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Foreword

This is a wonderful book of stories about the kinds of parallel computers
called neural networks. They tell about how much more hardware and time
those machines need for doing increasingly larger jobs.

Of course, those kinds of stories wouldn’t interest most people. Less, I'd
guess, than one in ten thousand. This is a pity because this is also a book
about people - because we ourselves are instances of the most advanced
parallel machines. Despite that, the theory of machines does not excite
the public imagination the ways that sports contests do, or game shows,
rock concerts, or the scandals of the private lives of celebrities. No matter.
When we’re doing mathematics, we don’t have to consider the weights of
the opinions of majorities.

The book's subject is the computational complexity of problems being
solved by parallel machines - and it comes at a timely moment of history.
The power of serial computers has grown exponentially for several decades,
but in recent years that exponent has started to decrease. Fortunately,
at the very same time, the exponent of parallelism has started to grow —
while the exponent of memory cost has held its own. This combination of
historical trends means that the exponential growth of the past 50 years
may well continue long enough to supply us with another trillion fold more
of computer power-per-dollar. That log-log curve might even turn up, when
we come to the Age of Nanotechnology.

It is now almost exactly 25 years since Seymour Papert and I published
Perceptrons: An Introduction to Computational Geometry. I see Discrete
Neural Computation: A Theoretical Foundation as the natural successor to
our book. But why did so relatively little happen within that quarter-century
interval?

First, we ought to explain why we feel that these machines are so impor-
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xiv Foreword

tant. One reason is the conviction that our very own brains are composed of
neural network machines. It would not be very useful to say that a brain is
a neural network — because that expression is normally used to mean a net-
work of components with a highly uniform architecture. It would be better
to describe a brain as a highly evolved assembly composed by interconnect-
ing, in special ways, many different kinds of neural networks. From this
point of view, the brain can be seen as like a huge computer with quite a
few different and specialized processors, memory systems, and data paths.
This means that if we’re ever to understand how we work, we'll need good
theories both about what each of those networks is able to do, and about
how they interact on the larger scale. In the brain, that probably means
procedures that are less parallel and more serial.

(Of course, some might argue that this is wrong, that brains are con-
tinuous, not discrete. Others might claim that they're infinite. But we
need not consider such questions here. When dealing with big mysteries, we
should consider the simplest theories first. Philosophical beggars cannot be
choosers.)

Neural networks also have practical uses - especially when equipped with
procedures for learning from experience. Machines that can learn do not have
to be programmed! Of course, we could say the same about any other kind
of computer, so why do people emphasize that possibility when discussing
neural net machines. Simply, I think, because the knowledge embedded
in neural nets is represented in such an exceedingly opaque form. Those
collections of numerical coefficients seem, at least on the surface, to be so
semantically vacuous that we can scarcely imagine any other practical way
to program them!

Now what can such network computers do? In the case of conventional
programming for serial computers, we know that everything is possible be-
cause, given enough time and memory, those machines can compute any
computable function. However, this is not usually the case for neural net-
work machines. Many such systems (and feedforward networks in particular)
are not universal computers; what they can potentially compute depends on
their specific architectures. Here are some things that we’d like to know for
each class C of network machines:

Competence - What kinds of computations can C-nets be programmed
to do?
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Learnability — What kinds of computations can C-nets be made to
learn?

Learning Time - How long will that learning take to do?

Scalability — How must the size and complexity of C-nets grow in scale,
with each type of increase in problem complexity?

Both the present book and the older Perceptrons are mainly concerned with
Scalability questions. This is because, in the case of networks with a fixed
number N of input bits, we can always make a two-layer network machine
to recognize any particular subset of such inputs simply because any such
function can be expressed as a disjunction of Boolean conjunctions. Fur-
thermore, if any such recognition is possible at all, it could be accomplished
by a trivial kind of “learning” machine that simply tries all possible assign-
ments of coefficients to such a network. Thus Competence and Learnability
questions are not interesting unless we ask for quantitative answers about
how those answers “scale up” with increasing N. And although Learning-
Time questions can be interesting indeed, they make sense only in the case
of functions for which the network is Competent.

Earlier I remarked that the opinions of majorities lack weight in mathe-
matical matters. When Perceptrons appeared, most theorists acclaimed it.
But later there came strong complaints from other neural net researchers,
who made remarks like these:

“Those Competence results apply only to 2-layer nets. Multilayer
networks can escape those limitations.”

Generally, this objection was unjustified, because in Perceptrons we almost
never considered Competence questions at all, but only Scalability questions
about networks under various conditions of bounded fan-in (see Chapter 1).
In such cases, the numbers of units and connections still tend to EIOW eXpo-
nentially, although having more layers reduces the sizes of exponents. This
is often not the case for unbounded fan-ins, and the present book presents
many surprising results of this kind.

“Those results may apply to the original Perceptron Learning Al-
gorithm, but things are different now. Today we know how to use
Back-Propagation, or Simulated Annealing, or other techniques
that transcend those limitations.”
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This is related to another objection that we frequently heard:

“They claimed that feedforward networks can’t ever learn to com-
pute function X. However, this did not turn out to be true be-
cause, in our experiments, the machines learned to do X quite
satisfactorily.”

The problem word here is “satisfactorily.” It has no meaning in the world of
pure theory. When we move to the world of practical matters, then we may
agree to accept some errors. In pure mathematics we always agree to insist
on obeying the rules that we’ve made — whereas in applied mathematics we
agree to consider, instead, systems that work only as well as we need. This
in turn raises some of the most difficult - and most important issues in all
of science: how to design, and how to test, theoretical models of real-world
problems. For example, in practical life, it might be reasonable to ask if a
certain kind of network would be good for recognizing faces, or for reading
handwriting. There usually is no practical way, then, to agree on a formal
definition of such a problem that will always work “perfectly.” The trouble,
of course, is that those portraits and scrawls are not generated by formal
systems with rules that we have access to. For example, how would you
start to make a theory of how a machine could distinguish between pictures
of dogs and cats? Unless you can set down a practical model that serves to
define the boundaries, you cannot begin to prove theorems. The trouble is
that terms like “good enough” are never good enough for that.

Once we appreciate this, we may be able to understand what happened
to progress in making theories about these machines. It seems to be true
that not much happened in the decade immediately after the publication of
Perceptrons. Thus, the bibliography of the present book has virtually no
citations in the 1970s, save for Paul Werbos’ prescient thesis. How can we
explain those quiet years? Many reporters have repeated the tale that this
was because of some gloomy remarks that Papert and I made in our book -
which persuaded all those researchers to abandon their work. But this story
simply does not ring true. There is no incentive for scientists so strong as
the wish to prove that the others are wrong. Another oft repeated tale is
that we proved those (still-true) theorems only to get the foundations and
sponsors to take those researchers’ moneys away. But that compliment is
too grand to accept! Mathematicians have no such great powers.
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The truth is that it's quite usual for a new mathematical approach to lie
fallow for a decade or so. But I think that we did make a different mistake.
Our book included, all at once, proofs of almost every easy theorem - and
that left almost nothing for the next generation of students to teethe on,
so to speak. It was not until the 1980s that the new field of computational
complexity had matured enough to supplement, with other techniques, the
group-theoretic exploitations of pattern symmetries that we had developed.
And it was not until now that, finally, young Kai-Yeung Siu and Vwani Roy-
chowdury, working together with our long-time friend Tom Kailath, managed
to bring all those ideas together, to build the almost-unified theory of the
complexity of symmetric functions that is displayed in this wonderful book.

There still remains the question of why, in the 1980s, we saw no such
theoretical progress coming from the many tens of thousands of enthusiasts
who were working with practical neural networks. Scott Fahlman has sug-
gested that although there still was a lack of certain key ideas, this was also
due in part to inadequate computer power. To support this, he observes
that it was not until Geoffrey Hinton got the backpropagation idea from
David Rumelhart and started running examples on his Symbolics machine
that it was recognized that the problem of local minima need not be fatal in
practice.

It seems to me that another, rather paradoxical factor extended this long
delay. It turned out that, once those computations became practical, the
feedforward learning machines excelled in many domains in which statistical
methods had had little success. This led quickly to useful results, especially
in the domain of practical pattern recognition applications. The trouble was
that this very success made theory seem less attractive. If your machine
failed to work on a certain problem, well, who cares? There are plenty of
other fish to fry. So the journals filled up with reports of success — and the
failures were rarely mentioned at all. It was exciting to make such discoveries,
and rewarding when others found uses for them. Almost no one found time
to do theory.

But now we've come to another high peak. What will we next be able
to see?

Marvin Minsky
Cambridge, Massachusetts
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