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Abstract 

One com.mon model f o r  A N N s  is the threshold cir- 
cuit - multilayer feedforward network of linear thresh- 
old gates. We  provide a rigorous analysis of this model 
via a circuit complexity theoretic approach b y  focus- 
ing on the basic computational properties of threshold 
circuits with binary inputs. The model of threshold 
circuits is shown to be computationally more powerful 
than the conventional model of AND-OR logic circuits. 
In  particular, we present the best known results on the 
depth of threshold circuits in  implem.enting common 
arithmetic functions such as multiplication, division, 
and sorting. Moreover, we investigate the issues of 
depth-size tradeoffs b y  demonstrating that a small in- 
crease in  the depth can significantly decrease the size 
required in  the threshold circuit for the class of sym- 
metric functions. 

1 Introduction 

Recent interest in the application of artificial neu- 
ral networks [5, 31 has spurred research interest in the 
theoretical study of such networks. While neural net- 
works have found wide application in many areas, the 
behavior and the limitation of these networks are far 
from being understood. One common model of a neu- 
ral network is a threshold circuit. Incidentally, the 
study of threshold circuits, motivated by some other 
complexity theoretic issues, has also gained much in- 
terest in the area of computer science. 

Threshold circuits are Boolean circuits in which 
each gate computes a linear threshold function, 
whereas in the conventional model of un.bounded fan- 
in Boolean circuits only AND, OR, NOT gates are 
allowed. A Boolean circuit is usually arranged in lay- 
ers such that  all gates in the same layer are computed 
concurrently and the circuit is comput,ed layer by layer 
in some increasing depth order. We define the depth 
as the number of layers in the circuit. Thus each layer 

represents a unit delay and the depth represents the 
overall delay in the computation of the circuit. In the 
rest of this paper, we shall use the terms “threshold 
circuits” and “neural networks” interchangeably. 

Theoretical computer scientists have used un- 
bounded fan-in Boolean circuits as a model to  un- 
derstand fundamental issues of parallel computation. 
To  be more specific, this computational model should 
be referred to  as unbounded fan-in parallelism, since 
the number of inputs to  each gate in the Boolean 
circuit is not bounded by a constant. The theoret- 
ical study of unbounded fan-in parallelism may give 
us insights into devising faster algorithms for various 
computational problems than would be possible with 
bounded fan-in parallelism. In fact, any nondegen- 
erate Boolean function of n variables requires a t  least 
R(1ogn) depth to  compute in a bounded fan-in circuit. 
On the other hand, in some practical situations, (for 
example large fan-in circuits such as programmable 
logic arrays (PLAs) or multiple processors simultane- 
ously accessing a shared bus), unbounded fan-in par- 
allelism seems to  be a natural model. For example, a 
PLA can be considered as a depth-2 circuit of (arbi- 
trary fan-in) AND/OR gates. 

In the Boolean circuit model, the amount of re- 
sources is usually measured by the number of gates, 
and is considered to  be ‘reasonable’ as long as it  is 
bounded by a polynomial (as opposed to exponential) 
in the number of the inputs. For example, a Boolean 
circuit for computing the sum of two n-bit numbers 
with O(n3)  gates is ‘reasonable’, though circuit design- 
ers might consider the size of the circuit impractical for 
moderately large n. One of the most important theo- 
retical issues in parallel computation is the following: 
Given that the number of gates in  the Boolean circuit 
i s  bounded b y  a polynomial in  the size of inputs, what 
is the minimum depth (;.e. number of layers) that is 
needed to compute certain functions? 

It was known that [13, 41 for many simple func- 
tions, such as the parity of n Boolean variables, or the 
multiplication of two n-bit numbers, any fixed depth 
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($.e.  independent of n)  conventional Boolean circuit of 
unbounded fan-in AND/OR gates (AND-OR circuit) 
computing these functions must have exponential (in 
n )  number of gates. Another way of interpreting these 
results is that  circuits of AND/OR gates computing 
these ‘hard’ functions which use polynomial amount of 
chip area must have unbounded delay (a.e. delay that 
increases with n). In fact, the lower bound results 
imply that the minimum possible delay for multipli- 
ers (with polynomial number of AND/OR gates) is 
Q(log n/ log log n) .  These results also give theoretical 
justification why it is impossible for circuit designers 
to  implemeiit fast parity circuit or multiplier in small 
chip area using AND, O R  gates as the basic building 
blocks. 

The model of threshold circuits seems so much more 
powerful than the conventional model of AND-OR cir- 
cuits. In fact, it was known [2, 1, 71 that many com- 
mon arithmetic functions such as multiplication, di- 
vision and sorting can be computed by polynomial- 
size threshold circuits of ‘constant’ depth. However, 
the issue of how small these ‘constants’ can be was 
not examined before. For example, it was not clear 
from previous known results that  the ‘constant’ of a 
threshold circuit for division can be reduced to below 
20. Because of the fundamental importance of these 
arithmetic operations, for both practical and theoret- 
ical reasons, i t  is interesting to  determine the smallest 
possible depth of the circuits that  compute these func- 
tions. 

One of our main contributions is to demonstrate 
that  small constant depth neural networks for mul- 
tiplication, sorting, division and related arithmetic 
functions can be constructed. These results have the 
following implication on their practical significance: 
Suppose we can use analog devtces to buzld threshold 
gates wath a cost (in terms of delay and chip area) that 
as comparable i o  that of AND,  OR, logzc gates, then 
we can compute many basac functaons much faster than 
uszng convenizonal circuats. 

Another important issue in neural computation is 
the trade-off between the saze and the depth of neural 
networks. This issue arises naturally in the implemen- 
tation of neural networks. Sometimes when the time 
for the computation is not as crucial, one might want 
to  have a smaller network at the expense of a slight 
increase in the time for computation. It is interesting 
to investigate if increasing the depth by a small addi- 
tive constant can significantly reduce the size of the 
network. In fact, our most recent work [12] has given 
a positive answer to  this question. The best known 
prior results [6] in computing any symmetric Boolean 

function of n variables with neural networks require 
O(n)  threshold gates and two layers. It has been an 
open problem for 30 years to  determine if the num- 
ber of threshold gates can be further reduced for an 
arbitrary symmetric Boolean function. We are able 
to  show that by increasing the depth by one, i.e. by 
using a 3-layer neural network, one can reduce the 
number of threshold gates from O(n)  to O(fi). For 
functions with ‘periodic structures’ such as the par- 
ity, we have extended the depth-size tradeoffs results 
to  higher depth: for every integer d > 0,  one can 
construct neural networks of depth-(d + 1) and size 
O(dnl Id )  computing them. Moreover, using classical 
results from the theory of rational approximations and 
harmonic analysis, we obtained lower bound results by 
showing that our networks are almost optimal in the 
size (R(dnlld-t)  threshold gates are needed for any 
fixed E > 0). 

In the following section, a summary of all these re- 
sults will be presented. Because of space limitation, 
we refer the interested readers to  our related journal 
papers [8, 9, 10, 12, 111 for the detailed descriptions 
and proofs of our results. 

2 Summary of Main Results 

Definition 1 
{O,l)n - ( 0 , l )  is a Boolean function such that 

A linear threshold function f (X)  

where 
n 

F ( X )  = w; ‘ 21 + WO 
i = l  

X = (tit...) xn) E (0, 

Our model of neural network is simply a multilayer 
feed-forward network of linear threshold gates, i.e. a 
threshold circuit. 

Note that the above definition does not impose any 
restriction on the fan-in and fan-out of each threshold 
gate in the network, i.e. each gate can have arbitrar- 
ily many inputs from previous layer and can feed its 
output to  arbitrarily many gates in subsequent layers. 
Since neural networks are charact,erized by their mas- 
sive parallelism, the unbounded fa.n-in parallelism of 
threshold circuits seems a natural assumption. 

Given two input n-bit (unsigned) integers, X 
and Y ,  the product of X and Y (denoted by 
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P R O D ( X , Y ) )  will be a 2n-bit integer, the (trun- 
cated) quotient of X divided by Y (denoted by 
D I V k ( X , Y ) )  will be an ( n  + k)-bit number (where 
the last k bits constitue the truncated fractional part 
of the quotient). Given n input n-bit positive inte- 
gers z I ,  i = 1, . . . ,n, their multiple product IIr=lz, will 
be an n2-bit integer denoted by M P R O D ( z 1 ,  ..., z , ) ,  
and the sorted list denoted by S O R T I N G ( ( z 1 ,  ..., z , )  
is the same list of integers sorted in nondecreasing 
order. While the computation of these functions re- 
quires any fixed depth AND-OR circuit to  have an ex- 
ponential size, the following theorem states that  these 
functions can all be computed by polynomial-size neu- 
ral networks of small constant depth, independent of 
the input size n. These are the best known results 
on the depth of neural networks in computing these 
arithmetic functions. 

Theorem 1 

P R O D ( X ,  Y )  and S O R T I N G ( ( z 1 ,  ..., 2,) can be 
computed by polynomial-size neural networks of 
depth-4. 

DIVk ( X ,  Y )  can be computed by polynomial-size 
neural networks of depth-5. 

M P R O D ( z 1 ,  ..., z,)  can be computed by 
polynomial-size neural net,works of depth-6. 

Definition 2 
{ 1 , O )  is said to  be symmetric if 

A Boolean function f : (1, 0)" + 

for any permutation ( ~ ( ~ 1 , .  . . , z(,)) of ( 1 1 , .  . . , I,), or 
equivalently, the value of f only depends on the num- 
ber of 1's in the input variables. 

An example of a symmetric function is the PARITY 
function, which is defined to  be 1 if the number of 
1's in the inputs is odd and is 0 otherwise. Symmet- 
ric functions constitute an important class of Boolean 
functions and come up very often in the design of logic 
circuits. As mentioned before, the best known prior 
result is that  any symmetric function (of n variables) 
can be computed by a depth-2 neural network of size 
O(n) .  The following results show that a significant 
reduction in the size can be achieved if the depth is 
increased by a small constant. 

Theorem 2 Any symmetric function of n variables 
can be computed in a depth-3 neural network with 
2 f i  + O( 1) threshold gates. 

Theorem 3 For any integer d > 0, the PARITY 
function of n variables can be computed in a depth- 
( d  + 1) neural network with O ( d n l l d )  threshold gates. 

Using novel techniques from harmonic analysis and 
the theory of rational approxima.tions, we are able to  
show that the sizes of our neural networks for sym- 
metric functions are almost opiimal. (For details of 
the proof, see [ I l l )  

Theorem 4 For any fixed 6 > 0 and any integer 
d > 0,  almost all symmetric functions of n variables 
(including the PARITY function) require any depth- 
(d+l)  neural network a t  least Q(dn' ld- ' )  threshold 
gates to compute. 
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