we can also conclude a link between psym(c | i, b)
and p(c | i, b). The two main conclusions of the forthcomming lemma are: (a) the prob-
ability (in the symmetrized attack) psym(c | i, b) for a given i , is actually independent of
i , as it is equal to p(c | b), and (b) the probability (in the symmetrized attack) psym(c | b)
is equal to the probability in the original attack, as it is equal to p(c | b).

Lemma 3.2. For any i chosen by Alice and for any j = i ⊕ c,

psym( j | i, b) ≡ psym(i ⊕ c | i, b) = 2−2n
∑

i ′
p(i ′ ⊕ c | i ′, b), (3.8)

psym(c | i, b) = psym(i ⊕ c | i, b) = psym( j | i, b) = p(c | b), (3.9)

psym(c | b) = p(c | b). (3.10)

Proof. Using the fact that the states |m〉 are orthonormal, we get

psym( j | i, b) = 〈E sym ′
i, j | E sym ′

i, j 〉b
= 2−2n

∑
m

〈E ′
i⊕m, j⊕m | E ′

i⊕m, j⊕m〉b (by (3.7))

= 2−2n
∑

m

p( j ⊕ m | i ⊕ m, b).

By assigning i ′ = i ⊕ m this gives psym( j | i, b) = 2−2n
∑

i ′ p( j ⊕ i ′ ⊕ i | i ′, b). With
c = i ⊕ j we finally get psym(i ⊕ c | i, b) = 2−2n

∑
i ′ p(i ′ ⊕ c | i ′, b). This completes

the first part of the lemma.
By definition, the averaging over all i ′ means that 2−2n

∑
i ′ p(i ′⊕c | i ′, b) ≡ p(c | b),

so we get psym(i ⊕ c | i, b) = p(c | b). We conclude that psym(i ⊕ c | i, b) is
actually independent of i , namely, psym( j | i, b) = p(c | b). For a given b and i ,
psym( j | i, b) = psym(i ⊕ c | i, b) = psym(c | i, b). This completes the proof of the
second part of the lemma.

We now start with psym(i ⊕ c | i, b) = p(c | b). Then averaging psym(i ⊕ c | i, b)
over all i means that 2−2n

∑
i psym(i ⊕ c | i, b) ≡ psym(c | b). However, the summation

is over equal terms [p(c | b)], so we finally get psym(c | b) = psym(i ⊕ c | i, b), proving
the last part of the lemma.
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3.3. Symmetric Attacks Are Optimal for the Eavesdropper

We now show that for any attack {U, E}, the attack {U sym, E trivial} leaves the same av-
erage error-rate and also provides the same information to Eve as the original attack.
The optimal symmetric attack (for a given U ), in which the optimization is over all the
possible measurements E sym leaves the same average error-rate and provides information
to Eve that is equal or larger than that of the original attack U . These results imply (see
Lemma 5.3) that if the security criterion is satisfied for all symmetric attacks, then it
is satisfied for all attacks. Recall that due to causality Bob’s outcome will be the same
whatever measurement Eve performs. Since symmetrization in one basis yields sym-
metrization at any basis, we may assume (without loss of generality) that Eve performed
her symmetrization with respect to the basis used by Alice and Bob. In that context, if
Eve uses the trivial symmetrized attack, and measures |m〉 in the standard basis, this is
simply a replacement of i by i ⊕ m and j by j ⊕ m with respect to the original attack.
Continuing by a POVM as in the original attack, now yields the same information as the
original attack, while clearly Eve could do better, as earlier explained.

In the following subsections we make the above intuition mathematically solid. [Recall
that the string s (where a position equal to 1 corresponds to an information bit in i whilst
a 0 indicates a test bit) determines two substrings of i , namely i I (information bits) and iT

(test bits); after s is published by Alice we may identify |i〉b with |iT 〉b|i I 〉b = |iT 〉b⊗|i I 〉b
(this isomorphism depends on s, and is just a permutation of bits); note that the same
modification applies to | j〉b.]

3.3.1. Symmetrization does not affect the average error-rate. As a corollary of
Lemma 3.2, when s is known, we get

Corollary 3.3.

P sym[cI , cT | b, s] = P[cI , cT | b, s], (3.11)

P sym[cT | b, s] = P[cT | b, s]. (3.12)

The first equation is a slight modification of the third part of Lemma 3.2 (due to s being
published), and the second equation is obtained from the first by summing over all cI .

These results prove that the average error-rate is not changed when an attack U is
replaced by any symmetric attack U sym.

3.3.2. Eve’s information is not decreased by symmetrization. Let Esym be the random
variable whose values e are the output of Eve’s measurement E sym, and note that the mea-
surement is fixed at the end of the protocol, hence depends on the value of {iT , cT , b, s, ξ}.
For any particular attack U and particular value {iT , cT , b, s, ξ}, the maximal value of
I (A;Esym | iT ,CT = cT , b, s, ξ) corresponding to Eve’s symmetrized attack and op-
timal measurement is larger than or equal to that obtained if she restricts herself to
performing the trivial symmetric attack (namely, to measuring the |m〉 probe in the
standard basis, and repeat the POVM of the original attack).

We denote (E′,M) the (multivariate) random variable where for each particular value
of m, E′ are the random outputs of the trivial symmetric attack. Then we have by the
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very definition of the optimal measurement that

max
{E sym}

I (A;Esym | iT ,CT = cT , b, s, ξ) ≥ I (A;E′,M | iT ,CT = cT , b, s, ξ),

where {E sym} does not stand for one POVM but for a set of POVMs, one for each value
of iT , cT , b, s, ξ . We would like to bound

I (A;E | IT ,CT = cT , b, s, 
)

=
∑
iT ,ξ

P[iT , ξ | cT , b, s]I (A;E | iT ,CT = cT , b, s, ξ).

We must note the important fact that the POVM is only fixed at the end of the protocol,
hence a different POVM E is chosen for each fixed value of iT , ξ (as the other parameters
are fixed here). The same is true for the trivial symmetrized attack

I (A;E′,M | IT ,CT = cT , b, s, 
)

=
∑
iT ,ξ

P[iT , ξ | cT , b, s]I (A;E′,M | iT ,CT = cT , b, s, ξ),

and the same is true for the optimal symmetrized attack (for a given U )

max I (A;Esym | IT ,CT = cT , b, s, 
)

≡
∑
iT ,ξ

P[iT , ξ | cT , b, s] max
{E sym}

I (A;Esym | iT ,CT = cT , b, s, ξ). (3.13)

With that definition we are promised that symmetrization is optimal for each particular
value of {iT , cT , b, s, ξ} and the resulting information is optimal also after summing over
iT , ξ :

max I (A;Esym | IT ,CT = cT , b, s, 
) ≥ I (A;E′,M | IT ,CT = cT , b, s, 
).

Now we are ready to present the main result of this subsection. An optimal sym-
metrization of U will not decrease the information accessible to Eve in the following
sense:

Lemma 3.4. For any fixed U, cT , b, s,

max I (A;Esym | IT ,CT = cT , b, s, 
) ≥ I (A;E | IT ,CT = cT , b, s, 
). (3.14)

Proof. For any given U , the optimal symmetric attack is at least as good as the trivial
symmetric attack for each value of cT , b, s, iT , ξ , and therefore also after summing over
iT , ξ .

Proving formally that the trivial symmetric attack is as good as the original attack is
less trivial.8 Actually, for simplicity, we only prove the relevant direction, namely, that
the trivial symmetric attack is at least as good as the original attack:

I (A;E′,M | IT ,CT = cT , b, s, 
) ≥ I (A;E | IT ,CT = cT , b, s, 
). (3.15)

For the details of that proof, see Appendix C.1.

8 Still, it is somewhat similar to the argument given when we analyzed the case in which Eve knows the
bases.
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The above result means that we can use a bound on Eve’s average information in the
case of a symmetrized attack to apply to the unsymmetrized case.

3.4. Eve–Bob’s State After the Basis and the Test Bits Are Known

When the strings b and s are given to Bob (and to Eve) then Eve–Bob’s state (3.3) ought
to be modified. The sifted keys |i〉b and | j〉b, the resulting error syndrome c = i ⊕ j ,
Eve’s attack U and Eve’s unnormalized states E ′

i, j are now expressed differently, so
that the test bits and information bits are written separately. Equation (3.1) can thus be
rewritten as

U |0〉E|iT 〉b|i I 〉b =
∑

j

|E ′
iT ,i I , jT , jI

〉b| jT 〉b| jI 〉b, (3.16)

where the right-hand side corresponds to Eve–Bob’s state (|ψ ′
i 〉) for a given i = iT i I ,

and where

|E ′
iT ,i I , jT , jI

〉b = b〈 jT |b〈 jI |U |0〉E|iT 〉b|i I 〉b. (3.17)

The probability that Bob measures | jT 〉b| jI 〉b is

p( jT , jI | iT , i I , b, s) = 〈E ′
iT ,i I , jT , jI

| E ′
iT ,i I , jT , jI

〉b. (3.18)

Once iT is also given to Eve and Bob, it is considered as a fixed parameter in-
stead of a variable in the equation above. When jT is measured, the right-hand states∑

j |E ′
iT ,i I , jT , jI

〉b| jT 〉b| jI 〉b are projected onto the particular jT obtained by the measure-
ment on the test bits, and 2n basis states are left in the summation, corresponding to the
2n possible values of the n information qubits in Bob’s hands. Formally, the projection is
described via 〈 jT | ψ ′

i 〉 =
∑

jI
|E ′

iT ,i I , jT , jI
〉b| jI 〉b. The projection should now be followed

by a normalization of the state, thus modifying Eve–Bob’s state to become

|ψi I 〉 =
∑

jI

1√
p( jT | iT , i I , b, s)

|E ′
iT ,i I , jT , jI

〉b| jI 〉b. (3.19)

With p( jT | iT , i I , b, s) = ∑
jI

p( jT , jI | iT , i I , b, s) and using (3.18) we get that the
normalization factor (due to the projection on jT ) is the square root of

p( jT | iT , i I , b, s) =
∑

jI

〈E ′
iT ,i I , jT , jI

| E ′
iT ,i I , jT , jI

〉b. (3.20)

We now define9

|EiI , jI 〉b,s ≡
1√

p( jT | iT , i I , b, s)
|E ′

iT ,i I , jT , jI
〉b, (3.21)

so that the resulting Eve–Bob’s state can be written more economically in the form

|ψi I 〉 =
∑

jI

|EiI , jI 〉b,s | jI 〉b. (3.22)

9 The expression |EiI , jI 〉b,s is also a function of the parameters iT and jT (which are known to Eve by now),
but, writing the expression as |EiI , jI 〉b,s,iT , jT looks cumbersome; therefore, for convenience, we did not write
them in the expression, while we keep b, s to remind us that the bases and the test are known.
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From (3.18), (3.21) and the conditional probability formula [p(ab)/p(a) = p(b | a)]
we get

〈EiI , jI | EiI , jI 〉b,s = p( jI | i I , iT , jT , b, s); (3.23)

with c = i ⊕ j this gives 〈EiI ,i I⊕cI | EiI ,i I⊕cI 〉b,s = p(i I ⊕ cI | i I , iT , jT , b, s) = p(cI |
i I , iT , jT , b, s).

3.5. Symmetrization—Its Impact on the Test and Information Bits

We first prove that for symmetrized attacks various expressions become independent
of i I :

Lemma 3.5.

psym( jT | iT , i I , b, s) = psym( jT | iT , b, s). (3.24)

Proof. As an immediate corollary of Lemma 3.2 (that says that psym(c | i, b) = p(c |
b)) when s is known, we get

psym(cT , cI | iT , i I , b, s) = p[cT , cI | b, s].

Recalling that cT = iT ⊕ jT and cI = i I ⊕ jI , this implies that for any m ′
I ,

psym( jT , jI ⊕ m ′
I | iT , i I ⊕ m ′

I , b, s) = psym( jT , jI | iT , i I , b, s).

If we sum both sides of this equality over jI we get psym( jT | iT , i I ⊕ m I , b, s) =
psym( jT | iT , i I , b, s) which means that the probability is independent of i I ,

psym( jT | iT , i I , b, s) = psym( jT | iT , b, s).

As a corollary of the above lemma, notice that for symmetric attacks,

Corollary 3.6.

psym(i I | iT , jT , b, s) = 1/2n. (3.25)

Indeed, using the Bayes rule (on { jT ; i I }),

psym(i I | iT , jT , b, s) = psym( jT | i I , iT , b, s)

psym( jT | iT , b, s)
psym(i I | iT , b, s) = 1

2n
,

where the last equality results from (3.24) and the fact that all bits of i , b and s are chosen
independently (so psym(i I | iT , b, s) = 1/2n).

Another important consequence of Lemma 3.5 is:

Lemma 3.7. For the information bits:

1. 〈E sym
i I ,i I⊕cI

| E sym
i I⊕kI ,i I⊕cI⊕kI

〉b,s is independent of i I .
2.
∑

j 〈E sym
i I , jI

| E sym
i I⊕kI , jI⊕kI

〉b,s is independent of i I .

The proof is given in Appendix C.2.
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The next step is to show that for symmetrized attacks various expressions are inde-
pendent also of bI . We proved in Lemma 3.5 that the normalizing factor for fixed iT ,
jT , b and s is the same for all the indices i I . In addition, the normalizing factor does not
depend on bI either.

Lemma 3.8.

psym( jT | iT , b, s) ≡ psym( jT | iT , bI , bT , s) = psym( jT | iT , bT , s). (3.26)

Proof. In fact, (3.26) is true for any attack (symmetrized or not),

p( jT | iT , b, s) ≡ p( jT | iT , bI , bT , s) = p( jT | iT , bT , s). (3.27)

Intuitively, the fact that i I is not a given parameter actually means that we average over
it (as p(a) = ∑

b p(a, b) = ∑
b p(b)p(a | b)). Once we average over it, the relevant

quantum bits are traced out, causing independence of bI as well. Thus, in general, j of
one subset (such as jT ) is independent of b of another subset (such as bI ). This is formally
proven in Appendix C.3. Thus follows psym( jT | iT , b, s) = psym( jT | iT , bT , s).

As a trivial corollary of Lemmas 3.5 and 3.8 we get the following:

Corollary 3.9. For symmetrized attacks, the probability of jT satisfies

psym( jT | iT , i I , b, s) = psym( jT | iT , bT , s), (3.28)

and therefore, (3.21) is simplified to

|E sym
i I , jI

〉b,s = 1√
psym( jT | iT , bT , s)

|E sym ′
iT ,i I , jT , jI

〉b. (3.29)

4. Information versus Disturbance

In this section we analyze the information bits alone (for a given symmetric attack
U sym, a given input iT and outcome jT on the test bits, and given bases b and choice
of test bits s). When no ambiguity arises, the indices b and s will be dropped; |i〉 will
denote |i〉b, |i I 〉 will denote |i I 〉bI and |E sym

i I , jI
〉b,s will be denoted |EiI , jI 〉. Our result here

applies for any U sym, hence in particular for the optimal one. The optimization over
Eve’s measurement is avoided by using the fact that trace norm of the difference of two
density matrices provides an upper bound on the accessible information one could obtain
via any measurement when having the two density matrices as the possible inputs.

4.1. Eve’s State

When Alice sends a state |i I 〉 ≡ |i I 〉bI for the information bits (where bI is the string
actually used by her and Bob to fix the bases on information bits), the state of Eve and
Bob together, |ψi I 〉 =

∑
jI
|EiI , jI 〉| jI 〉, is fully determined by Eve’s attack and by the
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data regarding the test bits. Eve’s state in that case is fully determined by tracing-out
Bob’s subsystem | jI 〉 from Eve–Bob’s state, and it is

ρi I =
∑

jI

|EiI , jI 〉〈EiI , jI |, (4.1)

calculated given iT and jT . This state in Eve’s hands is a mixed state.

4.2. Purification and a Related Basis

We can “purify” the state while giving more information to Eve by assuming she keeps
the state

|ϕi I 〉 =
∑

jI

|EiI , jI 〉|i I ⊕ jI 〉, (4.2)

where we introduce another subsystem for the “purification”. Notice that the indices of
ϕ and of E are always information bits (n-bit strings). As a consequence, we could as
well have written without ambiguity |ϕi 〉 =

∑
j |Ei, j 〉|i ⊕ j〉 where the sum is taken

over all n-bit strings j that can serve as index in |Ei, j 〉. We will do this when expressions
do not involve test bits. The term purification means different things in different papers,
thus we explain it a bit more: A mixed state can also be obtained from a pure state
in an enlarged system (the original system plus an ancilla), once the ancilla is traced
out; the pure state of the enlarged system (or its density matrix) is called a purifica-
tion of the mixed state. In a more general case, the state in the enlarged system is not
necessarily pure, and then we refer to it as a “lift-up” [7] of the state of the original
system.

The resulting purified state (i.e. any purification or any lift-up of Eve’s states, for
instance, the purification ρi = |ϕi 〉〈ϕi |), is at least as informative to Eve as ρi I (of (4.1))
is. This is because the density matrix ρi I is exactly the same as Eve’s state would be if
Eve ignored the i I ⊕ jI register of ϕ. Thus, any information Eve can obtain from her
mixed state is bounded by the information she could get if the purified state was available
to her.

Note that the overlap between these purified states satisfies

〈ϕl | ϕl⊕k〉 =
∑

j

∑
j ′
〈El, j | El⊕k, j ′ 〉〈l ⊕ j | l ⊕ k ⊕ j ′〉

=
∑

j

〈El, j | El⊕k, j⊕k〉, (4.3)

where all the indices are n-bit strings.
As a consequence of Lemma 3.7 we immediately get for the information bits that

〈ϕl | ϕl⊕k〉 is independent of l (meaning, independent of i I , see (4.2)). Thus, it is only a
function of k (namely, kI ), and we can write this as

Corollary 4.1.

�k ≡ 〈ϕl | ϕl⊕k〉.
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For the 2n Hilbert-space spanned by the purified states |ϕl〉 (corresponding to infor-
mation bits), we define a Fourier basis {|η〉}, and show that it is possible to compute
a bound on Eve’s information about the information bits, once the purified states are
expressed in this basis.

Definition 4.2.

|ηi 〉 = 1

2n

∑
l

(−1)i ·l |ϕl〉, d2
i = 〈ηi | ηi 〉, η̂i = ηi

di
.

Using the above definitions and (1/2n)
∑

l(−1)(i⊕ j)·l = δi j , Eve’s purified state can be
rewritten as

|ϕi 〉 =
∑

l

(−1)i ·l |ηl〉 =
∑

l

(−1)i ·ldl |η̂l〉. (4.4)

Note that 〈ηi | ηi 〉 = (1/22n)
∑

l

∑
k(−1)i ·k〈ϕl | ϕl⊕k〉 = (1/2n)

∑
k(−1)i ·k�k . In

terms of Eve’s states we can write

d2
i = 〈ηi | ηi 〉 = 1

22n

∑
l

∑
k

(−1)i ·k
∑

j

〈El, j | El⊕k, j⊕k〉b,s . (4.5)

Proposition 4.3. For symmetrized attacks, 〈ηj | ηi 〉 = 0 if i �= j .

Proof. Note that 〈ηj | ηi 〉 = (1/22n)
∑

l(−1)(i⊕ j)·l ∑
k(−1)i ·k〈ϕl | ϕl⊕k〉. Since 〈ϕl |

ϕl⊕k〉 ≡ �k is independent of l, we see that

〈ηj | ηi 〉 = 1

22n

∑
l

(−1)(i⊕ j)·l ∑
k

(−1)i ·k�k

= 1

2n
δi, j

∑
k

(−1)i ·k�k

= δi, j 〈ηi | ηi 〉.

The above proposition is used to prove Lemma 4.5.

4.3. Eve’s State and Probability of Errors Induced on Information Bits

In this subsection we show that the probability of any error string Eve would have induced
if the conjugate basis was used for the information bits, is a simple function of the di ’s
(of Definition 4.2), hence a function of the overlap of Eve’s purified states. For any attack
(iT and jT being fixed once and for all), any b and s, we have

P[CI = cI | i I , iT , jT , b, s] = 〈EiI ,i I⊕cI | EiI ,i I⊕cI 〉b,s . (4.6)

See (3.23).
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For any symmetrized attack and any b and s the error distribution in the information
bits is

P sym[CI = cI | iT , jT , b, s]

=
∑

i I

P sym[CI = cI | i I , iT , jT , b, s]psym(i I | iT , jT , b, s)

= 1

2n

∑
i I

〈E sym
i I ,i I⊕cI

| E sym
i I ,i I⊕cI

〉b,s, (4.7)

namely, the average probability of an error syndrome cI on the information bits (when
the test bits, basis and sequence are given). The first equality is derived using standard
probability theory (p(a) =∑

b p(a | b)p(b)) and the second is due to (3.25) and (4.6).
Identity (4.7) applies for all strings b and s and, in particular, for b0 = b ⊕ s we get

P sym[CI = cI | iT , jT , b0, s] = 1

2n

∑
i I

〈E sym
i I ,i I⊕cI

| E sym
i I ,i I⊕cI

〉b0,s . (4.8)

The basis b0 is a basis where the basis for the test bits is the same as b, but the basis for
each information bit is opposite. With a little algebra, as shown in Appendix C.4, we can
express |E sym

i I ,i I⊕cI
〉b0,s in terms of the |E sym

i I ,i I⊕cI
〉b,s . Then, doing this for the right-hand

side of (4.8), we get the right-hand side of (4.5) with i = cI ; this means that we get the
following:

Lemma 4.4.

P sym
[
CI = cI | iT , jT , b0, s

] = d2
cI
. (4.9)

The proof is presented in Appendix C.4. Note that the di used here are those of the
symmetrized attack.

Put differently, the term d2
cI

defined in terms of the actual bases used by Alice and
Bob is equal to the probability of the error syndrome cI on information bits had Alice
and Bob used the conjugate bases on information bits. As we shall soon see, these di ’s
actually provide a measure of the information Eve could get from her purified states,
therefore leading to a novel information versus disturbance result.

4.4. Bounds on Eve’s Information—the One-Bit Key Case

In this subsection we much improve upon a result obtained in [7] (the result was derived
for the collective attack). Eve’s information about a particular bit of the final key (even
if all other bits of the final key are given to her) is bounded. We take into consideration
the error-correction data that is given to Eve, and we do it more efficiently than in [7],
hence we obtain a much better threshold for the allowed error-rate.

We first discuss a one-bit final key a, defined to be the parity of a substring of the input
i I . The substring is defined using a mask v, meaning that the secret key is a = v · i I .
(In the general case, the key is defined as the string a = i I PT

PA where PPA is an m × n
matrix; see Section 2.1, item II.7). Bob first corrects his errors using the ECC data, hence
he learns Alice’s string i I . Eve does not know i I , but she learns the ECC C used by Alice
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and Bob as well as v and the parity bits ξ sent by Alice to help Bob correct the sequence
he received. All the possible inputs i I that have the correct parities ξ for the code C form
a set denoted Cξ = {i I | i I P�

C = ξ}.
When the purification of Eve’s state is given by |ϕi 〉 the density matrix is ρi = |ϕi 〉〈ϕi |.

In order to guess the key a = v · i , Eve must now distinguish between two ensembles
of states: The ensemble of equally likely states ρi (these states are equally likely due to
Corollary 3.6), with i I ∈ Cξ (i.e. i I P�

C = ξ ) and key a = i I · v = 0, and the ensemble
of (equally likely) states ρi with i I ∈ Cξ and key a = i I · v = 1. For a ∈ {0, 1} these
ensembles are represented by the density matrices ρ0 = ρ0(v, ξ) and ρ1 = ρ1(v, ξ)

defined by

ρa(v, ξ) = 1

2n−(r+1)

∑
i I P�C =ξ
i I ·v=a

ρi (4.10)

and Eve’s goal is to distinguish between those two. Note that the two density matrices
ρa(v, ξ) are the lift-ups of the density matrices really known to Eve, namely, matrices
in which the sum is over the states of (4.1) rather than a sum over their purifications.

A good measure for the distinguishability of ρ0(v, ξ) and ρ1(v, ξ) is the optimal
mutual information (known as the accessible information) that one could get if one
needs to guess the bit a by performing an optimal measurement to distinguish between
the two density matrices, when the two are given with equal probability (of half). This
information is called the Shannon Distinguishability (SD = SD(ρ0, ρ1)) to emphasize
that it is a distinguishability measure. If v is the string used to define the one-bit key A
sent by Alice, then, due to the optimality of SD, we get (for any symmetric attack)

I (A;Esym | iT , jT , b, s, ξ) ≤ SD(ρ0(v, ξ), ρ1(v, ξ)), (4.11)

where Esym is the random variable corresponding to Eve’s actual measurement in the
symmetrized attack.

Let v1, . . . , vr be the rows of the r × n parity-check matrix PC of the (n, k, d) code
C where r = n − k. The matrix PC is assumed of rank r and so the r “parity-check
strings” v1, v2, . . . vr (that are known to Eve) are linearly independent. Let Vr be the
r -dimensional linear space generated by {v1, . . . , vr }. Then Vr = {vs | s ∈ {0, 1}r }
where, by definition10 vs =

∑r
l=1 slvl . For any vs ∈ Vr , Eve knows i I · vs because she

knows all the ξl and i I · vs = ξs where ξs =
∑r

l=1 slξl . As a consequence, Eve has total
knowledge of the key if a = i I · vs for vs ∈ Vr . Notice that Vr is nothing but the dual
code C⊥ of C which can be viewed as the set of all the parity strings for C.

For any v ∈ {0, 1}n , let v̂ be the minimum Hamming distance dH (v, C⊥) between v
and all the strings in C⊥. This means that

v̂ = min
v′∈C⊥

dH (v, v
′) = min

v′∈C⊥
|v ⊕ v′|.

The value v̂ will prove to be a security parameter. We use here, as in [7], Eve’s purified
states |ϕi 〉 =

∑
l(−1)i ·ldl |η̂l〉, and the resulting density matrices of (4.10).

10 Note that the vector s is used now to define the possible vectors vs in the span of the parity-check strings
(this is in addition to s being used as the 2n-bit string defining the test bits and the information bits), The bit
sl is the lth bit of s.
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We now show that

Lemma 4.5. For any ξ ∈ {0, 1}r , any (n, k, d) code C with r × n parity check matrix
PC of rank r = n− k and any v /∈ C⊥ the Shannon Distinguishability between the parity
0 and the parity 1 of the information bits over the PA string, v, is bounded above by the
following inequality:

SD(ρ0(v, ξ), ρ1(v, ξ)) ≤ 2
√ ∑
|l|≥v̂/2

d2
l , (4.12)

where v̂ = dH (v, C⊥) is the minimum Hamming distance between v and C⊥ and ρb(v, ξ)

is defined by (4.10).

See proof in Appendix D.2. As that proof was developed from methods used in [7]
we present in Appendix D.1 the preliminary analysis we did for the joint attack, an
analysis that was based on using the tools of [7]. Appendix D.2 then presents improved
tools leading to the result described in Lemma 4.5. Appendix D.2 is self-contained yet
reading Appendix D.1 may help the reader to understand more clearly the motivation
and development of the tools used for this proof.

The result of Lemma 4.5 gives an upper bound for Eve’s information about the bit
defined by this PA string v. In order to get a useful result, namely, an information versus
disturbance result, we now prove a proposition in which the bound on Eve’s information
is expressed in terms of the probability of error on the information bits in the conjugate
basis.

Proposition 4.6. For any ξ ∈ {0, 1}r , any (n, k, d) code C with r × n parity-check
matrix PC of rank r = n − k and any v /∈ C⊥,

I (A;Esym | iT , jT , b, s, ξ) ≤ 2

√
P sym

[
|CI | ≥ v̂

2
| iT , jT , b0, s

]
, (4.13)

where v̂ = dH (v, C⊥) is the minimum Hamming distance between v and C⊥, cI = i I⊕ jI ,
ξ = i I P�

C , the key is a = i I · v and b0 = b ⊕ s.

Proof.

I (A;Esym | iT , jT , b, s, ξ)

≤ SD(ρ0(v, ξ), ρ1(v, ξ)) (by (4.11))

≤ 2
√ ∑
|l|≥v̂/2

d2
l (by Lemma 4.5)

= 2
√ ∑
|l|≥v̂/2

P sym[CI = l | iT , jT , b0, s] (by Lemma 4.4)

= 2

√
P sym

[
|CI | ≥ v̂

2
| iT , jT , b0, s

]
.
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Notice that the bound obtained in the previous proposition holds for all ξ , that is, it is the
same whatever is the syndrome sent by Alice to Bob to help him correct his information
bits.

Equation (4.13) bounds the information of Eve (about a one-bit key) using the proba-
bility of the error strings in the other basis, and it completes the basic information versus
disturbance result of our proof. Previous security proofs (for simpler attacks), such
as [17], [9] and [7], are also based on various information versus disturbance arguments,
since the non-classicality of QKD is manifested via such arguments.

The result is expressed using classical terms: Eve’s information is bounded using the
probability of error strings with large Hamming weight. If only error strings with low
weight have non-zero probability, Eve’s information becomes zero. Such a result is a
“low weight” property and it resembles a similar result with this name which was derived
by Yao [35] for the security analysis of the error-free quantum oblivious transfer (and
QKD).

4.5. Bounds on Eve’s Information—the m-Bit Key Case

The case of an m-bit key a is closely related to the one-bit case. The only differences
are that the upper bound is multiplied by m, and that v̂ is defined differently in order to
take into account the PA code (in addition to the ECC).

In terms of the bound (the right-hand side of (4.13)), the case of an m-bit key a follows
from that of a one-bit key if we use the following lemma:

Lemma 4.7. Let A = (A1, . . . ,Am) be defined by m random variables. Let E be any
random variable. If I (A1;E) ≤ F and for all j , 1 ≤ j ≤ m − 1 and all a1, . . . , aj ,
I (Aj+1;E | a1 · · · aj ) ≤ F then I (A;E) ≤ m F .

Proof. Note that

I (Aj+1;E | A1 · · ·Aj ) =
∑

a1...aj

P(a1, . . . , aj )I (Aj+1;E | a1 · · · aj )

≤
∑

a1···aj

P(a1, . . . , aj )F ≤ F.

The lemma follows from the above and the chain rule for information (see Appendix B.1),

I (A;E) = I (A1,A2, . . . ,Am;E) =
m∑

j=1

I (Aj ;E | A1, . . . ,Aj−1).

Next, in the particular case at hand, we want to bound Eve’s information about the
m-bit key given the values iT , jT , b, s and ξ she learned. This means we want to bound
I (A;Esym | iT , jT , b, s, ξ) where A is the m-bit key. This is nothing but a mutual
information between A and Esym for some fixed (known) values of random outputs,
and the above lemma thus applies. More precisely, it tells us that if some number F is
an upper bound for I (Aj+1;Esym | iT , jT , b, s, ξ, a1 · · · aj ) then m F will be an upper
bound for I (A;Esym; iT , jT , b, s, ξ). Announcing ξ and a1 · · · aj is announcing publicly
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the bits v1 · i I , . . ., vr+ j · i I , which is just the same as using the r + j strings v1, . . . , vr+ j

as parity strings of a code for which Proposition 4.6 applies. More formally,

Proposition 4.8. Let v1, . . . , vr+m be r +m linearly independent n-strings and let Vr ′

be the subspace of {0, 1}n spanned by {v1, . . . , vr ′ } (1 ≤ r ′ ≤ r + m). Let PC be the
matrix whose rows are v1, . . . , vr and let PPA be the one with rows vr+1, . . . , vr+m .
Then for any ξ ∈ {0, 1}r ,

I (A;Esym | iT , jT , b, s, ξ) ≤ 2m

√
P sym

[
|CI | ≥ v̂

2
| iT , jT , b0, s

]
, (4.14)

where v̂ = minr≤r ′<r+m dH (vr ′+1, Vr ′), cI = i I ⊕ jI , ξ = i I P�
C , a = i I P�

PA and
b0 = b ⊕ s.

Proof. See Appendix C.5.

If we modify v̂ to any value that is less than or equal to the minimum over all the
Hamming distances dH (vr ′+1, Vr ′) then (4.14) is satisfied with the modified v̂ as well, as
only the right-hand side increases. In particular, this is true if we follow the definition
given in Section 2.1 in item II.7; thus we define v̂ to be (from now on) the minimal
distance between any string v in the set of PA parity-check strings, and any string v′ in
the span of their union with the parity-check strings of the ECC (the dual to the code).
This formally means:

Corollary 4.9. Let v1, . . . , vr+m be r + m linearly independent n-strings. Let PC be
the matrix whose rows are v1, . . . , vr and let PPA be the one with rows vr+1, . . . , vr+m .
Let V exc

r ′ be the 2r+m−1-dimensional subspace of {0, 1}n spanned by a subset of the
r+m−1 parity strings which excludes the PA string vr ′ (namely, the span of v1, . . . , vr ′−1,
vr ′+1, . . . , vr+m). Then for any ξ ∈ {0, 1}r ,

I (A;Esym | iT , jT , b, s, ξ) ≤ 2m

√
P sym

[
|CI | ≥ v̂

2
| iT , jT , b0, s

]
, (4.15)

where v̂ = minr+1≤r ′≤r+m dH (vr ′ , V exc
r ′ ), cI = i I ⊕ jI , ξ = i I P�

C , a = i I P�
PA and

b0 = b ⊕ s.

(Remark 1. In fact, for binary linear codes, the two v̂ defined above, the one used in
Proposition 4.8 and the one used in Corollary 4.9 are equal, but this fact is irrelevant for
our paper.

Remark 2. We could even follow a stricter definition and replace v̂ by d⊥, the minimum
(non-zero) distance of the code Vr+m of dimension r +m (the space spanned by the ECC
and PA strings v1, . . . , vr+m , see Section 2.1, item II.7). Notice that the rows of the
generator matrix of this code are those of PC and PPA.)
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5. Completing the Security Proof

In this section we analyze the attack on the test and information qubits together (see
(3.16)). For these states, we bound the weighted average of Eve’s information 〈I′Eve〉,
used in the alternative security criteria (see (2.4)):∑

cT |T=pass

P [CT = cT ] I (A;E | IT ,CT = cT ,B,S, 
).

We show that the above bound is exponentially small and therefore Lemma 2.1 promises
us that security is achieved. We generalize here previous (and more limited) proofs [5],
[8], [7] that information about parity bits is exponentially small, to be applicable for
the most general attack on the channel—the joint attack. (Note: We freely switch below
between cT and jT whenever iT is given.)

5.1. Applying the Bounds to All Attacks

The maximum error-rate that still passes the test is denoted pa (or pallowed). This means
that T = pass if and only if |cT | ≤ npa . For v̂ as defined in Corollary 4.9, and making
use of that corollary we get, for fixed b and s:

Lemma 5.1.∑
|cT |≤npa

P sym[CT = cT | b, s]I (A;Esym | IT ,CT = cT , b, s, 
)

≤ 2m

√
P sym

[(
|CI | > v̂

2

)
∧
( |CT |

n
≤ pa

)
| b0, s

]
.

The proof is given in Appendix C.6.
Let U (and E) be some arbitrary attack and let {U sym, E sym} be an arbitrary sym-

metrized attack resulting from U . As the lemma above is true for any symmetric attack,
it is also true for any {U sym, E sym} and in particular for the optimal one (in which the
optimal POVM is performed for each value of iT , b, . . .) Thus, we immediately get from
Lemma 5.1:

Corollary 5.2.∑
|cT |≤npa

P sym [CT = cT | b, s] max I (A;Esym | IT ,CT = cT , b, s, 
)

≤ 2m

√
P sym

[(
|CI | > v̂

2

)
∧
( |CT |

n
≤ pa

)
| b0, s

]

with the maximum [max I ( )] defined in (3.13).
We now prove that the above bound, with the same definition of v̂, also applies to the

original unsymmetrized attack (b and s still fixed).
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Lemma 5.3. ∑
|cT |≤npa

P[CT = cT | b, s]I (A;E | IT ,CT = cT , b, s, 
)

≤ 2m

√
P

[(
|CI | > v̂

2

)
∧
( |CT |

n
≤ pa

)
| b0, s

]
.

Proof. This follows from Lemma 3.4, Corollary 5.2 and (3.11) and (3.12) from Corol-
lary 3.3:∑
|cT |≤npa

P [CT = cT | b, s] I (A;E | IT ,CT = cT , b, s, 
)

=
∑

|cT |≤npa

P sym [CT = cT | b, s] I (A;E | IT ,CT = cT , b, s, 
)

(by 3.12)

≤
∑

|cT |≤npa

P sym [CT = cT | b, s] max I (A;Esym | IT ,CT = cT , b, s, 
)

(by Lemma 3.4)

≤ 2m

√
P sym

[(
|CI | > v̂

2

)
∧ ( |CT |

n
≤ pa) | b0, s

]
(by Corollary 5.2)

By (3.11), P sym [CI = cI ,CT = cT | b, s] = P [CI = cI ,CT = cT | b, s] for any basis
string, in particular b0; this concludes the proof.

From now on, there will be no restriction of symmetry on the attacks. The results will
hold for any attack whatsoever.

5.2. Exponentially Small Bound on Eve’s Information

For any εsec and pa , such that v̂ ≥ 2n(pa + εsec) Lemma 5.3 leaves the following bound:

Corollary 5.4.∑
|cT |≤npa

P [CT = cT | b, s] I (A;E | IT ,CT = cT , b, s, 
)

≤ 2m

√
P

[( |CI |
n

> pa + εsec

)
∧
( |CT |

n
≤ pa

)
| b0, s

]
.

Thus far, there is nothing that causes the bound on the right-hand side to be a small
number. The result above is true even if Eve is told in advance the bases of Alice and
Bob (the string b), or if she is told in advance which are the test bits and which are the
used bits (the string s), two cases in which Eve easily obtains full information about the
secret key a.
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Only Eve’s lack of knowledge regarding the random strings b and s provides an
exponentially small number at the right-hand side. Since Eve must fix her attack before
she knows the basis or the test-bits choice, we compute the average information for a fixed
attack over all bases b and test-bits choice s. Averaging over b means that we sum over all
b’s and multiply each term by the constant p(b) = 1/22n . The averaging over b removes
the dependence on the particular basis (due to

∑
b p(z | b)p(b) =∑

b p(z, b) = p(z)).
Averaging over s means that we sum over all s’s and multiply each term by the constant

p(s) = 1/
(2n

n

)
. The averaging over s removes the dependence on the particular choice

of which bits are the test bits (due to
∑

s p(z | s)p(s) =∑
s P(z, s) = p(z)).

Lemma 5.5. Let T = pass iff |cT | ≤ npa , and let I′Eve be the random variable equal
to IEve = I (A;E | iT , jT , b, s, ξ) when T = pass and I′Eve = 0 otherwise. Then for any
εsec and pa such that pa + εsec ≤ v̂/2n we get

〈I′Eve〉 ≤ 2m

√
P

[( |CI |
n

> pa + εsec

)
∧
( |CT |

n
≤ pa

)]
.

Proof. We already proved (equation (2.4)) that

〈I′Eve〉 =
∑

cT |T=pass

P [CT = cT ] I (A;E | IT ,CT = cT ,B,S, 
),

where T = pass iff |cT | ≤ npa . Expanding the right-hand side, we get

〈I′Eve〉 =
∑
b,s

p(b, s)
∑

|cT |≤npa

P [CT = cT | b, s] I (A;E | IT ,CT = cT , b, s, 
).

Using Corollary 5.4 we obtain the first bound below; then using the fact that
∑

i pi
√

xi ≤√∑
i pi xi , and that p(b, s) = p(b0, s) = 2−2n p(s) (b and s being chosen independently)

we get the second bound; finally noting that summing over b is the same as summing
over b0, we get the third bound:

〈I′Eve〉 ≤
∑
b,s

p(b, s)2m

√
P

[( |CI |
n

> pa + εsec

)
∧
( |CT |

n
≤ pa

)
| b0, s

]

≤ 2m

√∑
b,s

2−2n p(s)P

[( |CI |
n

> pa + εsec

)
∧
( |CT |

n
≤ pa

)
| b0, s

]

= 2m

√
P

[( |CI |
n

> pa + εsec

)
∧
( |CT |

n
≤ pa

)]
.

For a long string, the test bits and the information bits should have a similar number
of errors if the test is picked at random. The probability that they have different numbers
of errors should go to zero exponentially fast as shown in the following lemma.

Lemma 5.6. For any ε > 0, P [(|CI |/n > pa + ε) ∧ (|CT |/n ≤ pa)] ≤ e−1/2nε2
.
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Proof. This follows directly from Hoeffding’s law of large numbers [22]. The details
are given in Appendix C.7.

5.3. The Main Results

We are now in a position to state and prove our main results.

Proposition 5.7. If pa , εsec and the ECC+PA codes are such that pa + εsec ≤ v̂/2n
with v̂ = minr+m

r ′=r+1 dH (vr ′ , V exc
r ′ )where dH is the Hamming distance, vr ′ is a parity-check

string and V exc
r ′ is the 2r+m−1 space which is the span of v1, . . . , vr ′−1, vr ′+1, . . . , vr+m ,

then

〈I′Eve〉 ≤ 2m
√

e−nε2
sec/2

where I′Eve = IEve if |cT | = |iT ⊕ jT | ≤ npa (test passed) and I′Eve = 0 otherwise.

Proof. This follows immediately from Lemmas 5.5 and 5.6.

Theorem 5.8. If pa , εsec and the ECC+PA codes are such that pa + εsec ≤ v̂/2n with
v̂ = minr+m

r ′=r+1 dH (vr ′ , V exc
r ′ ) where dH is the Hamming distance, vr ′ is a parity-check

string and V exc
r ′ is the 2r+m−1 space which is the span of v1, . . . , vr ′−1, vr ′+1, . . . , vr+m ,

then for any Ainfo > 0, Aluck > 0 such that Ainfo Aluck = 2m and any βinfo and βluck such
that βinfo + βluck = ε2

sec/4,

P
[
(T = pass) ∧ (IEve ≥ Ainfo e−βinfon)

] ≤ Aluck e−βluckn, (5.1)

where T = pass iff |cT | ≤ npa and IEve = I (A;E | iT , jT , b, s, ξ).

Proof. This follows from Proposition 5.7 if we let A = 2m and β = ε2
sec/4 in

Lemma 2.1.

Recall that, in addition to the security, one must also guarantee the reliability of the
final key. Namely, we need to make sure that Alice’s final key and Bob’s final key are
(almost always) identical. Note that Lemma 5.6 can be rewritten:

P
[
(T = pass) ∧ (|CI | > (pa + εrel)n)] ≤ e−ε

2
rel/2.

This also means that

Corollary 5.9. The probability that the test is passed and that there are more than
(pa + εrel)n errors in the information string is exponentially small; it is bounded by

h = e−nε2
rel/2.

Once the ECC is chosen such that (pa + εrel)n errors in the information string are
corrected, Alice’s and Bob’s final keys are identical except for an exponentially small
probability bounded by h. This result means that Arel = 1 and βrel = ε2

rel/2, in the
reliability criterion of Section 2.5.
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5.4. The Existence of Codes that Provide Security and Reliability

The above bound on Eve’s information is exponentially small, provided there is a family
of good linear ECCs also satisfying the requirement that v̂ ≥ 2n(pa + εsec) when
PA strings are added. What we formally need is a family of (linear) ECC+PA codes
satisfying the following two conditions:

(1) The ECC can correct up to t = pallowed + εrel errors. For this to happen, we
demand that the minimum distance d between the code words of the ECC satisfy
d ≥ 2t + 1. Hence, a d ≥ 2t + 1 = 2n(pallowed + εrel)+ 1 is sufficient. This code
can correct all the errors in the information string, except for an exponentially
small probability bounded by h (of Corollary 5.9) of having more errors in the
information string than expected.

(2) The minimum distance d⊥ of the code words in the span of the dual code and the
PA strings (hence, the augmented dual code is of dimension r + m) should have
a minimum distance d⊥ ≥ 2n(pallowed + εsec).

We discuss below the class of linear codes called random linear codes. Such codes
cannot be easily decoded hence their practical usefulness is limited. It may well be
that such codes can be replaced by the much more practical codes—the Reed–Solomon
codes—without losing the security and reliability proven below. However, analyzing
Reed–Solomon codes is beyond the scope of this work.

For random linear codes (RLCs) the two requirements mentioned above can easily be
satisfied. We can generate an m-bit secret key if we pick an (n, n− r) RLC, where r and
m satisfy

H2(2pa + 2εrel + 1/n) < r/n,

H2(2pa + 2εsec)+ H2(2pa + 2εrel + 1/n) < 1 − Rsecret,

with H2 the entropy, and Rsecret ≡ m/n the bit-rate (namely, the efficiency of the QKD
scheme). If these conditions are not met then the RLC provides neither reliability nor
security; see Appendix D.2. At the limit of large n and ε’s close to zero we get as a bound
2H2(2pa) < 1. Then pallowed < 5.50% satisfies the bound and hence this is our first
threshold (see Appendix D.2 for the detailed calculation). It is the threshold in the case
in which we want to have an exact bound on Eve’s information and on the reliability of
the final key, as a function of parameters chosen by the designer of the QKD protocol.
This is important for a designer who needs to choose a sufficiently large n (that is not
assumed to go to infinity); then Eve’s information is bounded as in Proposition 5.7 and
the reliability is bounded as in Corollary 5.9.

Note that if we let pallowed be sufficiently close to zero then (for sufficiently large n
and small ε’s) a bit-rate Rsecret close to one can be obtained. Specific values of Eve’s
information, the probability of error in the final key and the resulting bit-rate are provided
in Table 5.1; this is done by choosing εsec = εrel = ε (for the sake of simplicity). As
the parameters n, ε and pallowed can be chosen by the designer of the protocol, we
present here three values of the reliability/security parameter, and we then calculate11

11 The term 1/n that appears in the parameter [2pallowed + 2ε + 1/n] is negligible except in the two cases
where the entire term approaches 11.0%.
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Table 5.1. Summary of the characteristics of a QKD protocol that uses RLC.∗

Reliability bound (h)

ε

n 0.5% 1% 2%

12,500 0.54 1/12
50,000 0.54 1/12 1/22026

200,000 1/12 1/22026 4 · 10−18

800,000 1/22026 4 · 10−18 ≈ 10−70

3,200,000 4 · 10−18 ≈ 10−70

Rate (Rsecret = m/n)

ε

pallowed 0.5% 1% 2%

2.0% 41.7% 33.5% 18.5%
3.5% 18.5% 11.7% 0.007%†

5.0% 0.007%† ‡ ‡

∗ The “Reliability Bound”, h, is calculated according to Corollary 5.9, and the
maximal bit-rate Rsecret is calculated by solving H2(2pa +2ε)+ H2(2pa +2ε+
1/n) = 0.99− Rsecret (with two exceptions, denoted with † in the table). The pa-
rameters in this table are closely related to the parameters used in experiments: n
is related to the number of photons obtained by Bob; 2n photons are used accord-
ing to the used-bits-BB84 protocol and slightly more than 4n in the conventional
BB84. The error-rate considered here is achieved in many experimental setups,
but might limit the distance of transmission. A photon rate of 1,000 photons per
second (if we count the photons obtained by Bob) was also reported in various
experiments, so the resulting secret-key bit-rate Rsecret can be sufficient for many
practical usages.
† For the case of 2pallowed + 2ε = 11.0% we calculate Rsecret by solving
H2(2pa + 2ε) + H2(2pa + 2ε + 1/n) = 0.9999 − Rsecret. Here, security and
reliability can be obtained only with n > 106 or so
‡ Out of the allowed range (negative rate)

the reliability as a function of n, and we calculate12 the maximal bit-rate as a function
of pallowed.

The “Reliability Bound” h is calculated according to Corollary 5.9, and (due to the
equal ε’s) we can then get the bound on Eve’s information (according to Proposition 5.7),
which is exactly 2m

√
h. We consider the numbers we obtained for the “Reliability

Bound” in the table to be “Good” when the probability of error is 1/22026 or below.
However, with h = 1/22026, Eve’s information is 2m times 1/148 which means that
the users cannot really enjoy the allowed bit-rate, and must use a much smaller value
for m, as Eve could then learn too much. When the “Reliability Bound” is 4 · 10−18 or
≈ 10−70 there is clearly no problem at all with Eve’s information, and m can be as large
as the allowed bit-rate enables.

For RLC one can actually obtain a better threshold for the allowed error rate (as first
noticed by Mayers [27]), by modifying requirement (1) so that:

(1′) The ECC can correct up to pallowed + εrel errors, with probability as close to 1 as
we wish.

12 We choose a maximal bit-rate by solving H2(2pa + 2ε)+ H2(2pa + 2ε + 1/n) = 0.99 − Rsecret.
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Namely, for any δ̂, the ECC can correct up to pallowed+εrel errors, with probability smaller
than δ̂. For RLC this is true (due to Shannon’s bound, see for instance [25]) for any code
having a minimum distance d ≥ t+1 = n(pallowed+εrel)+1 (rather than d ≥ 2t+1, that
promises the success of correcting all errors), provided that r/n > H2(pallowed + εrel),
and that a sufficiently large n is chosen.

We show in Appendix D.2 that requirements (1′) and (2) can be satisfied and one can
generate an m-bit secret key if one picks an (n, n − r) RLC, where r and m satisfy the
following:

H2(pa + εrel + 1/n) < r/n,

H2(2pa + 2εsec)+ H2(pa + εrel + 1/n) < 1 − Rsecret,

where Rsecret ≡ m/n. In the limit of large n and ε’s close to zero we get as a bound
H2(2pa)+ H2(pa) < 1. Then pallowed < 7.56% satisfies the bound and hence this is our
improved threshold (which is identical to the threshold calculated by Mayers [27]). Note
that Eve’s information is still bounded to be exponentially small due to Theorem 5.8, but
the reliability is now bounded only asymptotically as we did not find an explicit formula
for the probability δ̂ of having an error (as a function of n) when the distance is d > t+1.

Asymptotically, with a rate Rsecret < 1 − H2(pa) − H2(2pa) the final key is secure
and reliable for the given ECC+PA. Note, as pa goes to zero, Rsecret goes to one, which
means that (asymptotically) almost all the information bits are secret.

This threshold is based on the properties of the code, and other codes might give
worse thresholds, but might have other desired properties. RLCs are not so useful as their
decoding cannot be done efficiently. It is possible to make use of methods for approximate
decoding (in which we are not always promised that the closest code word is chosen
after the error correction), but the bound on reliability then needs some adjustments.
It might be better to replace the RLC by a code that can be decoded efficiently (e.g.
Reed–Solomon concatenated code, with a random seed), and add random PA strings.
The Hamming distance between the PA check strings and the ECC check strings is still
bounded below in the same way as for the RLC (see [27]).

Finally, it is interesting to note that the bound H2(pa)+H2(pa) < 1 (which was neither
reported by us nor by Mayers) leads to the threshold of 11%, and such threshold was
reported and proven by Shor and Preskill [33]. This probably means that the alternative
proof presented there can, in some sense, modify requirement (2) in a way similar to the
modification done here to change from (1) to (1′) above. However, we could not see how
the same modification could apply to our proof.

A well-known way to improve the threshold further is to allow two-way communica-
tion as part of the ECC+PA process. This technique is known as key distillation, see the
basic idea described in [13]. The analysis of Eve’s density matrices becomes much more
complicated in such a case, and we do not yet know if our proof can be easily adjusted
to allow that.13

13 After the submission of our paper, Gottesman and Lo proved that the Shor–Preskill proof of security
can be adjusted to deal with such a key distillation, yielding an improved threshold for pallowed; see quant-
ph/0105121).
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6. Summary

We proved the security of the Bennett–Brassard (BB84) protocol for QKD. Our proof
is based on analyzing Eve’s reduced density matrices, on a novel information versus
disturbance result, on the optimality of symmetric attacks, on laws of large numbers and
on various techniques that simplify the analysis of the problem.

Many of the ideas and the tools developed here can be found relevant when proving
the security of other QKD schemes: the analysis of Eve’s reduced density matrices, the
purifications of her states, the usage of that purification for finding a relevant information
versus disturbance bound, the use of Hoeffding’s law of large numbers, the trace-norm-
difference bound, etc. Other tools, such as the reduction to the used-bits-BB84 protocol,
and the extensive usage of symmetry could also provide some important insight, but are
somewhat more specific to the BB84 scheme.

Appendix A. Security of BB84

In the paper we prove that used-bits-BB84 is secure. We now present the original BB84
protocol and prove, by reduction, that its security follows immediately from the security
of the used-bits-BB84 protocol.

The differences between the protocols are only in the first part. The first part of the
BB84 protocol is as follows:

I. Creating the sifted key:

1. Alice and Bob choose a large integer n � 1, and a number δnum, such that 1 �
δnum � 1/

√
(2n). The protocol uses n′′ = (4 + δnum)n bits.

2. Alice randomly selects two n′′-bit strings, b′′ and i ′′, which are then used to create
qubits: The string b′′ determines the basis 0 ≡ z and 1 ≡ x of the qubits. The string
i ′′ determines the value (0 or 1) of each of the n′′ qubits (in the appropriate bases).

3. Bob randomly selects an n′′-bit string, b
′′Bob, which determines Bob’s later choice

of bases for measuring each of the n′′ qubits.
4. Alice generates n′′ qubits according to her selection of b′′ and i ′′, and sends them

to Bob via a quantum communication channel.
5. After receiving the qubits, Bob measures in the basis b

′′Bob.
6. Alice and Bob publish the bases they used; this step should be performed only after

Bob received all the qubits.
7. All qubits with different bases are discarded by Alice and Bob. Thus, Alice and Bob

finally have n′ ≈ n′′/2 bits for which they used the same bases b′. The n′-bit string
would be identical for Alice and Bob if Eve and natural noise do not interfere.

8. Alice selects the first 2n bits from the n′-bit string, and the rest of the n′ bits are
discarded. If n′ < 2n the protocol is aborted (a fake random key can be chosen
in this case via the unjammable classical channel, so that the key is not secret;
however the probability for this to happen is exponentially small).

We refer to the resulting 2n-bit string as the sifted key.

The second part of the protocol is identical to the second part of the used-bits-BB84
protocol. To prove that BB84 is secure we modify BB84 by a few steps in a way that
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each step can only be helpful to Eve, and the final protocol is the used-bits-BB84. Each
item below describes a different protocol, obtained by modifying the previous protocol.

Recall that Alice and Bob choose their strings of basis b′′ and b
′′Bob in advance. Recall

that the two strings are random. Thus, the first modification below has no influence at
all on the security or the analysis of the BB84 protocol. Note that after the first modifi-
cation Alice knows the unused bits in advance. The second and third modifications are
done in a way that Eve can only gain, hence security of the resulting protocol provides
the security of BB84. The last modification is only “cosmetic”, in order to derive pre-
cisely the used-bits-BB84 protocol. This modification changes nothing in terms of Eve’s
ability.

– Let Bob have a quantum memory. Let Alice choose b
′′Bob instead of Bob at step

3. When Bob receives the qubits at step 5, let him keep the qubits in a memory,
and tell Alice he received them. In step 6 let Alice announce b

′′Bob to Bob, and Bob
measures in bases b

′′Bob.
From the announcements of b′′ and b

′′Bob Bob knows which are the used and the
unused bits, as determined in steps 7 and 8. Now, at the end of step 8, Alice and
Bob know all the unused bits, so they ignore them, to be left with 2n bits.

Note that in this modified protocol, Alice can calculate which are the unused bits
already at step 3 (if she wishes to know this).

– Let Alice calculate the unused bits and announce them already at the end of step
3. Let her also announce their bases (bAlice

unused and bBob
unused) and bits values iunused.

Obviously, such announcements can only help Eve gain more information (and
maybe even to chose a better attack). Thus this step only reduces the security, so if
the protocol defined here is secure, so is the original BB84 protocol.

– Let Alice generate and send to Bob only the used bits in step 4, and let her ask Eve
to send the unused bits (by telling her which these are, and also the preparation data
for the relevant subsets, that is, bAlice

unused and iunused). Knowing which are the used
bits, and knowing their bases and values can only help Eve in designing her attack,
thus security can only be reduced by this step.

Since Bob never uses the values of the unused bits in the protocol (he only ignores
them), he does not care if Eve does not provide him with these bits or provides them
to him without following Alice’s preparation request.

After Bob receives the used and unused bits, let him give Eve the unused qubits
(without measuring them), and ask her to measure them in bases bBob

unused. Having
these qubits can only help Eve in designing her optimal final measurement, thus
security can only be reduced by this step.

Since Bob never use the values of the unused bits in the rest of the protocol, he
does not care if Eve does not provide him with these values correctly or at all.

– Since Alice and Bob never made any use of the unused bits, Eve could have them
as part of her ancilla to start with, and Alice could just create 2n bits, send them to
Bob and then tell him the bases.

The protocol obtained after this reduction is a protocol in which Eve has full
control on her qubits and on the unused qubits. Alice and Bob have control on the
preparation and measurement of the used bits only. This is the used-bits BB84, for
which we prove security in the text.
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One important remark is that the exponentially small probability that n′ < 2n in step 8
(so that the protocol is aborted due to an insufficient number of bits in the sifted key)
now becomes a probability that Eve learns the key.

Another important remark is that the issue of a high loss rate of qubits (e.g. due to
losses in transmission or detection) can also be handled via the same reduction. Thus, our
proof could also apply to a more practical BB84 protocol where high losses are allowed.
The required modification to the protocol then is that Bob will not now add missing
qubits, in step I.3 of the used-bits BB84 protocol, and in an additional step (prior to step
I.4.) he will inform Alice of the bits he did not obtain.

By the way, another practical aspect is imperfect sources (in which the created states
are not described by a two-level system). This subject is the issue of recent subtlety
regarding the security of practical schemes [12], [11], and is not discussed in this current
work.

Appendix B. Information Theoretic Basics and Results

B.1. Basics of Information Theory [14]

Let X and Y be random variables whose values are indexed by x and y, respectively,
appearing with probabilities p(x) and p(y). The entropy of a random variable is H(X) =
−∑x p(x) log2 p(x). For two variables H(X | y) = −∑x p(x | y) log2 p(x | y) and
H(X | Y) ≡ ∑

y p(y)H(X | y). For any two random variables X and Y, the mutual
information I (X;Y) = H(X) − H(X | Y) describes the decrease in the entropy of X
due to learning Y. This function I is symmetric to swapping X and Y.

For three random variables A, E and X given to be x , the conditional mutual informa-
tion is I (A;E | x) = H(A | x)− H(A | E, x) Then the conditional mutual information
for the three random variables is I (A;E | X) ≡ ∑

x p(x)I (A;E | x). Another case
which is relevant is with four random variables A, E, X and Y given to be equal to y,
I (A;E | X, y) =∑

x p(x | y)I (A;E | x, y).
An important tool is the chain rule I (A,B;C) = I (A;C)+I (B;C | A). As a corollary

from the chain rule and the positivity of mutual information, one gets I (A,B;C) ≥
I (B;C | A).

B.2. Bad Security Criteria

B.2.1. A first bad security criterion and the SWAP attack. What one might like to
obtain as a security criterion is that Eve’s information, given that the test is passed, is
negligible. Formally, this puts a restriction on the values of jT : for any iT , only jT such
that | jT ⊕ iT | ≤ npa are allowed. Then the criterion is

I (A;E | IT , JT ,B,S, 
,T = pass) ≤ Ae−βn (B.1)

with A and β positive constants, and I (A;E | IT , JT ,B,S, 
,T = pass) =∑
iT , jT ,b,s,ξ

p(iT , jT , b, s, ξ | T = pass)I (A;E | iT , jT , b, s, ξ,T = pass), with cT =
iT ⊕ jT , and T = pass meaning that cT ≤ npa .

Unfortunately, the above bound is too demanding and is not satisfied in quantum
cryptography. Given that the test is passed, Eve can still have full information. Consider
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the SWAP attack: Eve takes Alice’s qubits and puts them into a quantum memory. She
sends random BB84 states to Bob. Eve measures the qubits she kept after learning
their bases, hence gets full information about Alice’s final key. In this case Bob will
almost always abort the protocol because it is very unlikely that his bits will pass the
test. However, in the rare event when the test is passed, Eve has full information about
Alice’s key. So, given the test is passed (a rare event), information is still m bits, and the
above criterion cannot be satisfied.

B.2.2. A second bad security criteria and the half-SWAP attack. Another potential
security criterion says the following: “For any attack, either Eve’s average information
is negligible or the probability that the test is passed is negligible.” Namely, if Eve tries
an attack that would give her non-negligible information about a final key, she has to be
extremely lucky in order to pass the test. This security criterion can be formally written
as 〈IEve〉P(T = pass) ≤ Ae−βn with A and β positive constants. This suggested security
criterion is different from the previously suggested one, and it is satisfied by the SWAP
attack mentioned above.

Unfortunately, as observed in an earlier (archive) version of [27], this criterion is
also inappropriate. Consider the half-SWAP attack in which Eve does nothing with
probability one-half, and performs the SWAP attack with probability one-half. This
half-SWAP attack gives an average information of exactly m/2, and it passes the test
with probability larger than one-half. Obviously these two cases, getting a non-negligible
information, and passing the test with high probability, will not happen in the same event,
hence security can still be achieved, but it must be defined via less demanding criteria,
such as those two used in the paper.

B.3. Alternative Security Criteria

B.3.1. Finding different expressions for 〈I′Eve〉. First we prove (2.3), namely, that
〈I′Eve〉 = I (A;E | IT , JT ,B,S, 
,T = pass)P[T = pass].

By expanding 〈I′Eve〉 we get

〈I′Eve〉 =
∑

iT , jT :|iT⊕ jT |≤n pa

∑
b,s,ξ

I (A;E | iT , jT , b, s, ξ)p(iT , jT , b, s, ξ)

=
∑

iT , jT ,b,s,ξ

I (A;E | iT , jT , b, s, ξ)p(iT , jT , b, s, ξ | T = pass)P(T = pass)

=
∑

iT , jT ,b,s,ξ

I (A;E | iT , jT , b, s, ξ,T = pass)p(iT , jT , b, s, ξ | T = pass)

× P(T = pass)

=
[ ∑

iT , jT ,b,s,ξ

I (A;E | iT , jT , b, s, ξ,T = pass)p(iT , jT , b, s, ξ | T = pass)

]

× P(T = pass)

= I (A;E | IT , JT ,B,S, 
,T = pass)P[T = pass].

Indeed, p(iT , jT , b, s, ξ | pass)p(pass) = p(iT , jT , b, s, ξ, pass) and this value is equal
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to p(iT , jT , b, s, ξ) if |iT ⊕ jT | ≤ npa and is 0 otherwise. When the value is not 0, then
the condition pass is automatically satisfied and can be put in the right-hand side of the
mutual information.

Second, we prove in full detail (2.4), namely, that 〈I′Eve〉 = ∑
|cT |≤npa

P[CT =
cT ]I (A;E | IT ,CT = cT ,B,S, 
).

Note that I′Eve is the random variable equal to I (A;E | iT , jT , b, s, ξ)when |iT ⊕ jT | ≤
npa (i.e., when T = pass) and to 0 otherwise. As a consequence,

〈I′Eve〉 =
∑

iT , jT ,b,s,ξ

I′Eve(iT , jT , b, s, ξ)p(iT , jT , b, s, ξ)

=
∑

|cT |≤npa

∑
iT ,b,s,ξ

I (A;E | iT ,CT = cT , b, s, ξ)P [iT ,CT = cT , b, s, ξ ]

=
∑

|cT |≤npa

∑
iT ,b,s,ξ

I (A;E | iT ,CT = cT , b, s, ξ)P [iT , b, s, ξ | cT ]P[CT = cT ]

=
∑

|cT |≤npa

P[CT = cT ]I (A;E | IT ,CT = cT ,B,S, 
).

B.3.2. Security against the half-SWAP attack. In the half-SWAP attack Eve has a probe
|p〉where p is a 2n-bit string. With probability one-half she applies the unitary transform
U0|p〉|i〉b = |p〉|i〉b (she does nothing and then sends |i〉b to Bob) and with probability
one-half she applies the unitary transform U1|p〉|i〉b = |i〉b|p〉 (swap) and sends |p〉 to
Bob, keeping the probe in the state |i〉b. We can present a fully quantum attack, and let
Eve use an additional single-qubit probe |e0〉 initially in the state H |0〉, so that her full
probe contains 2n + 1 qubits. Her attack is defined by the unitary transform

U |0〉|p〉|i〉b = |0〉|p〉|i〉b,
U |1〉|p〉|i〉b = |1〉|i〉b|p〉,

which means that she uses her additional qubit |e0〉 to decide whether she swaps or
not (using 2n Controlled-SWAP gates). We describe Eve’s measurement: she measures
her new bit e0 in the standard basis and then, if she gets e0 = 1, she measures the
“probe” |e1〉 = |i〉b in the basis b and gets i , else she measures her original probe
|p〉 in the standard basis and gets p. Her two outputs (e0, e1), equal to either (0, p) or
(1, i), define the random variable E = (E0,E1) (respectively). Formulated that way, the
half-SWAP attack fits our framework better. Notice that p and a (Alice’s final key) are
completely uncorrelated and that i determines completely a after the ECC and PA steps
are completed.

Now we look at our security criteria, and observe I (A;E | IT , JT ,B,S, 
, pass)P[T=
pass]. Of course p(pass) = 1

2 . It is however a big mistake to believe that I (A;E |
IT , JT ,B,S, 
, pass) is equal to m or m/2. Eve’s information is equal to m if the fol-
lowing two conditions are satisfied:

– the test is passed,
– she applied the SWAP attack,

otherwise, she gets 0 information. So Eve’s information is m times the probability that
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both the test is passed and she applied the SWAP attack, which is equal to 1
2 times the

probability of passing the test when she swaps. This is exponentially small.
In order to make this intuitive reasoning formal, we use (a particular case of) the chain

rule for mutual information (see Appendix B.1):

I (E;A) ≡ I (E0,E1;A) = I (E0;A)+ I (E1;A | E0).

Now E0 corresponds to a random bit generated by Eve, independently of i and thus
independently of a. As a consequence I (E0;A | iT , jT , b, s, ξ) = 0 and thus I (E0;A |
IT , JT ,B,S, 
, pass) = 0. This implies that

I (E;A | IT , JT ,B,S, 
, pass)p(pass) = I (E1;A | E0, IT , JT ,B,S, 
, pass)p(pass).

Now

I (E1;A | E0, iT , jT , b, s, ξ) =
∑

e0

I (E1;A | e0, iT , jT , b, s, ξ)p(e0 | iT , jT , b, s, ξ).

If e0 = 0 then E1 is just the dummy output that is independent of a and as a consequence
I (E1;A | e0, iT , jT , b, s, ξ) = 0. On the other hand, if e0 = 1 (written “swap” hereun-
der), then Eve gets full information, i.e. the m bits of the key. We are thus left with the
equality

I (E;A | iT , jT , b, s, ξ) = mp(swap | iT , jT , b, s, ξ),

where, of course, Bob’s outputs jT will depend heavily on the swap! We can now expand

I (E;A | IT , JT ,B,S, 
, pass)p(pass)

= m
∑

|iT⊕ jT |≤npa

∑
b,s,ξ

p(swap | iT , jT , b, s, ξ)p(iT , jT , b, s, ξ)

= mp(swap ∧ pass)

= mp(pass | swap)p(swap)

= m

2
p(pass | swap),

which is exponentially small.
In fact, the half-SWAP attack does not even make I (E;A | IT , JT ,B,S, 
, pass)

large since this is equal to

m

2
p(pass | swap)

1

p(pass)
= mp(pass | swap),

meaning that the first inappropriate security criteria is actually satisfied correctly if the
half-SWAP attack is used.
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Appendix C. A Few Technical Lemmas

C.1. A Proof of Lemma 3.4

We prove (3.15) here. It is actually possible to prove equality,14 but for our purpose
inequality is as good, so we do not bother with proving equality.

Proof. Using the chain rule described in Appendix B.1, we get

I (A;E′,M | IT ,CT = cT , b, s, 
)

≥ I (A;E′ | M, IT ,CT = cT , b, s, 
)

=
∑

iT ,ξ,m

P ′ [iT , ξ,m | cT , b, s]I (A;E′ | m, iT , cT , b, s, ξ)

=
∑

iT ,ξ,m

P ′ [iT , ξ | cT , b, s,m]I (A;E′ | m, iT , cT , b, s, ξ)p(m).

For any fixed m, the effect of the symmetrizing transformation S is to replace i by i ⊕m
(cT remaining fixed). In particular iT becomes iT ⊕mT and i I becomes i I ⊕m I and so
ξ becomes (i I ⊕ m I )P�

C = ξ ⊕ m I P�
C and so

P ′(iT , ξ | cT , b, s,m) = P(iT ⊕ mT , ξ ⊕ m I P�
C | cT , b, s),

I (A;E′ | m, iT ,CT = cT , b, s, ξ) = I (A;E | iT ⊕ mT ,CT = cT , b, s, ξ ⊕ m I P�
C ).

If we let i ′T = iT ⊕ mT , ξ ′ = ξ ⊕ m I P�
C and use the fact that the same value of ξ ′ is

obtained 2n−r times, we get

I (A;E′,M | IT ,CT = cT , b, s, 
)

≥
∑

iT ,ξ,m

P ′[iT , ξ | cT , b, s,m]I (A;E′ | m, iT ,CT = cT , b, s, ξ)p(m)

= 2n−r
∑

iT ,ξ,i ′T ,ξ
′
P[i ′T , ξ

′ | cT , b, s]I (A;E | i ′T ,CT = cT , b, s, ξ ′)p(m)

2n−r 2n+r
∑
i ′T ,ξ

′
P[i ′T , ξ

′ | cT , b, s]I (A;E | i ′T ,CT = cT , b, s, ξ ′)2−2n

=
∑
i ′T ,ξ

′
P[i ′T , ξ

′ | cT , b, s]I (A;E | i ′T ,CT = cT , b, s, ξ ′)

= I (A;E | IT ,CT = cT , b, s, 
).

C.2. A Proof of Lemma 3.7

Using the Basic Lemma of Symmetrization (3.7) and the fact that the |m〉 form an
orthonormal basis,

〈E sym ′
i, j | E sym ′

i ′, j ′ 〉b = 2−2n
∑

m

(−1)(i⊕ j⊕i ′⊕ j ′)·m〈E ′
i⊕m, j⊕m | E ′

i ′⊕m, j ′⊕m〉b. (C.1)

14 This is done by proving that I (A;M | IT ,CT = cT , b, s, 
) = 0. See the chain rule used in the first
inequality below.
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By replacing i, j, i ′ and j ′ by i ⊕ u, j ⊕ u, i ′ ⊕ u and j ′ ⊕ u in this formula, we get
〈E sym ′

i⊕u, j⊕u | E sym ′
i ′⊕u, j ′⊕u〉b = 2−2n

∑
m(−1)(i⊕ j⊕i ′⊕ j ′)·m〈E ′

i⊕u⊕m, j⊕u⊕m | E ′
i ′⊕u⊕m, j ′⊕u⊕m〉b.

Defining w = u ⊕ m we get 〈E sym ′
i⊕u, j⊕u | E sym ′

i ′⊕u, j ′⊕u〉b = 2−2n
∑

w(−1)(i⊕ j⊕i ′⊕ j ′)·w⊕u

× 〈E ′
i⊕w, j⊕w | E ′

i ′⊕w, j ′⊕w〉b, and using (C.1) we finally get

〈E sym ′
i⊕u, j⊕u | E sym ′

i ′⊕u, j ′⊕u〉b = (−1)(i⊕ j⊕i ′⊕ j ′)·u〈E sym ′
i, j | E sym ′

i ′, j ′ 〉b. (C.2)

Considering information and test bits, if we let u = uI uT with uT = 0 and use the fact
(Lemma 3.5) that the normalizing factor for a symmetrized attack depends only on iT ,
jT , b and s (so we can divide both sides by the same normalization factor), we deduce
from (C.2) the identity

〈E sym
i I⊕uI , jI⊕uI

| E sym
i ′I⊕uI , j ′I⊕uI

〉b,s = (−1)(i I⊕ jI⊕i ′I⊕ j ′I )·uI 〈E sym
i I , jI

| E sym
i ′I , j ′I

〉b,s . (C.3)

For any n-bit string uI , we get by (C.3), by letting i ′I = i I ⊕ kI , j ′I = jI ⊕ kI that
(i I ⊕ jI ⊕ i ′I ⊕ j ′I ) · uI = 0 and so

〈E sym
i I⊕uI , jI⊕uI

| E sym
i I⊕kI⊕uI , jI⊕kI⊕uI

〉b,s = 〈E sym
i I , jI

| E sym
i I⊕kI , jI⊕kI

〉b,s .
By writing j = i ⊕ c we get

〈E sym
i I⊕uI , jI⊕cI⊕uI

| E sym
i I⊕kI⊕uI ,i I⊕cI⊕kI⊕uI

〉b,s = 〈E sym
i I ,i I⊕cI

| E sym
i I⊕kI ,i I⊕cI⊕kI

〉b,s,

so that the first part of the lemma is proven (〈E sym
i I ,i I⊕cI

| E sym
i I⊕kI ,i I⊕cI⊕kI

〉 is independent
of i I .)

Summing over cI and changing back to jI we get that
∑

j 〈E sym
i I , jI

| E sym
i I⊕kI , jI⊕kI

〉 is also
independent of i I .

C.3. A Proof of (3.27)

We show that p( jT | iT , bI , bT , s) = p( jT | iT , b′I , bT , s) for any choice of ba-
sis b′I on information bits. For any basis b′I , the change of basis between b′I and
bI is expressed by a unitary matrix U = (ui ′I ,i I ) such that |i ′I 〉b′I = ∑

i I
ui ′I ,i I |i I 〉bI ,

|i I 〉bI =
∑

i ′I
u†

i I ,i ′I
|i ′I 〉b′I and, of course, UU † = U †U = 1. From the defining equation

|E ′
iT ,i I , jT , jI

〉b = b〈 jT |b〈 jI |U |0〉E|iT 〉b|i I 〉b (3.17) and the above, we get

|E ′
iT ,i ′I , jT , j ′I

〉bT ,b′I =
∑
i I , jI

ui ′I ,i I u
†
jI , j ′I

|E ′
iT ,i I , jT , jI

〉bT ,bI . (C.4)

For any b, we have p( jT | iT , b, s) = ∑
i I

p( jT | iT , i I , b, s)p(i I | iT , b, s). As
p(i I | iT , b, s) = 1/2n (since these values are chosen at random by Alice) we can
deduce, using (3.20) p( jT | iT , i I , b, s) =∑

jI
〈E ′

iT ,i I , jT , jI
| E ′

iT ,i I , jT , jI
〉b, that

p( jT | iT , b, s) = 1

2n

∑
jI ,i I

〈E ′
iT ,i I , jT , jI

| E ′
iT ,i I , jT , jI

〉b. (C.5)

If we apply (C.5) in the particular case where the basis is b′I , bT , and we expand its
right-hand side using (C.4), then, because of the unitarity of U , the six sums reduce
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to two, yielding a term that is exactly equal to the right-hand side of (C.5) with basis
b = bI , bT . That is,

p( jT | iT , b′I , bT , s) = 1

2n

∑
jI ,i I

〈E ′
iT ,i I , jT , jI

| E ′
iT ,i I , jT , jI

〉b. (C.6)

C.4. A Proof of Lemma 4.4

We start from (4.8), namely,

P sym
[
CI = cI | iT , jT , b0, s

] = 1

2n

∑
i ′I

〈E sym
i ′I ,i

′
I⊕cI

| Ei ′I ,i
′
I⊕cI 〉b0,s (C.7)

with b0 = b ⊕ s. From Hadamard, we know that the unitary matrix U = (ui ′I ,i I ) used

to express |i ′I 〉b̄I
in terms of the |i I 〉bI is defined by ui ′I ,i I = 2−n/2(−1)i

′
I ·i I and, for that

particular choice of b′I , (C.4) reduces to

|E sym ′
iT ,i ′I , jT , j ′I

〉bT ,b̄I
= 1

2n

∑
i I , jI

(−1)i
′
I ·i I (−1) jI · j ′I |E sym ′

iT ,i I , jT , jI
〉bT ,bI .

Due to Corollary 3.9 psym( jT | iT , bT , s) is independent of bI , so both sides can be
divided by the same normalization factor, and this implies that

|E sym
i ′I , j ′I

〉b0,s = 1

2n

∑
i I , jI

(−1)(i
′
I ·i I+ jI · j ′I )|E sym

i I , jI
〉b,s .

Then, going back to (C.7) and replacing |E sym
i ′I ,i

′
I⊕cI

〉b0,s by those values, leaves

P sym[CI = cI | iT , jT , b0, s]

= 1

2n

∑
kI

∑
i I , jI

∑
i ′I , j ′I

1

22n
(−1)(i I⊕i ′I )·kI⊕( jI⊕ j ′I )·(kI⊕cI )〈E sym

i I , jI
| E sym

i ′I , j ′I
〉b,s

= 1

23n

∑
i I ,i ′I , jI , j ′I

(∑
kI

(−1)kI ·(i I⊕i ′I⊕ jI⊕ j ′I )

)
(−1)cI ·( jI⊕ j ′I )〈E sym

i I , jI
| E sym

i ′I , j ′I
〉b,s .

The sum over kI is non-zero only when i I ⊕ i ′I = jI ⊕ j ′I
�= hI , and then it is 2n , so

= 1

22n

∑
i I , jI ,hI

(−1)cI ·hI 〈E sym
i I , jI

| E sym
i I⊕hI , jI⊕hI

〉b,s

= 〈ηcI | ηcI 〉 = d2
cI
,

where the last equalities are due to the calculation of the norm of η in (4.5).

C.5. A Proof of Proposition 4.8

Here we prove Proposition 4.8 that claims a bound on the m-bit key given a bound on
the 1-bit key.



426 E. Biham, M. Boyer, P. O. Boykin, T. Mor, and V. Roychowdhury

Proof. Let F(x) = 2
√

P sym[|CI | ≥ x/2 | iT , jT , b0, s]. For any r ′ such that r ≤ r ′ <
r + m, let C ′ be the code whose parity-check matrix PC′ has the rows v1, . . . , vr ′ . Then
PC′ has rank r ′ and C ′ is an (n, k ′, d ′) code with k ′ = n−r ′. Moreover, vr ′+1 /∈ C ′⊥ = Vr ′ .
As a consequence, Proposition 4.6 applies and gives that

I (A′;Esym | iT , jT , b, s, ξ ′) ≤ F(v̂r ′+1)

for a′ = vr ′+1 · i I = aj+1 with j = r ′ − r , ξ ′ = i I P�
C′ = ξ1 · · · ξr a1 · · · aj , v̂r ′+1 =

dH (vr ′+1, Vr ′) and b0 = b ⊕ s. This can be rewritten

I (Aj+1;Esym | iT , jT , b, s, ξ, a1 · · · aj ) ≤ F(v̂r ′+1)

and the result follows from Lemma 4.7 by taking F = maxr≤r ′<r+m F(v̂r ′+1) = F(v̂)
for v̂ = minr≤r ′<r+m v̂r ′+1.

C.6. A Proof of Lemma 5.1

The lemma says:∑
|cT |≤npa

P sym[CT = cT | b, s]I (A;Esym | IT ,CT = cT , b, s, 
)

≤ 2m

√
P sym

[(
|CI | > v̂

2

)
∧
( |CT |

n
≤ pa

)
| b0, s

]
.

Proof. If we expand IT and 
 in the expression I (A;Esym | IT ,CT = cT , b, s, 
)
then we get∑

|cT |≤npa

P sym[CT = cT | b, s]I (A;Esym | IT ,CT = cT , b, s, 
)

=
∑

|cT |≤npa ,iT ,ξ

psym(iT ,CT = cT , ξ | b, s)I (A;Esym | iT , cT , b, s, ξ)

=
∑

|iT⊕ jT |≤npa ,iT ,ξ

psym(iT , jT , ξ | b, s)I (A;Esym | iT , jT , b, s, ξ)

=
∑

|iT⊕ jT |≤npa ,iT ,ξ

psym(iT , jT | b0, s)2−r I (A;Esym | iT , jT , b, s, ξ).

The last equality requires a detailed explanation: First, notice that psym( jT | iT , b, s, ξ) =
psym( jT | iT , b, s) because the probability psym( jT | iT , b, s, i I ) is independent of i I by
Lemma 3.5 and the condition 
 = ξ means i I P�

C = ξ , which is a condition on i I . As a
consequence, using the fact that (for any attack) p(ξ | b, s) = 2−r , p(iT | b, s) = 2−n

and p(iT , ξ | b, s) = p(iT | b, s)p(ξ | b, s) (so that p(iT , ξ | b, s) = 2−(n+r)), we get

psym(iT , jT , ξ | b, s) = psym( jT | iT , b, s, ξ)psym(iT , ξ | b, s)

= psym( jT | iT , b, s, ξ)2−(n+r)

= psym( jT | iT , b, s)2−(n+r) (by the above)
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= psym( jT | iT , b0, s)2−(n+r) (by Lemma (3.8))

= 2−(n+r)[psym(iT , jT | b0, s)/psym(iT | b0, s)]

(by definition of p(A | B))

= psym(iT , jT | b0, s)2−r (due to p(iT | b0, s) = 2−n).

The result∑
|cT |≤npa

P sym[CT = cT | b, s]I (A;Esym | IT ,CT = cT , b, s, 
)

=
∑

|iT⊕ jT |≤npa ,iT ,ξ

psym(iT , jT | b0, s)2−r I (A;Esym | iT , jT , b, s, ξ)

≤
∑

|iT⊕ jT |≤npa ,iT ,ξ

2−r psym(iT , jT | b0, s)2m

√
P sym

[
|CI | ≥ v̂

2
| iT , jT , b0, s

]

now follows immediately from corollary 4.9. Using the fact that the square-root is a
convex function

∑
pi
√

xi ≤
√∑

pi xi we get∑
|cT |≤npa

P sym[CT = cT | b, s]I (A;Esym | IT ,CT = cT , b, s, 
)

≤ 2m

√√√√ ∑
|iT⊕ jT |≤npa ,iT ,ξ

2−r psym(iT , jT | b0, s)P sym

[
|CI | ≥ v̂

2
| iT , jT , b0, s

]

Finally, we eliminate the 2−r factor by summing over ξ (each equally likely), and we
complete the proof using∑

|iT⊕ jT |≤npa ,iT ,ξ

P sym

[
|CI | ≥ v̂

2
| iT , jT , b0, s

]
psym(iT , jT | b0, s)2−r

= P sym

[
|CI | ≥ v̂

2
, |CT | ≤ npa | b0, s

]
.

C.7. A Proof of Lemma 5.6

Let

P

[( |CI |
n

> pa + ε
)
∧
( |CT |

n
≤ pa

)]
=
∑

b

p(b)hb(pa, ε)

with

hb(pa, ε) = P

[( |CI |
n

> pa + ε
)
∧
( |CT |

n
≤ pa

)
| b

]
.

This hb(pa, ε) is the probability that the information bits have ε more than the allowed
error rate, when the test bits have less than the allowed error rate averaged over all choices
of test and information bits, for a particular basis b, and is given by∑

c

P

[( |CI |
n

> pa + ε
)
∧
( |CT |

n
≤ pa

)
| C = c, b

]
P [C = c | b] ,
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where c is over all possible error strings on all bits, test and information. Note that in
principle P [C = c | b], can be calculated but we shall soon see that there is no need
for it.

Now we must note that

P

[( |CI |
n

> pa + ε
)
∧
( |CT |

n
≤ pa

)
| C = c, b

]

does not depend on the attack. In fact, in the aforementioned expression, the basis b
is superfluous. Once the error string c is fixed, the values |cI |/n and |cT |/n depend
uniquely on the random string s. In fact |cI |/n is the average of a random sampling
without replacement of n bits taken from the 2n bits c whose mean µ is |c|/2n. From
Hoeffding [22] we know that

P

[ |CI |
n

− µ ≥ ε

2
| c, b

]
≤ e−nε2/2. (C.8)

By definition |c| = |cI | + |cT | and so

µ = |c|
2n

= |cI |
2n

+ |cT |
2n

.

Replacing µ by its value in (C.8) and simplifying, (C.8) becomes

P

[ |CI |
n

≥ |CT |
n

+ ε | C = c, b

]
≤ e−nε2/2. (C.9)

Now, since ( |cI |
n
> pa + ε

)
∧
( |cT |

n
≤ pa

)
�⇒ |cI |

n
≥ |cT |

n
+ ε,

we deduce from (C.9) that

P

[( |CI |
n

> pa + ε
)
∧
( |CT |

n
≤ pa

)
| C = c, b

]
≤ e−nε2/2

and, consequently,

hb(pa, ε) = P

[( |CI |
n

> pa + ε
)
∧
( |CT |

n
≤ pa

)
| b

]
≤ e−nε2/2

and

P

[( |CI |
n

> pa + ε
)
∧
( |CT |

n
≤ pa

)]
≤ e−nε2/2.

Appendix D. Eve’s Information Versus the Disturbance

In this appendix we do not prove Lemma 4.5 immediately. We prove it later, in the second
subsection (the tight bound). For simplicity of the presentation, we first prove another



A Proof of the Security of Quantum Key Distribution 429

lemma which leads to a loose bound (with an additional factor of 2r ), for which the
derivation is simpler. The bulk of the loose bound was derived in [7], and is adapted here
to the analysis of the joint attack. The tight bound is an improvement over that derivation
yielding a much better threshold for pallowed. The loose bound leads to a threshold of less
than 1%, while the threshold for the tight bound is 7.56%. One can skip directly to the
second subsection if desired.

Both the loose and the tight bound are derived using the fact that the Shannon distin-
guishability between the parity 0 density matrix, ρ0, and the parity 1 density matrix, ρ1,
is bounded [7], [18] by the trace norm of ρ0 − ρ1 and using the fact that we can easily
calculate this trace norm when the purified states are given by (4.4).

D.1. The Loose Bound

Exploiting the techniques developed in [7] (to prove security against any collective
attack) we now present a bound which is applicable to the joint attack.

We have already defined a purification of Eve’s state: |ϕi I 〉 =
∑

l(−1)i I ·l |ηl〉. The
density matrix for such a |ϕi I 〉 is

ρi I = |ϕi I 〉〈ϕi I | =
∑
l,l ′
(−1)i I ·(l⊕l ′)dldl ′ |η̂l〉〈η̂l ′ |. (D.1)

Recall that the final key is computed as b = v · i I . Eve does not know i I , but she knows
v, and she knows (from the announced ECC parity string ξ ) that i I is in the coset Cξ .
Hence, in order to know the key, Eve must distinguish between the states i I = iξ ⊕ c
in Cξ that give parity b = 0 and the states i I = iξ ⊕ c in Cξ that give parity b = 1. For
b ∈ {0, 1} the reduced density matrix is

ρb(v, ξ) = 1

2n−(r+1)

∑
c∈C

v·(iξ⊕c)=b

ρiξ⊕c

= 1

2n−(r+1)

∑
c∈C

v·(iξ⊕c)=b

∑
l,l ′
(−1)(iξ⊕c)·(l⊕l ′)dldl ′ |η̂l〉〈η̂l ′ |,

where the sum is over values c that satisfy both the condition of being a code word, and
the condition of leading to the particular parity b for the PA.

Lemma D.1. Let C be any linear code in {0, 1}n and let a ∈ {0, 1}n be such that a /∈ C⊥
then ∑

c∈C
(−1)c·a = 0. (D.2)

Proof. Let {w1, . . . , wk} be a basis of C. Define t ∈ {0, 1}k by tα = wα ·a, 1 ≤ α ≤ k;
a /∈ C⊥ means that t is not the zero string. Let now h : {0, 1}k → C be defined by
h(s) =∑

1≤α≤k sαwα; then h(s) · a =∑
sαwα · a =∑

sαtα = s · t and so∑
c∈C
(−1)c·a =

∑
s

(−1)h(s)·a =
∑

s

(−1)s·t = 0.
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Lemma D.2. For any (n, k, d) code C with r × n parity-check matrix PC of rank
r = n − k, any ξ ∈ {0, 1}r and any v ∈ {0, 1}n the Shannon distinguishability
SD(ρ0(v, ξ), ρ1(v, ξ)) where

ρb(v, ξ) = 1

2n−(r+1)

∑
i I P�C =ξ
i I ·v=b

ρi

between parity 0 and parity 1 of the information bits over any PA string, v, is bounded
above by the following inequality:

SD(ρ0(v, ξ), ρ1(v, ξ)) ≤ 2r+1
√ ∑
|l|≥v̂/2

d2
l , (D.3)

where v̂ is the minimum distance between v and the code C⊥, i.e. the minimum weight
of v ⊕ v′ for any v′ ∈ C⊥.

Proof. The Shannon distinguishability between parity 0 and parity 1 is bounded by the
trace norm of ρ0(v, ξ)− ρ1(v, ξ), see [7] and [18]. Let us calculate the required bound:

ρ0(v, ξ)− ρ1(v, ξ)

= 1

2n−(r+1)

∑
c∈C
(−1)(iξ⊕c)·v∑

l,l ′
(−1)(iξ⊕c)·(l⊕l ′)dldl ′ |η̂l〉〈η̂l ′ |

= 1

2n−(r+1)

∑
l,l ′

(∑
c∈C
(−1)(iξ⊕c)·(l⊕l ′⊕v)

)
dldl ′ |η̂l〉〈η̂l ′ |

= 1

2n−(r+1)

∑
l,l ′
(−1)iξ ·(l⊕l ′⊕v)

(∑
c∈C
(−1)c·(l⊕l ′⊕v)

)
dldl ′ |η̂l〉〈η̂l ′ |.

From (D.2) we know the sum over C is zero except when l⊕ l ′ ⊕v ∈ C⊥ = Vr , i.e. when
l ′ = l ⊕ v ⊕ vs for some vs ∈ Vr . As a consequence,

ρ0(v, ξ)− ρ1(v, ξ) = 2
∑
vs∈Vr

(−1)iξ ·vs
∑

l

dldl⊕v⊕vs |η̂l〉〈η̂l⊕v⊕vs |.

As already said, the trace norm of this matrix serves as a bound on the information Eve
receives [7], [18]:

SD(ρ0(v, ξ), ρ1(v, ξ)) ≤ 1
2 Tr|ρ0(v, ξ)− ρ1(v, ξ)|.

Using the above and making use of the triangle inequality for the trace norm, the
following is obtained (where SD(ρ0(v, ξ), ρ1(v, ξ)) is denoted SDv for short):

SDv ≤ Tr

∣∣∣∣∣
∑
vs∈Vr

(−1)iξ ·vs
∑

l

dldl⊕v⊕vs |η̂l〉〈η̂l⊕v⊕vs |
∣∣∣∣∣
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= 1
2 Tr

∣∣∣∣∣
∑
vs∈Vr

(−1)iξ ·vs
∑

l

dldl⊕v⊕vs

(|η̂l〉〈η̂l⊕v⊕vs | + |η̂l⊕v⊕vs 〉〈η̂l |
)∣∣∣∣∣

≤
∑
vs∈Vr

∑
l

dldl⊕v⊕vs (
1
2 Tr ||η̂l〉〈η̂l⊕v⊕vs | + |η̂l⊕v⊕vs 〉〈η̂l ||)

=
∑
vs∈Vr

∑
l

dldl⊕v⊕vs

√
1 − [ (〈η̂l | η̂l⊕v⊕vs 〉)]2

≤
∑
vs∈Vr

∑
l

dldl⊕v⊕vs ,

where the sign  means the imaginary part. In the above, we made use of the fact that the
trace norm is exactly computable for the required matrix. Now we will concern ourselves
with bounding each of the terms

∑
l dldl⊕ws , where ws = v ⊕ vs :∑

l

dldl⊕ws =
∑

|l|>|ws |/2
dldl⊕ws +

∑
|l|≤|ws |/2

dldl⊕ws

=
∑

|l|>|ws |/2
dldl⊕ws +

∑
|l ′⊕ws |≤|ws |/2

dl ′⊕ws dl ′ .

If |l ′ ⊕ws | ≤ |ws |/2 then |ws | = |l ′ ⊕ws ⊕ l ′| ≤ |l ′ ⊕ws | + |l ′| ≤ |ws |/2+ |l ′| and so
|l ′| ≥ |ws |/2. Therefore,∑

|l|>|ws |/2
dldl⊕ws +

∑
|l ′⊕ws |≤|ws |/2

dl ′⊕ws dl ′

≤
∑

|l|≥|ws |/2
dldl⊕ws +

∑
|l ′|≥|ws |/2

dl ′⊕ws dl ′

= 2
∑

|l|≥|ws |/2
dldl⊕ws

= 1

α

∑
|l|≥|ws |/2

2dl(αdl⊕ws )

≤ 1

α

∑
|l|≥|ws |/2

[d2
l + α2d2

l⊕ws
]

= α
∑

|l|≥|ws |/2
d2

l⊕ws
+ 1

α

∑
|l|≥|ws |/2

d2
l ,

where the last three steps are true for any real α, and real dl , dl⊕ws .
Due to the fact that the d2

l form a probability distribution, any sum of them is less than
or equal to unity: ∑

l

dldl⊕ws ≤ α + 1

α

∑
|l|≥|ws |/2

d2
l

≤ α + 1

α

∑
|l|≥v̂/2

d2
l ,
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where v̂ = minvs |v ⊕ vs | (remember that ws = v ⊕ vs). Summing over all vs ∈ Vr and

setting α =
√∑

|l|≥v̂/2 d2
l now leaves

SDv ≤ 2r+1
√ ∑
|l|≥v̂/2

d2
l . (D.4)

Following the proof of the above lemma, one can guess that it is not a tight bound since
we sum over 2r terms while most of them do not contribute to the sum (or contribute
negligible values). This understanding led us to reach a tighter bound.

D.2. Eve’s Information About One Bit—Tight Bound

We now make a finer analysis of Eve’s state after she learns the parity matrix and parity
string ξ . We start again from the equality:

|ϕi I 〉 =
∑

l

(−1)i I ·l |ηl〉. (D.5)

Let v1, . . . , vr be the rows of PC , and let vr+1 = v. It is assumed that the sequence
v1, . . . , vr+1 is linearly independent; it can thus be extended to a basis v1, . . . , vn

of {0, 1}n . For any r ′ let Vr ′ be the span of {v1, . . . , vr ′ } and let V c
r ′ be the span of

{vr ′+1, . . . , vn}. For all r ′, the spaces Vr ′ and V c
r ′ are complementary; this means that any

element l ∈ {0, 1}n has a unique representation l = m ⊕ n with m ∈ V c
r ′ and n ∈ Vr ′ .

For ξ ∈ {0, 1}r , let iξ denote some fixed n-bit string such that iξ P�
C = ξ (existence is

guaranteed by the fact that PC has maximal rank). For any i I ∈ Cξ we have (i I −iξ )P�
C =

ξ − ξ = 0 and so i I − iξ ∈ C and thus, for any n ∈ Vr = C⊥, (i I − iξ ) · n = 0, i.e.
i I · n = iξ · n.

Putting those remarks together we get

|ϕi I 〉 =
∑

m∈V c
r

∑
n∈Vr

(−1)i I ·(m⊕n)|ηm⊕n〉

=
∑

m∈V c
r

(−1)i I ·m
∑
n∈Vr

(−1)i I ·n|ηm⊕n〉

=
∑

m∈V c
r

(−1)i I ·m
∑
n∈Vr

(−1)iξ ·n|ηm⊕n〉

=
∑

m∈V c
r

(−1)i I ·m |η′m〉,

where η′m is defined, for each m ∈ Vr , by

|η′m〉 =
∑
n∈Vr

(−1)iξ ·n|ηm⊕n〉. (D.6)

We write

η′m = d ′m η̂
′
m
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with the η̂′m’s normalized so that d ′2m = 〈η′m | η′m〉, and the density matrix for |ϕi I 〉
reduces to

ρi I = |ϕi I 〉〈ϕi I |
=

∑
m,m ′∈V c

r

(−1)i I ·(m⊕m ′)d ′md ′m ′ |η̂′m〉〈η̂′m ′ |.

Due to Proposition 4.3 (the orthogonality of the ηm’s), we get that 〈ηm⊕n1 | ηm⊕n2〉 = 0
except when n1 ⊕ n2 = 0. Together with (D.6) this implies

d ′2m =
∑
n∈Vr

d2
m⊕n. (D.7)

Recall that the final key is computed as b = v · i I . Of course, Eve does not know
i I , but she knows v and she knows (from the announced ECC parity string ξ ) that
i I ∈ Cξ = {iξ ⊕ c | c ∈ C}. Eve wants to determine b. For b ∈ {0, 1} the reduced density
matrix is

ρb(v, ξ) = 1

2n−(r+1)

∑
c∈C

(iξ⊕c)·v=b

ρiξ⊕c

= 1

2n−(r+1)

∑
c∈C

(iξ⊕c)·v=b

∑
m,m ′∈V c

r

(−1)(iξ⊕c)·(m⊕m ′)d ′md ′m ′ |η̂′m〉〈η̂′m ′ |.

We can now prove

Lemma 4.5. The Shannon distinguishability between parity 0 and parity 1 of the in-
formation bits over any PA string, v, is bounded above by the following inequality:

SD(ρ0(v, ξ), ρ1(v, ξ)) ≤ 2
√ ∑
|l|≥v̂/2

d2
l , (D.8)

where v̂ = dH (v, Vr ) is the minimum weight of v ⊕ vs for any vs ∈ Vr .

Proof. The Shannon distinguishability between parity 0 and parity 1 is bounded by the
trace norm of ρ0(v, ξ)− ρ1(v, ξ):

ρ0(v, ξ)− ρ1(v, ξ)

= 1

2n−(r+1)

∑
c∈C
(−1)(iξ⊕c)·v ∑

m,m ′∈V c
r

(−1)(iξ⊕c)·(m⊕m ′)d ′md ′m ′ |η̂′m〉〈η̂′m ′ |

= 1

2n−(r+1)

∑
m,m ′∈V c

r

(∑
c∈C
(−1)(iξ⊕c)·(m⊕m ′⊕v)

)
d ′md ′m ′ |η̂′m〉〈η̂′m ′ |

= 1

2n−(r+1)

∑
m,m ′∈V c

r

(−1)iξ ·(m⊕m ′⊕v)
(∑

c∈C
(−1)c·(m⊕m ′⊕v)

)
d ′md ′m ′ |η̂′m〉〈η̂′m ′ |.
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Applying equality (D.2) the sum indexed by c is zero except when m⊕m ′⊕v ∈ C⊥ = Vr .
However, m ⊕ m ′ ⊕ v ∈ V c

r because m,m ′ and v ∈ V c
r . This implies m ⊕ m ′ ⊕ v ∈

Vr ∩ V c
r = {0} and thus m ′ = m ⊕ v. Of course, with m ⊕m ′ ⊕ v = 0, the sum indexed

by c is 2k = 2n−r and the coefficient (−1)iξ ·(m⊕m ′⊕v) is 1. Therefore, ρ0(v, ξ)− ρ1(v, ξ)

takes the very simple form:

ρ0(v, ξ)− ρ1(v, ξ) = 2
∑

m∈V c
r

d ′md ′m⊕v|η̂′m〉〈η̂′m⊕v|. (D.9)

We now claim that

V c
r = V c

r+1 ∪ {m ⊕ v | m ∈ V c
r+1} (disjoint union) (D.10)

if dH (m, Vr ) <
v̂

2
then dH (m ⊕ v, Vr ) ≥ v̂

2
for any m ∈ {0, 1}n. (D.11)

Claim (D.10) follows from the fact that vr+1 = v, V c
r is the span of {vr+1, . . . , vn} and

V c
r+1 is the span of {vr+2, . . . , vn}, and that those elements are all linearly independent.

As for claim (D.11) if dH (m, Vr ) < v̂/2 and dH (m ⊕ v, Vr ) < v̂/2, then there is n
and n′ in Vr such that |m ⊕ n| < v̂/2 and |m ⊕ v ⊕ n′| < v̂/2. This implies that
|m ⊕ n⊕m ⊕ v⊕ n′| < v̂. However, m ⊕ n⊕m ⊕ v⊕ n′ = n⊕ n′ ⊕ v and n⊕ n′ ∈ Vr

and this contradicts the fact that v̂ = dH (v, Vr ).
Now, using claim (D.10), we can rewrite (D.9):

ρ0(v, ξ)− ρ1(v, ξ) = 2
∑

m∈V c
r+1

d ′md ′m⊕v
{|η̂′m〉〈η̂′m⊕v| + |η̂′m⊕v〉〈η̂′m |

}
.

As usual, the trace norm of this matrix serves as a bound on the information Eve receives.
It is

SD(ρ0(v, ξ), ρ1(v, ξ)) ≤ 1
2 Tr|ρ0(v, ξ)− ρ1(v, ξ)|.

Writing SDv instead of SD(ρ0(v, ξ), ρ1(v, ξ)) for short:

SDv ≤ Tr

∣∣∣∣∣∣
∑

m∈V c
r+1

d ′md ′m⊕v
{|η̂′m〉〈η̂′m⊕v| + |η̂′m⊕v〉〈η̂′m |

}∣∣∣∣∣∣
≤

∑
m∈V c

r+1

d ′md ′m⊕v Tr
∣∣|η̂′m〉〈η̂′m⊕v| + |η̂′m⊕v〉〈η̂′m |

∣∣

=
∑

m∈V c
r+1

2d ′md ′m⊕v
√

1 − [ (〈η̂′m | η̂′m⊕v〉)]2

≤
∑

m∈V c
r+1

2d ′md ′m⊕v,

where the sign  means the imaginary part. Now we wish to give a bound in terms of
the original values dl . Using the fact that for any α > 0 and any x , y (which are real



A Proof of the Security of Quantum Key Distribution 435

numbers), 0 ≤ (α1/2x − α−1/2 y)2 = αx2 + y2/α − 2xy, we get the general inequality
2xy ≤ αx2 + (1/α)y2 and so

SDv ≤
∑

m∈V c
r+1

2d ′md ′m⊕v

≤
∑

m∈V c
r+1

dH (m,Vr )≥v̂/2

2d ′md ′m⊕v +
∑

m∈V c
r+1

dH (m,Vr )<v̂/2

2d ′md ′m⊕v

≤
∑

m∈V c
r+1

dH (m,Vr )≥v̂/2

[
αd ′2m⊕v +

1

α
d ′2m

]
+

∑
m∈V c

r+1
dH (m,Vr )<v̂/2

[
αd ′2m + 1

α
d ′2m⊕v

]

≤ α
∑

m∈V c
r

d ′2m + 1

α

∑
m∈V c

r
dH (m,Vr )≥v̂/2

d ′2m (by (D.10) and (D.11))

≤ α
∑

l∈V c
r ⊕Vr

d2
l +

1

α

∑
m∈V c

r ,n∈Vr

dH (m,Vr )≥v̂/2

d2
m⊕n (by (D.7))

≤ α + 1

α

∑
|l|≥v̂/2

d2
l .

Now we fix α =
√∑

|l|≥v̂/2 d2
l and obtain

SDv ≤ 2
√ ∑
|l|≥v̂/2

d2
l . (D.12)

Note that v̂ = dH (v, Vr ), where r is the number of parity-check strings.

Appendix E. Existence of Codes for Both Reliability and Security

Choosing a code which is good when n is large (for constant error rate) is not a trivial
problem in ECC. A Random Linear Code (RLC) is one such code, however, it does not
promise us that the distances are as required, but only gives the desired distances with
probability as close to one as we want. With RLC, we find that the threshold below which
a secure key can be obtained is pallowed ≤ 7.56%.

In order to correct t errors with certainty, a code must have a minimal Hamming
distance between the code words d ≥ 2t + 1 so that all original code words, even
when distorted by t errors, can still be identified correctly. For any cT which passes the
test, we are promised (due to Lemma 5.6) that the probability of having t = |cI | >
n(pallowed + εrel) errors is smaller than h = e−nε2

rel/2.
Thus, we need to choose an RLC that promises a Hamming distance at least d such

that pallowed + εrel < t/n = (d − 1)/2n, and then the t errors are corrected except for
a probability smaller than h = e−nε2

rel/2. However, RLC can never promise a specific
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minimal distance with certainty, but can only promise it with probability exponentially
close to one: For any n, r = n−k, and for δ such that H2(δ) < r/n, an arbitrary random
linear code (n, k, d) satisfies d/n ≥ δ, except for a probability (see Theorem 2.2 of [19])

P

[
d

n
< δ

]
≤ c(δ)√

n
2n(H2(δ)−r/n) �= g1, (E.1)

where

c(δ) = 1

1 − 2δ

√
1 − δ
2πδ

.

If we choose δ = 2(pallowed + εrel) + 1/n then we are promised that the errors are
corrected, except for some probability (bounded by h) that the error rate is larger than
expected, and some probability (bounded by g1) that a bad random code was chosen.

Using such a code, εrel, is now a function of δ so that εrel = δ/2 − 1/(2n) − pallowed

and therefore,

h = e−(n/8)(δ−1/n−2pallowed)
2

(E.2)

and almost all such codes correct all the errors. One could conclude that the code is
reliable except for a probability g1 + h, but this is not the case here; although the code
is randomly produced, it can still be checked in advance, and used only if it satisfies the
condition on d . Thus the term g1 does not need to be added15 to the reliability bound,
and the bound is then given by h alone.

Recall that we choose εsec such that |v| ≥ 2n(pallowed + εsec). Let |v| be the minimal
distance between one PA string and any other parity-check string (or linear combination)
taken from ECC and PA. Clearly, the Hamming weight of the dual code of the ECC,
once the PA is also added, provides a lower bound on |v|. Thus, it is sufficient to demand
d⊥ ≥ 2n(pallowed + εsec) in order to prove security. Choosing an RLC for the ECC and
PA, one cannot be completely sure that the distance indeed satisfies the constraint, but
this shall be true [19] with probability exponentially close to one (and can be checked in
advance). We use the dual code (n, r⊥, d⊥), where r⊥ = n − r −m. Such codes satisfy
d⊥/n ≥ δ⊥, except for a fraction of

P

[
d⊥

n
< δ⊥

]
≤ c(δ⊥)√

n
2n(H2(δ

⊥)−(n−r−m)/n) = g2 (E.3)

with δ⊥ = 2(pallowed + εsec).
Assuming that Eve gets full information (namely, m bits) when the code fails we get,

due to the above and Proposition 5.7,

〈I′Eve〉 ≤ m
(

2e−nε2
sec/4 + g2

)
(E.4)

but we can eliminate g2 by checking the code in advance.16 If we demand that

H2(δ)− r/n < 0,

H2(δ
⊥)+ r/n + m/n − 1 < 0,

15 We can still add the term g1 and this saves us the need to find the minimal distance of the code.
16 Alternatively, we can add that term to Eve’s information and this saves us the need to find the minimal

distance of the dual code.
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then both g1 and g2 are exponentially small. Written another way:

H2(2pallowed + 2εrel + 1/n) < r/n,

H2(2pallowed + 2εsec)+ r/n < 1 − Rsecret,

where Rsecret ≡ m/n.
In order to find the threshold on pallowed we combine these two equations together:

H2(2pallowed + 2εsec)+ H2(2pallowed + 2εrel + 1/n) < 1 − Rsecret. (E.5)

In the limit of large n and the two ε’s close to zero, we get that pallowed < 5.50% satisfies
the bound and hence this is our threshold. (We can then chose the appropriate r/n so
that both g1 and g2 functions are exponentially small.)

Asymptotically, a final key with a bit-rate Rsecret < 1− H2(2pa)− H2(2pa) is secure
and reliable for the given ECC+ PA chosen at random. Note, as pa goes to zero, Rsecret

goes to one, which means all the information bits are secret (asymptotically).
The above result can be improved (as noticed first by Mayers [27]) by taking RLC

with distance d = t + 1 instead of d = 2t + 1. Namely, d − 1 ≥ n(pallowed + εrel)

(without the factor of 2). Due to Shannon’s bound [25] such a code can also correct
t = n(pallowed + εrel) errors with probability of failure smaller than δ̂ (for any δ̂). This
is true provided that r/n > H2(pallowed + εrel), and that a sufficiently large n is chosen,
but we did not find an explicit connection between n and δ̂, as we did with the other
probabilities g1, g2 and h.

The above is true except for an exponentially small probability g′1 that the code got
the wrong distance [19], and an exponentially small probability h′ that the code is fine
yet there are more errors in the information bits than expected.

Choosing now δ = pallowed+εrel+1/n, the term g′1 is still the same as before, but with
a different δ than before. The condition for g′1 to be exponentially small now becomes

H2(pallowed + εrel + 1/n) < r/n.

The term h′ (telling us the probability of having more errors on the information bits than
expected from the test results) is

h′ = e−(n/2)(δ−1/n−pallowed)
2
.

One could conclude that the code is reliable except for a probability g′1 + h′ + δ̂, but
(again) the term g′1 can be removed if we check the code in advance to make sure it
has the right distance. The bound is thus given by h′ + δ̂. However, we do not have an
exponentially small expression for δ̂ (as a function of n) and it is only known that we
can render the error as small as we want by taking a sufficiently large n.

For the security proof we choose εsec such that |v| ≥ 2n(pallowed + εsec), and we
demand d⊥ ≥ 2n(pallowed + εsec). Choosing an RLC for the ECC and PA, one cannot
be completely sure that the distance indeed satisfies the constraint, but this shall be true
with probability exponentially close to one (and can be checked in advance). As before,
we use the dual code (n, r⊥, d⊥), where r⊥ = n−r−m. Such codes satisfy d⊥/n ≥ δ⊥,
except for a fraction of

P

[
d⊥

n
< δ⊥

]
≤ c(δ⊥)√

n
2n(H2(δ

⊥)−(n−r−m)/n) = g′2 (E.6)
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with δ⊥ = 2(pallowed + εsec). As before, we can eliminate g′2 by checking the code in
advance.

In order for g′2 to be exponentially small we demand

H2(δ
⊥)+ r/n + m/n − 1 < 0,

so finally:

H2(pallowed + εrel + 1/n) < r/n,

H2(2pallowed + 2εsec)+ H2(pallowed + εrel + 1/n) < 1 − Rsecret,

where Rsecret ≡ m/n.
In the limit of large n and ε’s close to zero, pallowed < 7.56% satisfies the bound and

hence this is our improved threshold. With this threshold we have an explicit bound on
Eve’s information, but only an asymptotic bound for the probability of failing in terms
of reliability.
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