. Chapter 33

Decoding of Rate k/n
Convolutional Codes in VI.SI !

V. P. Roychowdhury ?
P. G. Gulak ?
A. Montalvo ?
T. Kailath ?

Abstract

A systematic procedure for an efficient VLSI implementation of the Viterbi al-
gorithm for decoding convolutional codes is presented. This implementation is
based on a network of simple processors, each performing an add-compare-select
and branch-generation operation, that reside on a single die and are connected to
execute the Viterbi algorithm in a highly parallel way. The chip area of such im-
plementations will depend on the processor interconnections, which in turn depend
on the state transition diagram of the convolutional encoder {or dual encoder). It
is shown that for all rate 1/n convolutional codes generated by feed-forward FIR
encoders the encoder state transition diagram, which is described by a de Bruijn
graph, can be mapped by a simple equivalence relation to 2 well-known intercon-
nection scheme in parallel processing referred to as the shuffle-exchange network,
for which layout techniques that achieve a proven lower bound on implementa-
tion area in a VLSI medium have been established. These results are then extended

1This work was supportad in part by the National Science Foundation under Grant DCI-84-
21315-A1, the U, S. Army Research Office under Contract DAAL03-86-K-0045, the SDIO/IST,
managed by the Army Research Office under contract DAALO3-87-%-0033 and Rockwell Interna-
tional Contract INT 6G2052.

23tanford University, Stanford, CA.

659

660 CHAPTER 33. DECODING CONVOLUTION CODES IN VLSI

to rate 1/n codes generated by (ITR) encoders containing feedback. Finally, in the
case of general (feed-forward and feedback) rate k/n convolutional encoders it is
shown that the state transition diagram of either the encoder or the dual encoder
can be always mapped to the Cartesian product of de Bruijn graphs, and therefore
of shuffle-exchange graphs; the point is that optimum VLSI layouts for the Carte-
sian product are easier to obtain and much less complicated than any direct VLS]
layouts for the original state transition diagram.

33.1 Introduction

Optimal (maximum likelihood) decoding of convolutional codes can be accomplished
by a Viterbi algorithm based on the state transition diagram of the encoder. The
Viterbi algorithm (VA) [Vit67], [VOT9), [For73b) is in essence a technique for esti-
mating the state sequence of a finite state Markov process observed in rnemoryless
noise. Central to the VA is the concept of a trellis diagram, which is a graphical
representation of the state diagram drawn as a function of discrete time. There are
g” nodes at each time step in the trellis diagram, where ¢ is the alphabet size and
v is the total number of memory elements in the encoder (often referred to as the
constraint length). The VA can be thought of as a dynamic programming solution
to the problem of finding the shortest path in this trellis diagram [Omu69]. The
essence of the algorithm is a relatively simple procedure of add, compare, and select
operations thai must be applied to each of the ¢° nodes belonging to the same
time step in the trellis diagram. The sole reason that the VA is computationally
demanding is that the number of operations during each symbol interval T' (de-
fined as the time interval between two consecutive output symbols of the receiving
channel) grows exponentially with the constraint length of the encoder. It has been
traditionally implemented on a single processing element driven by a controi unit
(e.g. a microprocessor) using a direct sequential algorithm. This approach requires
O(g"*!) operations and O(¢") random accesses to the processor’s memory during
each symbol interval T. The throughput rate of such an implementation may not
be acceptable in applications where high data rates are required.

The only alternative to increasing the throughput rate is to perform the operations
in parallel, thus increasing the hardware complexity. Fortunately, the advent of
VLSI (Very Large Scale Integration) technology has opened up opportunities for
realizing the parallelism inherent in computationally intensive algorithms. The
increase in hardware complexity may now be tolerable as the VLSI technology is
capable of realizing chips with the hundreds of thousands of transistors required to
realize the VA for constraint lengths of commercial interest. This observation has
led to several attempts at providing parallel implementations of the VA in VLSI
(see e.g., [CK84], [GS86], [CY86], {Guls4]). Gulak and Shwedyk (GS88], [Gulsd]
described a fully parallel implementation of the VA based on a set of q” processors
connected according to a shuffle-ezchange network, for which area efficient VLSI

33.1. INTRODUCTION 661

layouts are known in the literature ([KLLMB81), {Lei81] (there is a restriction in [GS86]
that the encoder be a rate 1/n feed-forward (FIR) circuit). It should be pointed
out that shuffle-exchange networks are functionally equivalent to a whole family
of other popular networks such as hypercubes, cube-connected cycles, butterflies,
omega networks ete., [PV81], [UllS1] and thus the VA (for rate 1/n FIR encoders)
can be efficiently implemented on any of these architectures. We should remark
that among these architectures, the shuffle-exchange networks have the least VLSI
area for the same number of nodes.

Another family of parallel implementations was presented by Chang and Yao [CY88). -
They interpreted the VA (both for rate 1/n and rate k/n feed-forward convolu-
tional encoders) as a sequence of matrix-vector multiplications {where the usual +
operation is réplaced by the min operation and the usual multiplication operation
is replaced by addition) and then implemented the VA using systolic architectures
already developed in the literature for matrix-vector multiplication. The implemen-
tation uses ((q") processors. However, the symbol interval T is at best O(q"/v).
In fact the gain in speed over that of the sequential processor can be shown to be
at best gv. Hence, though an exponential number of processors is used, the gain
in throughput rate is at best logarithmic. This is ir sharp contrast to the fully
parallel (shuffle-exchange) implementations of Gulak and Shwedyk (GS86}, [Gul84]
where the gain in speed is directly proportional to the number of processors used.
Of course, a price is paid for speed in terms of the area required to layout the
architectures in VLSIL. In fact, if N is the total number of processors used, then
the area required by the fully parallel version is O(N?/log® N) whereas the area
tequired by the systolic implementation is O(N). In [GK], we have studied other
non-fully-parallel architectures that may often be preferred to linear systolic archi-
tecture (especially a so called ‘cascade’ architecture); however, in the rest of this
paper we shall confine ourselves to fully parallel implementations. One reason is
that despite the results mentioned above, several questions remain unanswered for
fully parallel implementations. First, efficient VLSI implementations are not known
for the k/n convolutional codes with or without feedback. Even for the rate 1/n
case, VLSI implementations are known only for the feed-forward encoders. More-
over, the issue of optimality of the VLSI implementations (e.g., those appear in
[GS86}, [Gul84]) have not been addressed.

In this paper we provide answers to several of these open questions. First we
prove the important fact (see Section 33.2.1) that for efficient and fully parallel
implementation of the VA, the processors must always be connected according to
the state transition diagram of the encoder. Thus, for efficient implementation in
VLSI, it will be desirable to devise layouts for encoder state transition diagrams for
which both the area and the average length of interconnecting wires is minimum (for
faster communication and less cost). We show that the state diagrams of rate 1/n
feed-forward encoders, which are known as de Bruijn graphs, can be efficiently laid
out in VLSI by modifying existing layouts for shuffle-exchange networks. We then
show that the state transition diagram of a rate 1/n encoder with feedback is either

662 CHAPTER 33. DECODING CONVOLUTION CODES IN VLSI

a de Bruijn graph or a subgraph of such a graph, when the encoder realization is in
a certain (controller) canonical form. Thus, for any rate 1/n encoder the VA can
be efficiently implemented in VLSI on a set of processors connected according to
a de Bruijn or equivalently a shuffle-exchange network. For rate k/n feed-forward
encoders with certain ‘obvious’ realization (to be defined in section 33.3), we show
that the state diagrams can be represented as Cartesian product of £, possibly
distinct, de Bruijn graphs. Minimum area VLSI layouts for the product graphs ace
presented using a recursive layout technique that uses the optimal layout strategy
for shuffle-exchange networks. For the general case of rate k/n encoders (i.e. with
and without feedback) it is shown that the dual encoder always has the feed-forward
structure for which the state diagram can be efficiently represented as a product
graph. In such cases it is recommended that one should apply the VA on the trellis
diagram corresponding to the dual encoder, since the state diagram of the original
encoder may be arbitrarily complex and efficient VLS! implementation may not be
possible. Thus in general, the VA for rate k/n encoders.can be always implemented
in parallel on a set of processors connected according to a Cartesian product of de
Bruijn {or shuffle-exchange) graphs.

The rest of the paper is organized as follows. In section 33.2 we briefly discuss
the Viterbt algorithm and introduce the relevant terminelogies. We also present an
equivalence between de Bruijn graphs and shuffle-exchange graphs that enables us
to use the existing layouts for shuffle-exchange networks for efficiently laying out
de Bruiin networks. Techniques to generalize such results so as to provide efficient
implementation when the encoder has feedback are also outlined. Section 33.3 deals
with rate k/n encoders. First it is shown that the state diagram for feed-forward rate
k/n encoders can be represented as a Cartesian product of smaller de Bruijn graphs.
Optimal layouts for such product graphs are presented and a comparison with the
direct impiementation is made. It is shown that the product graph representation
saves an exponential factor in silicon area for only a constant factor loss in the
throughput rate. Space limitations prevent us from providing rigorous proofs for
several theoretically intriguing results, nonetheless they are presented in this section
for completeness (the reader is referred to [RGMKS87] for more details). Finally,
section 4 contains some concluding remarks. '

33.2 VLSI Architectures for Decoding Rate 1/n Convolu-
tional Codes ‘

A rate 1/n convolutional encoder is a finite-state linear sequential circuit operating
on GF(g) that has one input and n outputs (see [For70}, [For73a]). The number of
memory elements (or shift registers) in the circuit is called the constraint length of
the encoder. For example Fig. 33.1 shows a rate 1/2 convolutional encoder with
constraint length 2. '

33.2. VLSI FOR 1/N CODES ' 663

y2

Figure 33.1: A rate 1/2 convolution encoder.

33.2.1 The Yiterbi Algorithm

The VA [Vit67] was originally invented for decoding convolutionally encoded data,
though since then, it has been applied to other types of problems {e.g., the trellis-
coded modulation schemes used in high-speed data modems). The basic theory
behind the VA is readily available in the literature and for a good survey the reader
is referred to Forney [For73b]. In this section we shall introduce the basic concepts
that are required for describing its implementation in VLSI.

The VA can be thought of (see (Omu69]) as 2 dynamic programming solution to the
problem of estimating the state sequence of a finite-state Markov process observed
in memoryless noise. Central to the VA is the concept of the treilis diagram, which
is a graphical representation of the state diagram of the encoder drawn as a function
of discrete time. Each time step corresponds to a single symbol (or baud) interval
T, and corresponds to one stage of the trellis. The number of stages in the trellis
diagram is equal to the length of the input data sequence. The number of nodes
(or states) at each stage of the trellis is ¢” where ¢ is the cardinality of the input
alphabet set and v is the constraint length of the encoder. Each node at every stage
of the trellis diagram represents one possible state of the encoder. There is an edge
between the node S} (i.e., the node representing state S; at stage t) to the node
S}"'l if and only if there is a directed edge from state S; to S; in the state transition
diagram of the encoder. Each such edge (i.e., Sf — S}*!) is assigned a weight, At
(called the branch.meiric), and is a measure of the ‘unlikelihood’ that the channel
output at time £ + 1 is caused by the state transition S; — S; in the encoder. Fig.
33.2 gives the state transition and trellis diagrams for the rate 1/2 encoder of Fig.
33.1.

The VA can now be described as follows. Two quantities, namely, the path met-
ric and the survivor sequence are associated with each state of the trellis diagram.
The path metric P} of the state 5; at time ¢ is the weighted length of the shortest
weighted path (the weights on the edges in the trellis diagram being the branch-

664 CHAPTER 33. DECODING CONVOLUTION CODES IN VLSI

States time—»
t t+1 t+2 t+3 t+4
00
0!
10
11 _
(a) Trellis diagram
10
01
11
{(b) State transition diagram

Figure 33.2: The trellis diagram and the state diagram of the convolution encoder
in Figure 33.1.

33.2. VLSI FOR 1/N CODES 663

metrics) between the starting node S to the node S in the treilis diagram. Simi-
larly, the survivor sequence Q;- for state S5; at time ¢ is the state sequence associated
with the shortest weighted path in the trellis diagram between the initial node S§
and the node S;. Once every baud interval, the path metrics are updated as follows:

,PJ'.‘Jf1 = min(P + Aﬁfl) V¥ isuch that S; — S; (33.1)

where S5; — S; implies that there is a valid state transition from state S; to S;
and P§ = 0. The old survivor sequence of the winning ancestor, is augmented with
the symbol corresponding to the transition to state S; to form the new survivor
sequence for the state 5;. After sufficiently long time L, (see e.g., [VOT9] where the
issue of how large L should be for sufficiently low probability of error is addressed)
the survivor sequence of the state with the minirnum path metric is chosen to be the
estimate for the state sequence of the encoder; one can then complete the decoding
procedure by determining the input sequence corresponding to the estimated state
sequence.

it is evident that a fully parallel implementation of the VA can be realized by
assigning a single processor for every node in the trellis diagram. However, for
a message of length [, such a realization will have Lq” processors {and [¢"*!
interconnections); and, moreover, because only ¢” processors are active at any time
step, such a realization is very inetficient. A somewhat more practical strategy
is to use ¢” processors connected according to the state transition diagram of the
encoder. The processor A/}, at step t, contains the path metric F{ and the survivor
sequence Q} for state S;. At step ¢+ 1 it receives the channel output y.., and the
path metric P/ from each of its predecessor state S; and also computes Ag; for each
state transition S; — S;. It then computes P{*!, as given by (33.1), and updates
the survivor sequence. Since each state has ¢ predecessors, the total time taken
at each step (and thus the symbol interval T) is O(q). Hence, a gain of O(g") is
achieved over a sequential processor (T" is O(g®+") for sequential implementation)
by using ¢" processors in parallel. The major focus of the rest of the paper is to
provide efficient VLSI implementations for this architecture. An important measure
of efficiency in VLSI technology is the silicon area required to layout an architecture.
Apart from the obvious increase in cost due to a larger area, the increased area
compounds cost by drastically reducing the yield and by possibly increasing the
energy required for communicating information in the system. Thus, to be able
to choose the most efficient implementation, among a host of possible choices, one
needs a model that can quantify the notion of ‘area’ of a VLSI layout. One such
popular model, proposed by Thompson [Tho80], is described next.

33.2.2 VLSI Grid model

The VLSI grid model proposed by Thompson [Tho80] is simple and assumes that
the chip consists of a grid of vertical and horizontal tracks, spaced apart by some

666 CHAPTER 33. DECODING CONVOLUTION CODES IN VLSI

unit interval. Processors are viewed as points on the grid and are located only
at the intersections of grid tracks. Wires are routed through the tracks in order to
connect pairs of processors. Wires can intersect only at right angles and overlapping
is not allowed. From a computational point of view this model is atéractive since
the layout area is calculated easily as the product of the numbers of vertical and
horizontal tracks in the layout. We should comment that 2 major motivation behind
this model is the observation that the total area in VLSI is often dominated by the
wiring rather than the processors; that is why the processors are assumed as just
points.

33.2.3 de Bruijn and Shuffle-Exchange Graphs

The state at time ¢ of an encoder can be represented by a v-tuple
S' =< Zyey Tyog +-2g >

where z; is the content of the i** memory element. For a feed-forward encoder the
next state S**! will then be given by the tuple

S=+1=<Iu—21u-3 ceeZpa > Ya E{0|"‘y q_l}

where g is the alphabet size. For ¢ = 2, the state transition graph generated
by the above transitions is known as the de Bruijn graph or Goods diagram of
order v (see [Gol82}). For the rest of the section we shall restrict ourselves to the
binary alphabet (ie., ¢ = 2} case, primarily because the results are simpler to
state and can be easily extended for arbitrary alphabet size q (see e.g., [Guig4},
[RGMKST]). In our interpretation, an edge of a de Bruijn graph is called a shuffle
edge if it is of the form < zy_y Zy_2 -+ 29 >=< 2y_g Tyz -+ Tg Tyoy > and it is
called a shuffle-ezchange edge (for reasons to be explained later) if it is of the form
< Tyl Ty_z + Ty >—< Ty 3 Ty_3 - T Ty_1 > An 8 node de Bruijn graph
representing the state diagram of encoder with constrain length 3 is shown in Fig.
33.3.

de Bruijn graphs are closely related to shuffle-exchange graphs, which are well-
known in parallel processing (see e.g., {Sto71], [UU81]). A shuffle-ezchange graph of

100 110

000 010 101 111
001

onl

Figure 33.3: An 8 node de Bruijn graph.

33.2. VLSI FOR 1/N CODES 667

100 101

001 110

010 011

Figure 33.4: An 8 node shuffle-exchange graph.

order v has 2Y nodes, each labeled by avtuple < z,_; z,_9 ---zg >. Every node <
Zy_i Zy_2 -++Tg > is connected by a shuffle edge to thenode < zy_3 -+ zg Zpy >
and by an ezchange edge to the node < z,_y z,_» ---Fg >. A cycle of shuffle edges
is known as a necklace. An 8 node shuffle-exchange graph is shown in Fig. 33.4.

Several authors (see e.g., (Lei8l], [KLLMS1]) have presented good layout tech-
niques for shuffle-exchange networks, These techniques cleave the network into
necklaces and then appropriately insert the exchange edges. Thompson [Tho30]
showed that the minimum VLSI lavout area for a N-node shuffle-exchange graph
is Q(V?/log® N) and then Kleitman et al. [KLLM81] devised optimal layout tech-
niques thut achieve the lower bound. We shall show next that these optimal layouss
of shufffe-exchange networks can be easily modified to yield optimal layouts for de
Bruijn networks.

33.2.4 Optimal Layouts for de Bruijn Networks

The layouts for de Bruijn graphs can be easily motivated by redrawing the graph
so that it looks exactly like a shuffle exchange graph of the same order. The shuf-
fle edges can be drawn just as they are in de Bruijn graphs; however, a shuffle-
exchange edge is redrawn by first routing it along a shuffle edge (i.e., along <
Ty_j Ly +*+Tg >—< Tyog Ty—3 -~ 20 Ty..1 >~} and then along an exchange edge
(i.e., along < Ty_2 Ty_3 -+ To Ty—1 >—< Ty_2 Ty_3 --- Lo Ty_1 >); (Remark:
this also justifies the term ‘shuffle-exchange’ edge). The resulting graph looks ex-
actly like a shuffle-exchange graph, except that it has two parallel edges for every
edge in the latter graph (see Fig. 33.5). This simple procedure can be used to
modify any layout of a shuffle-exchange graph to a layout of a de Bruijn graph; the
resulting layout will have two wires for every wire in the original layout. Hence, the
length and the width of the new layout will be at most twice the original values.
Thus, the area of the de Bruijn graph layout is at most 4 times the area of the cor-
responding shuffle-exchange network. A rigorous proof can be found in (RGKST),
[RGMKS3TI. :

668 CHAPTER 33.- DECODING CONVOLUTION CODES IN VLSI

100 101
110
goo 001 111
010 011

Figure 33.5: An 8 node de Bruijn graph redrawn as a shuffle-exchange graph.

Thus, we can obtain O(V?/ log® N) area layouts for de Bruijn networks by modify-
ing the aptimal layouts for shuffle-exchange networks. Since, the minimum area
for de Bruijn graphs is Q(¥?/log® N) (Q(q°N?/ log® N) for arbitrary alphabet
size q, see [RGK87]), the layouts obtained by modifying the optimal layouts for
shufffe-exchange graphs are also optimal for de Bruijn graphs. {There is an erro-
neous claim in Samatham and Pradhan [SP84] that the area for de Bruijn graphs
is N3/ log N)] -

33.2.5 Architectures for decoding rate 1/n codes with feedback

Decoding for encoders with feedback can also be done on a set of processors con-
nected according to a de Bruijn graph of appropriate order; hence, the efficient
layout strategies discussed before can be reapplied. First we shall define a canon-
ical structure for encoders with feedback. Let zi denote the content of the ith
memory module (or shift-register) at time ¢. Then, a rate 1/n encoder is said to be
in the controller canonical form if the memory elements can be ordered such that
st =zf Vi=1,...,v—1and 257 = f(u,zo, %1, -+, ¥y~1), Where f() is some
function defined on GF(q) (see Fig. 33.6).

I x2

x0 . x1 ’

\ —

Figure 33.6: A rate 1/n encoder realized in the controller canonical form.

33.3. VLSIFOR K/N CODES 669

Theorem 1 The state diagram of a controller canonical form is either a de Bruijn
graph or a subgraph of such a graph.

Proof: We can label a state as a v-tuple < T,y Ty_g ---zg >. [f an edge is in the
state diagram, G, of the enceder then it is of the form < zy_; 2y_2 --- 20 >=<
Ty_a Ty_3 ---2g f(.) >. However, f(.) is either 0 or 1 (assuming ¢ = 2), which
means that the edge is also in the de Bruijn graph of order v. Hence, G is contained
in the de Bruijn graph of order v. ' 0

Since, convolutional encoders are linear systems in GF(q), it can be shown that (see
[Kai80], (ForT0]) any rate 1/n encoder can be realized in the coniroller canonical
form and hence can be implemented on a set of g° processors connected according
to a de Bruijn graph.

33.3 VLSI Architectures for Decoding Rate k/n Convolu-
tional Codes

A rate &/n convolutional encoder is a finite-state linear sequential cizcuit operating
on GF(q) that has k inputs and n ouiputs. We shall first discuss decoders for
feed-forward rate k/n codes and then extend the results to ccdes with feedback.

A feed-forward encoder can be always realized in an obvious manner as shewn in Fig.
33.7 (see {For70]). In the obvious realization, each input has a separate sequence
of shift-registers associated with it (i.e., the input I; has a shift-register bank of
length v;). The outputs are given as linear functions of the internal states and the
inputs. The total state of the encoder af time ¢ can then be given by

St =< sl sh, 8l >

—_b?_} g1
i — > ‘

- y2

n —p .
Dé—byﬁ

Figure 33.7: A rate 2/3 encoder realized in the obvious manner.

670 CHAPTER 33. DECODING CONVOLUTION CODES IN VLSI

al

bl ¢l

3

G1 G2 b2 2

Gl X G2

Figure 33.8: An example of Cartesian product of iwo graphs.

where s! is the state of the shift-register sequence associated with the input /; and
can itself be represented by the tuple sf =< z,,{ £,,.2--+ 2o >. The next state of
the feed-forward encoder is then given by

SH—I =< S;.-H! s;—:—l, .., s;:-H =~
where 57! is the next state correspending to the state s} and can be represented
by the tuple sé'“ =< Ty,_3 Ty,~3 *-Zo @ > Ya € {0,---, ¢ —1}. One
can now draw the state transition diagram for the encoder as given by the above
transitions (see Fig. 33.8). It has ¢°%* nodes, (where v = ¥.] %) and each node
has degree 2¢F. We know that the decoder can be always realized efficiently on a
set processors connected according to the state transition diagram of the encoder
(see Section 33.2.1). However, efficient layout techniques for such state transition

diagrams are not readily apparent.

33.3.1 Product Graph Representation of The State Transition Dia-
gram

However, there is an alternative representation of the state transition diagram that
is easy to layout and requires considerably less area. In the new representation,
a state transition St — S**! is done in k steps, where in the i** step only the
state sf changes to si*! and the rest of the states remain unchanged. The resuiting
representation of the state transition diagram can be formulated as a Cartesian
product of the state state transiticn diagrams of the individual shift-register banks,
t.e.,

G = Gk X Gk-—l X+ X GI (33.2)

where G; is the state transition diagram of the i** shift-register bank (hence, a de
Bruijn graph of order v;) and the Cartesian product of two graphs is defined as

33.3. VLSI FOR K/N CODES 671

follows (see Figure 33.8 for an example of Cartesian product graphs):

Definition 1 The Cartesian product of two graphs G, = (Vi, E1) and G2 =
(Va, E) is the graph G = (V, E) where V = V{x Vs and an edge < (uy, ua), (v, v2)
€ L if and only if either uy = vy and < uq, va > € Ey or us = vy and
< Uy, v >E E,.

The reason that the modified state transition diagram is given by (33.2) follows
directly from the above definition; a rigorous proof is given in [RGMKB7]. We should
note here that in the product graph representation one has to make & transitions
in order to obtain a valid state transition of the encoder; the degree of every node
in this representation is 2¢k and the total number of edges is kg¥+t.

Efficient Layouts for Product Graphs

A counvenient way of interpreting G = G; x G is that & can be obtained by
replacing every node of G; by a copy of G and then interconnecting these macro-
nodes according to the interconnection pattern of Gy. This suggests a recursive
VLSI layout procedure: 1) layout G optimally (since every individual graph is de
Bruijn, we can apply the results of previous section), 2) layout copies of G4 and
connect them in the same way as the nodes of G are connected in an optimal layout
of G1. The procedure can easily continue for any & > 2. This intuitive recursive
layout technique turns out to be also asymptotically optimal and achieves the lower
bound Q(¢*N?/Z,,,) derived in [RGMKBT] (vmas is the length of the longest shift-
register bank, and WV is the total number of nodes in the graph). The lower bound
on the VLSI area for the state transition diagram is shown to be Q(g™N?/4v2,,,)
in [RGMKS87]. Thus, the product graph representation saves a factor of q* in the
silicon area. Since one has to make k transitions in the product graph to make
a valid state transition, it can be shown that the symbol interval increases by at
most a constant factor; however, the reduction in area outweighs the loss in speed.
Furthermore, it can be shown that the product graph representation requires only
g input and g output ports for every processor, whereas the direct implementation
requires ¢ such ports. If the processors ‘are required to have a fixed number of
ports, then one can show that the direct realization of the state transition diagram
is no longer even faster.

33.3.2 Architectures for decoding rate k/n codes with feedback

The state transition graph will not be nicely structured for an encoder with arbitrary
structure. However, for every encoder one can define a dual encoder (see [For73al,
[For70]) and the VA based on the state transition diagram of the dual encoder

672 CHAPTER 33. DECODING CONVOLUTION CODES IN VLSI

can be used to decode channel outputs without any loss of information. 1t turns
out that the dual encoders are always feed-forward and hence the decoder can be
implemented on a set of processors connected according to the product graph of de
Bruijn graphs of appropriate orders.

33.4 Concluding Remarks

In this short paper we have described some parallel architectures that are suitable
for efficient implementations in VLSI and can execute the VA for decoding convolu-
tional codes. They are shown to be related to well-known architectures for parailel
processing such as shuffle-exchange and de Bruijn networks. More detailed accounts
of the material presented here can be found in [RGMKS8T7] and [RGK87].

References

[CK34] J. B. Cain and R. A. Kriete. A VLSI r=1/2, k=T Viterbi Decoder.
Proc. of NAECON, May 1684.

[CY88] C. Y. Chang and K. Yao. Systolic Array Processing of the Viterbi
Algorithm. Submilied (¢ IEEE Transactions on Information Theory,
June 1986.

{For70] G. D. Forney. Convolutional Codes I: Algebraic Structure. JEEE Trans-
actions On Information Theory, IT-16, No. 6:720-738, Nov. 1970.

[For73a] G. D. Forney. Structural Analysis of Convolutional Codes via Dual
Codes. [EEE Transactions on Information Theory, IT-19:512-518, July
1973.

[For73b]l G. D. Forney. The Viterbi Algorithm. Proceedings of The IEEE, 61,
No. 3:268-278, March 1973.

[GK] P. G. Gulak and T. Kailath. Locally Connected VLSI Architectures for
the Viterbi Algorithm. IEEE Journal on Selected Areas in Communi-
cations, to appear in 1988.

{Gol82] S. W. Golomb. Shift Register Sequences. Aegan Park Press, 1932.

[GS86) P. G. Gulak.and E. Shwedvk. VLSI Structures for Viterbi Receivers:
Part I- General Theory and Applications. IEEE Journal on Selected
Areas in Communications, SAC-4:142-154, Jan. 1986.

REFERENCES 673

{Gul84]
[Kais0]

[KLLM81]

{Lei81]

[Omu69j

(PV81]

[RGK87]

[RGMKST]

[SP84]

' [StoT1]
[Tho80]

(U1i81]

[Vit67]

[VOT79]

P. G. Gulak. VLSI Structures For Digital Communications. PhD thesis,
University of Manitoba, Winnipeg, Canada, Dec. 1984.

T. Kailath. Linear Systems. Prentice-Hall Inc., Englewood Cliifs, N.J.,
1980.

D. Kleitman, F. T. Leighton, M. Lepley, and G. L. Miller. New Layouts
for the shuffle-exchange graph. Proc. of the 13th ACM Symposium on
Theory of Compulation, 278-292, May 1981.

F. T. Leighton. Layouts for the shuffle-ezchange graph and lower bound
techniques for VLSI. PhD thesis, Department of Mathematics, Mas-
sachusetts Institute of Technology, 1981.

J. K. Omura. On the Viterbi Algorithm. [EEE Transactions Informa-
tion Theory, IT-15:171-179, Jan. 1969.

F. P. Preparata and Jean Vuillemin. The Cube-Connected Cycles: A
Versatile Network for Parallel Computation. Communications of the
ACM, 24:300-309, May 1981

V. P. Roychowdhury, P. G. Gulak, and T. Kailath. Optimal VLSI
layouts of de Bruijn Graphs. to be submitted to IEEE Trans. on Com-
puiers, 1983.

V. P. Roychowdhury, P. G. Gulak, A. Montalve, and T. Railath. De-
coding of Rate k/n Convoliutional Codes in VLSIL. fo be submitted to
IEEE Trens. on Info. Theory, 1988.

M. R. Samatham and D. K. Pradhan. A Multiprocessor Network Suit-
able for Single-chip Implementation. Proc. 11th Ann. Symp. on Com-
puter Architecture, 328-337, June 1984.

Harold S. Stone. Parallel Processing with the Perfect Shuffle. [EEE
Transactions On Computers, c-20, No. 2:153-161, Feb. 1971.

C. D. Thompson. A Complezity Theory for VLSI PhD thesis, Dept.
of Comp. Science, Carnegie Mellon University, Pittsburgh,PA, 1980.

3. D. Ullman. Complezity of VLSI Design. MIT Press and John Wiley
Sons, Ine., 1881.

A. J. Viterbi. Error Bounds for Convolutional Codes and an asymp-
toticaily optimum decoding algorithm. JEEE Transactions Information
Theory, IT-13:260-269, Apr. 1967.

A. J. Viterbi and J. K. Omura. Principles of Digital Commaunication
and coding. New York: McGraw Hill, 1979.

