
480 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

Efficient Algorithms for Reconfiguration in
VLSIDVSI Arrays

Abstmct-This paper deals with the issue of developing effi-
cient algorithms for reconfiguring processor arrays in the pres-
ence of faulty processors and fixed hardware resources. The
models discussed in this paper consist of a set of identical pro-
cessors embedded in a flexible interconnection structure that is
configured in the form of a mtangular grid. We first consider
an array grid model based on single-track switches for which
simulations performed by previous researchers have shown that
considerable enhancement in yield can be achieved by reconfigur-
ing arrays according to a set of conditions that can be formally
stated in the form of a so-called raconf $umbility theorem. How-
ever, the important issue of developing efficient algorithms for
determining whether the conditions in the reconfigurability the-
orem are met has not been resolved, and the algorithms pro-
posed in the literature to do so are of exponential complexity.
In this paper, we resolve this open problem by proposing an
efficient polynomial time algorithm for determining feasible re-
configurations for an array with a given distribution of faulty
processors. In the process, we also show that the set of condi-
tions in the reconfigurability theorem is not necessary. Finally,
we develop a polynomial time algorithm for finding feasible re-
configurations in an augmented single-track model and in array
grid models with multiple-track switches.

Index Terms- Efficient polynomial time algorithm, fault-
tolerant architecture, reconfigurable processor arrays, single-
track and multiple-track models, wafer scale integration (WSI)
technology.

I. INTRODUCTION

This paper deals with the issue of developing efficient al-
gorithms for reconfiguring processor arrays in the presence
of faulty processors. Such studies can be easily motivated in
the case of wafer scale integration (WSI) technology where,
for example, a large number of processors, configured in the
form of a grid, can be put on a single wafer. Due to yield
problems, some of the processors are invariably going to be
faulty. In such a case, instead of treating the whole wafer as
defective, one can work around the faulty processors and re-
configure the rest in the form of a grid. Thus, reconfiguration
methodologies can be viewed as possible tools to increase the
effective yield of the processing technology.

Manuscript received June 30, 1989; revised November 27, 1989. V. P.
Roychowdhury and T. Kailath are supported in part by the Department of
the Navy, Office of Naval Research under Contract N00014-86-K-0726, the
SDIOIIST, managed by the Army Research Office under Contract DAAL03-
87-K-0033, and the U.S. Army Research Office under Contract DAAL03-

V. P. Roychowdhury and T. Kailath are with the Information Systems

J. Bruck is with IBM Almaden Research Center, San Jose, CA 95120.
IEEE Log Number 8933890.

86-K-0045.

Laboratory, Stanford University, Stanford, CA 94305.

Soare Cells

Spare Cells

state A state B state c State D

Fig. 1. The array grid model based on single-track switches, shown with
the possible states of a switch.

The general model discussed here (see e.g., [SI, [61,
[8]-[12], [15]) consists of a set of identical processors embed-
ded in a flexible interconnection structure that is configured in
the form of a rectangular grid. Each grid line in the mesh has
a fixed number of data paths that can be routed along it (i.e.,
the model has fixed channel width); switches can be placed
at every grid point and at every location where a processor
is connected to the grid. Furthermore, often the processors
are divided into a set of nonspare PE’s (say an rn x n array)
and a set of spare PE’s that are distributed in a predeter-
mined fashion. The general question asked in such models is:
if some of the nonspare PE’s are faulty, then can the array be
reconfigured to replace the faulty PE’s with some of the spare
PE’s? Obviously, the power of the reconfigurable architecture
is determined by the available hardware resources such as the
channel width, the complexity of the switches, and their dis-
tribution in the array. Although one would like to put as much
hardware as possible, often it is expensive to do so.

A particularly simple but useful model is an array grid
model based on single-track switches (see Fig. 1) that has been
studied in [2] and [3]. It consists of an rn x n array of non-
spare PE’s, double-row-column of spare PE’s, and single-
track switches; the allowed states of the switches are also
shown in Fig. 1. The model is single-track in the sense that
only one communication path is allowed along each horizon-
tal/vertical channel. It is further assumed in the model that
a faulty PE can be converted into a connecting element. The
single-track model’s advantages arises from its inherent sim-
plicity: since data paths take up a significant amount of area

0018-9340/90/0400-0480$01 .OO 0 1990 IEEE

ROYCHOWDHURY et al.: ALGORITHMS FOR RECONFIGURATION IN VLSIiWSI ARRAYS 48 1

(C)

Fig. 2. Compensation paths: (a) shows the routing required by a compensa-
tion path; (b) shows a near-miss situation; (c) shows a nonnear-miss situation.

on a waferlchip, considerable saving in area is achieved by
allowing only one data path along every grid line; moreover,
the simplicity of the switches makes the routing hardware
more reliable. Furthermore, extensive simulations reported
in [3] show that considerable enhancement in yield can be
achieved by reconfiguring the array grid models with single-
track switches.

We now briefly discuss the results reported in [3] . The pa-
per derives a set of sufficient conditions (stated in the form
of a so-called recon figurability theorem presented below) for
determining whether an array with a particular distribution of
faulty processors is reconfigurable, where a given array is
recon figurable if the nonfaulty processors can be connected
to form an m x n array. The sufficient conditions in the re-
configurability theorem can be stated in terms of the so-called
compensation paths. Let a nonspare PE at location (x , y)
be faulty, then in any valid reconfiguration it has to be re-
placed by a healthy processor. Let the faulty PE at (x , y) be
replaced by a healthy PE, say at location (x ' , y ') , which in
turn is replaced by a healthy PE, say at location (x" , y") ;
one can continue this chain until one ends up at a spare PE.
Now a compensation path can be defined as the ordered se-
quence of nodes (x , y) , (x ' , y ') , (x" , y") , . . ' , involved in
the replacement chain. Fig. 2(a) shows a compensation path
and the corresponding routing required for replacing a single
faulty processor in the single-track model; note that the com-
pensation path is straight and continuous. This simple concept
of using straight and continuous compensation paths can be
also used in the presence of multiple faulty processors and the
sufficient conditions can be formally presented in the form of
the so-called reconfigurability theorem (for a formal proof,
see [2] and [3]) .

Reconfigurability Theorem: Given an m x n array of
nonspare PE's, with spare PE's along the sides, it is recon-
figurable into an m x n array of healthy processors by single-
track switches if 1) there exists a set of continuous and straight
compensation paths covering all the faulty nonspare PE's and
2) there is neither intersection nor near-miss among the com-
pensation paths.

A near-miss situation occurs if two compensation paths in
neighboring rows (columns) overlap and are in opposite di-

rections (see Fig. 2 ; note that a near-miss situation does not
occur if the compensation paths overlap by one node).

In [3] , an algorithm to determine valid reconfigurations
that satisfy the conditions in the reconfigurability theorem is
also presented. The algorithm is developed by reformulating
the reconfigurability problem as a maximum independent set
problem, and then adapting a well-known algorithm for de-
termining maximum independent sets in a graph. However,
the maximum independent set problem is NP-complete and
the best known algorithms take exponential time; hence, the
algorithm presented in [3] has exponential complexity. The
question whether efficient polynomial time algorithms ex-
ist was left as an open one. Moreover, efficient algorithms
were not known even for the restricted cases where spare
processors are available only along, for example, two or
three sides (as opposed to on all four sides as shown in
Fig. I) .

In view of the above results, the contributions of this paper
with regard to the single-track models can be summarized as
follows.

.We show that the conditions in the reconfigurability theo-
rem are not necessary, correcting a claim made in [l].

.We present a polynomial time algorithm (in fact, the com-
plexity is O(IF12), where IF(is the number of faulty pro-
cessors) for determining valid reconfigurations according to
the sufficient conditions. Moreover, linear time algorithms for
determining valid reconfigurations are developed for the re-
stricted cases where the spare processors are not present along
all four sides of the array.

We should note here that the combinatorial problem under-
lying the reconfigurability issues in the single-track model is
by itself quite interesting. The algorithm presented in this pa-
per appears to be the first-known polynomial time algorithm
for this problem.

One can easily observe that the sufficient conditions for re-
configuration as discussed above are also valid for more gen-
eral array models such as the ones with multiple tracks. One,
however, hopes that for such more powerful models it should
be possible to develop more general conditions to allow recon-
figuration of arrays that otherwise could not be reconfigured in
the single-track model. With such motivation in mind, we first
consider an augmented single-track switch model as shown in
Fig. 3. We show that the augmented model is more powerful
than the simple single-track model: the compensation paths in
the augmented model need not be straight any more and can
have bends. In general, if one allows more data paths along
every grid line (i.e., a multiple-track model), then the com-
pensation paths can be crooked and the restriction of near
misses is no longer required. Hence, a generalized sufficient
condition can be stated as follows: an array grid model with
multiple-track switches is reconfigurable if one can determine
a set of nonintersecting compensation paths (continuous, but
not necessarily straight) for the faulty PE's in the array. We
show that the combinatorial problem corresponding to such
a sufficient condition can be efficiently solved by reducing it
to the well-known problem of determining maximum flow in
networks.

The rest of the paper is organized as follows. In Section 11,

482 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

Spare Cells

Spare Cells

State A State B State C State D Sutc E

Fig. 3. An augmented single-track model.

we present polynomial time algorithms for determining valid
reconfigurations in the single-track model. In Section 111, we
study more general models such as an augmented single-track
model and multiple-track models, and present a polynomial
time algorithm for searching for valid reconfigurations in such
models. Section IV has some concluding remarks and in the
Appendix we show that the conditions in the reconfigurability
theorem are not necessary.

11. EFFICIENT ALGORITHMS FOR RECONFIGURATION IN

SINGLE-TRACK MODELS

Although we show in the Appendix that the conditions in the
reconfigurability theorem are not necessary for a valid recon-
figuration to exist, extensive simulations reported in [3] show
that by reconfiguring arrays according to the sufficient con-
ditions, one can enhance the yield considerably. Now, check-
ing whether the sufficient conditions are met is equivalent to
solving the following problem: given a set of points in a two-
dimensional grid, find a set of nonintersecting straight lines
such that every line starts at a point and connects it to one of
the boundaries of the grid, and there is no near-miss situation.
We recall that a near-miss situation occurs if two lines in
opposite directions overlap in adjacent rows or columns. If for
the moment we relax the restriction of no near misses, then
the sufficient condition reduces to the purely combinatorial
problem stated in Problem 1 below.

In this section, we shall first present an efficient algorithm
for solving Problem 1 and then show how the algorithm can
be modified to avoid near-miss situations. The algorithm pre-
sented in this paper not only determines whether a compatible
set of compensation paths exist, it also determines such a set
whenever it is possible to do so. In the process, we shall de-
velop efficient algorithms for the cases where spare processors
are not available on all four sides; in fact, the algorithms for
the restricted cases are only of linear (in a number of faulty
processors) complexity.

The combinatorial problem can be stated as follows:
Problem I : Let V be the set of grid points in an m x n

two-dimensional rectangular grid, and let F c V . Determine

a set of straight lines such that

a) each vertex U E F is assigned a straight line connecting
it to one of the four boundaries of the grid

b) the straight lines are nonintersecting .
We can make the following observations:

1) If there is a row (column) in the grid that contains none
of the vertices in F, then it is clear from the definition of
our problem that the row (column) has no role in searching
for a valid assignment of line segments. Hence, without loss
of generality, we can delete such rows (columns) from the
description of our problem and assume that 1 5 m , n 5 IF 1.

2) Each vertex U E F can be assigned to at most one of
four possible line segments, where each segment is along one
of the four grid lines intersecting at v. Hence, instead of talk-
ing in terms of assigning line segments we can talk in terms
of assigning directions, e.g., assigning a segment that con-
nects a vertex v to the left side of the grid, can be interpreted
as assigning the direction Left to the node v. In the rest of
this paper, we shall interchangeably use the two equivalent
descriptions.

Definition I : An assignment for Problem 1 is a mapping
of every node in the set F to the set of four possible directions
D = { L e f t , Right, U p , Down}.

An assignment is a valid assignment if the corresponding
line segments do not intersect.

Definition 2: A direction d is said to be a valid direction
for a node U E F if there is a valid assignment in which v is
mapped to d.

The basic principle underlying our algorithm will be a
greedy one, and we shall try to assign valid directions to nodes
of F with only a minimal search. In particular, we are always
able to find a node U E F for which we can assign a valid
direction efficiently (in time at most linear in IF I). Thus, the
total complexity of the algorithm will be at most quadratic in

The greedy principle that will be used quite often in our
algorithms is formalized by the following lemma.

Lemma I : If a node U E F can be assigned a direction, say
d, that does not conflict with any direction that could possibly
be assigned to the rest of the nodes in F, then it is sufficient
to just search for a valid assignment for the nodes in F - {U}
and assign the direction d to v.

A proof of the above lemma is quite obvious; however,
the underlying principle is very useful. That is, if one can
identify such a node v, then one can assign it a valid direction
immediately without any further search. The algorithm can
then remove the node and deal with a problem of a smaller
size. The algorithms that we are going to develop utilize the
geometry of the grid appropriately to identify such specialized
nodes in a systematic manner.

In case there are no nodes that can be assigned a direction
using the above idea, then we are able to chose nodes appro-
priately such that they can be assigned a valid direction with
only a linear search. The principles used are slightly more
complicated; however, they use the structure of the grid and
are also greedy in nature. The principles can be best explained
by describing the individual algorithms.

IFI .

ROYCHOWDHURY el al.: ALGORITHMS FOR RECONFIGURATION IN VLSI/WSI ARRAYS 483

A . Efficient Algorithms for Special Cases

We are going to develop our algorithm by first consider-
ing several special cases, wherein the possible directions that
can be assigned to the vertices in F are restricted. We shall
then use the special cases appropriately to search for valid
assignments, if there are any, in the case where all the four
possible directions are permitted. The four special cases are
as follows.

Case I : The line segments assigned to the nodes in F can
be along only two directions, and the permitted directions are
opposite to each other, e.g., {Left, Right).

Case 2: The line segments assigned to the nodes in F can
be along only two directions, and the permitted directions are
at right angles, e.g., {Left, Down} [see Fig. 4(a)]; note that
in the figures, a permissible direction is shown by drawing a
line along the corresponding side.

Case 3: The line segments assigned to the nodes in F can
be along only three directions, e.g., {Left, Right, Up} [see
Fig. 4(b)].

Case 4: The nodes in the grid are partitioned into three
distinct regions, as shown in Fig. 5(a). In region A , there
are three permissible directions (e.g., {Left, Up, Right)),
in region B, there are two permissible directions (e.g.,
{Left, Right}) and in region C, there are three permissible
directions (e.g., {Left, Down, Right)).

Lemma 2: There is a linear time algorithm for determining
a valid assignment for Case 1.

Proof: Let us consider, without loss of generality, the
case when the permissible directions are Left and Right. It is
clear that for the case under consideration, a valid assignment
exists if and only if every row contains two or less nodes
belonging to F. Thus, a linear time algorithm can be designed
by sequentially examining the rows from top to bottom until
either a row containing three or more nodes in F is detected
(in which case no valid assignment exists) or all the rows are
examined. n

Lemma 3: There is a linear time algorithm for determining
a valid assignment for Case 2.

Proof: Without loss of generality, let us assume that the
permissible directions are Left and Down [see Fig. 4(a)]. An
algorithm for determining a valid assignment can be described
as follows. Sequentially examine the rows of the grid starting
with the bottom row. If it is possible, then for every node
U E F in the row assign the direction Down. Thus, there are
two cases.

1) All nodes in the row can be assigned the direction
Down; in which case go to the upper row and repeat the
procedure.

2) There is a node x f F that cannot be assigned the direc-
tion Down; note that this can happen only if there is another
node in F that is the same column as x but in a row that has
already been examined. Try to assign the direction Left to the
node x, if it cannot be down then there is no valid assignment.

If x can be assigned the direction Left, then as shown in
Fig. 4(a), the unexamined region of the grid is divided into
two distinct regions, namely A and B. Assign all the nodes in
region A the direction Left; if it is not possible to do so, then

(a) (b)
Special Cases 2 (a) and 3 (b) in Section 11-A Fig. 4.

there is no valid assignment. If the nodes in region A are all
successfully assigned the direction Left, then go to the bottom
row in the region B and repeat the procedure described until
now.

The above algorithm visits every node exactly once; hence,
it is of linear complexity. The correctness of the above algo-
rithm can be proved by justifying each step of the algorithm.

U

Lemma 4: There is a linear time algorithm for determining
a valid assignment in Case 3.

Proof: Without loss of generality, let us consider an in-
stance of Case 3 as shown in Fig. 4(b), where the permitted
directions are Left, Right, and Top. An algorithm for finding
a valid assignment can be described as follows.

Sequentially examine the rows of the grid starting with the
bottom row of the grid. Depending on the number of nodes
belonging to F in the row make the following assignments.

1) If the row has only one node belonging to F, then assign
it the direction Left or Right and move to the next upper row.

2) If the row has two nodes, then assign the left node the
direction Left and the right node the direction Right; move
to the next upper row.

3) If the row has three or more nodes, then assign the left-
most direction Left, the rightmost node the direction Right,
and the nodes in the middle the direction Up. The rest of the
grid now gets partitioned into several distinct regions as shown
in Fig. 4(b). The nodes in the inner regions have only one per-
missible direction and hence they are assigned the direction
Up. If such assignments lead to contradiction (i.e., there are
two nodes in the same column in one of these regions), then
there is no valid assignment.

Now, in each of the two outer regions, namely A and B ,
there are two permissible directions that are at right angles.
Hence, each such region can be tested for valid assignments
by following the algorithm outlined in Lemma 3.

The above algorithm visits every node only once and hence
it is of linear complexity. Also, note that the above algorithm
is a combination of the algorithms developed in Lemma 2
and Lemma 3. In particular, the algorithm follows the assign-
ment procedure in Lemma 2 until it finds a row with three or
more nodes of F, and from then on it follows the algorithm
in Lemma 3. A formal proof of correctness for the above al-
gorithm will be skipped here; however, we should note here
that a justification for the above algorithm can be constructed

0
We should note here that the algorithms outlined in Lemmas

2, 3, and 4 (and the ones to be presented later in this section)

by combining the justifications for Cases 1 and 2.

484

I ! D i C

(b) (C)

Fig. 5 . The special case corresponding to Case 4 in Section 11-A.

can be easily adapted to work for restricted versions of the
respective cases. For example, in Case 3, one can restrict
possible assignments to a particular node in F by disallowing
the assignment of one of the feasible directions to it. A pos-
sible motivation behind such a restriction may be to indicate
that the spare processor along the forbidden direction is itself
faulty, and hence one cannot allow a compensation path in
that direction.

There are several ways of adapting the above algorithms;
however, one particularly simple one is described here. With-
out loss of generality, assuming that the direction Left is disal-
lowed for the node x E F ; this restriction is meaningful only
if there is no node to the left of x in the same row as x. In
order to accommodate this restriction, augment the set F with
a node y and place it in the same row as x, but on the extreme
left edge of the grid in a newly added column. Now in the
augmented problem, the direction Left is no longer feasible
for x ; moreover, since the node y is at the very edge of the
grid, it can be always assigned the direction Left without af-
fecting possible assignments to the rest of the nodes in F (see
Lemma 1).

Lemma 5: There is a linear time algorithm for determining
a valid assignment in Case 4.

Proof: Let us consider an instance of Case 4 as shown
in Fig. 5(a). An algorithm for determining valid assignments
can be outlined as follows.

Sequentially examine the rows of the grid, starting with the
bottom row, and consider the nodes of F that are in region A
only. The motivation is the same as before: to identify nodes
that can be assigned directions which do not interfere with the
rest.

If the row under consideration has only one node in the
region A , then assign it the direction Left and go to the next
upper row. If the row has no nodes from F, then also go to
the next upper row and repeat the procedure.

If the row has two or more nodes, then the rightmost node,
say x, has at most two directions (namely, Right and Up)
that can be assigned to it. The algorithm checks for valid
assignments by first assigning the direction Right to node x,
and then assigning the direction Up as follows.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

1) Assign x the direction Right; Fig. 5(b) shows the par-
titioning of the grid under this assignment. The unassigned
parts of the grid get partitioned into four different regions
and each such region can be labeled as one of the cases that
we have already discussed. For example, the region A has
two permissible directions that are opposite to each other and
hence can be searched for valid assignments using the algo-
rithm discussed in Lemma 2.

However, consider the region D and C together; the whole
region can be treated as a restricted version of Case 3 dis-
cussed in Lemma 4. It is restricted in the sense that for the
nodes of F that are in the region C, the direction Up is disal-
lowed. We have already discussed how to adapt algorithms to
accommodate such restrictions; hence, the combined region
D and C can be searched for valid assignments by using the
algorithm outlined in Lemma 4. Similarly, one can again use
the algorithm of Lemma 4 to search for valid assignments in
the combined region A and B [see Fig. 5(b)].

2) If the result of the previous search is in negative, then
assign x the direction Up; Fig. 5(c) shows the resulting parti-
tioning of the grid. The grid gets partitioned into six regions
and each region can be labeled by the case it corresponds to.
For example, the region A has two permissible directions that
are at right angles; hence, it corresponds to Case 2. Similarly,
the region C has only one permissible direction and hence all
nodes in the region are assigned the direction Right.

Search the regions sequentially in the following order: A ,
B , C, D , and E , F (combined) using the corresponding algo-
rithms [as shown in Fig. 5(c)].

Note that if none of the rows in the region A of Fig. 5(a)
has more than one node belonging to F, then one can assign
the direction Left to the nodes in the region A. One can
then search for valid assignments in the regions B and C of
Fig. 5(a), by combining the two regions and then treating the
combined region as a restricted version of Case 3.

In the above algorithm, each node is visited at most twice
and hence the algorithm is again of linear complexity. 0

B . Efficient Algorithms for the General Case
The algorithm for the general case where all the four di-

rections are permitted can be described as a layer peeling
algorithm. It starts with the outermost rows and columns of
the grid and determines valid directions for the nodes of F
that are in these outer layers; it then performs the same oper-
ations on the inner layers. The algorithm can be discussed in
two parts.

Part I: In the first part of the algorithm, one attempts to
determine valid directions using the principle of Lemma 1,
and it can be described as follows.

1) Sequentially examine the columns of the grid starting
with the leftmost column. Try to assign the direction Left to
every node of F that is on the column under consideration. If
all the nodes can be successfully assigned the direction Left,
then go to the next column. If there is a node that cannot be
assigned the direction Left, then go to the next step.

2) Sequentially examine the rows of the reduced grid (i.e.,
the portion of the original grid that is unassigned in Step 1)
starting with the top row. If possible, then assign to every

ROYCHOWDHURY et al.: ALGORITHMS FOR RECONFIGURATION IN VLSI/WSI ARRAYS 485

X
Casc I

X

X
case 2

X

X
Casc 3.

X

Caw 7. ;
Y "
I I

X

(b)
Fig. 6 . (a) The configuration of the reduced grid after executing Part 1 of

the algorithm in Section 11-B. (b) Enumeration of the possible assignments
of directions to nodes x and y .

node in the row under consideration the direction Up. If all
nodes can be assigned the direction Up, then go to the next
row, else go to the next step.

3) Sequentially examine the columns of the reduced grid
(i.e., the portion of the original grid that is unassigned after
Steps 1 and 2) starting with the rightmost column. If possible,
then assign to every node on the column the direction Right.
If all nodes can be assigned the direction Right, then go to
the next row, else go to the next step.

4) Sequentially examine the rows of the reduced grid (i.e.,
the portion of the original grid that is unassigned after Steps
1, 2, and 3) starting with the bottom. If possible, then assign
to every node on the row the direction Down. If all nodes
can be assigned the direction Down, then go to the next row,
else go to the next step.

5) After completion of the four steps, one has a reduced
grid which has been obtained by peeling off the outer layers
of the original grid. Next, repeat Steps 1-4, until the reduced
grid is of the form shown in Fig. 6(a). In particular, each
of the outermost row and column of the reduced grid should
have at least one node that is blocked on the outside.

Part 2: The next part of the algorithm determines valid
directions for the nodes on the outermost rows and columns
of the grid shown in Fig. 6(a). The objective is to show that
we can determine such valid directions in linear time.

Let us assume, without loss of generality, that each of the
outermost rows and columns in the grid, shown in Fig. 6(a),
contains only one node of F, if an outer row or column con-
tains more than one node, then the search for valid directions

Case 1 Case 2

Case 3. C d X 4

Fig. 7. Enumerating the possible assignments of directions to nodes w and
z in Case 7 of Fig. 6 .

is going to be simpler and we shall mention such simplifica-
tions later in this section.

Let us consider the nodes x and y in Fig. 6(a); each node
has at most three possible directions that can be assigned to
it. It turns out that altogether there are seven possible ways
in which x and y can be assigned directions [see Fig. 6(b)],
and one has to check for valid assignments under each of
the assignments. However, each of the first six cases can be
searched for valid assignments by breaking up the regions into
special cases (or their restricted versions) that were considered
in Section 11-A. The breaking up of the regions and the special
cases they correspond to are shown in Fig. 6(b). Note that
the algorithms developed for the special cases are of linear
complexity; hence, each of the first six cases can be searched
for valid assignments in linear time.

The seventh case, where the node x is assigned Left and
the node y is assigned Right, can be further simplified by
considering possible assignments to nodes w and z . Each of
the nodes w and z has only two permissible directions and
they together lead to four cases (see Fig. 7). Three of the
cases can be searched for valid assignments in linear time by
using the algorithms developed for the special cases.

Thus, a complete algorithm for a systematic search of a
valid assignment for the nodes in the outer layers of the grid
shown in Fig. 6(a) can be summarized as follows.

1) Use the algorithms developed for special cases to search
for valid assignments in each of the first six configurations,
which are illustrated in Fig. 6(b). If any of the searches finds
a valid assignment for every node in the reduced grid, then
there is a successful solution to Problem 1 .

2) Enumerate the seventh case as shown in Fig. 7, and
search for valid assignments for the first three enumerations.

3) If every search in Steps 1 and 2 fails then assign direc-
tions to nodes x , y , w, and z that are shown in Case 4 of Fig.
7, and go to the inner portion of the grid (i.e., peel off the
outermost layer) and repeat Parts 1 and 2 for the new reduced
grid obtained after peeling off the outer layers. The idea is
the following: in Steps 1 and 2, we have checked all but one
possible assignment to the nodes in the outermost layer of the
reduced grid. If none of these cases leads to a valid assignment
for nodes of F that are in the grid. then for a valid assignment
to exist the last possible assignment (i.e., Case 4 in Fig. 7) is
the only candidate.

486 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990

We can make the following remarks about the procedure
discussed so far.

1) Until now we have assumed that every outermost row
or column in the reduced grid shown in Fig. 6(a) has only
one node. Consider, however, the case where in addition to
x, there are other nodes in the upper outermost row of the
grid. This would imply that the possible directions that could
be assigned to x are restricted and some of the cases shown in
Fig. 6(b) are not valid. Hence, the search for valid assignments
becomes simpler. The same comment holds if all the four
nodes (i.e., x, y , w and z) are not distinct.

2) The relative positioning of the nodes w and z in Fig.
6(a) has also been chosen to illustrate the worst case situation.
Consider, for example, the case where the node z is located
lower than w. Then, one can easily show that even Case 4
of Fig. 7 can be searched for valid assignments by utilizing
the algorithm for the Special Case 4, that was discussed in
Section 11-A.

Theorem I : There is a quadratic time algorithm (0(IF 1 2))
for determining if there exists a valid assignment for Problem
1 .

Proof: Follows directly from the description of Parts 1
and 2 of the algorithm. To decide on valid directions for nodes
lying on the outermost layers of the grid, one needs at most
O((F() time. Since there are at most IF(such layers in the

0 grid, the complexity of the algorithm is O(IF 1 2) .
C . Avoiding Near-Miss Situations

We can make the following remarks.
1) A near-miss situation can occur only among nodes in

F that are in adjacent rows and columns. Hence, if there is
more than one consecutive row (column) that contain none of
the vertices in F, then clearly all but one of these blank rows
(columns) can be deleted. Thus, without loss of generality one
can assume that I 5 m, n 5 2 (F 1.

2) While discussing the algorithms without considering
near-miss situations, only cases that needed new algorithms
are Cases 1 , 2, and 3 (see Section 11-A). The algorithms for
the general case as well as Case 4 were developed by ju-
diciously making use of the algorithms for the other special
cases. The same argument holds when one considers near-miss
situations; i.e., one needs to develop algorithms only for the
three special cases. However, Case 2 can never have a near-
miss situation; this is because the two permissible directions
are always at right angles and can never be running opposite
to each other. Thus, we have developed algorithms only for
Cases 1 (line segments along two opposite directions are al-
lowed) and 3 (line segments along at most three directions are
allowed).

Lemma 6: There is a linear time algorithm for determining
a valid assignment for Case 1 even when near-miss situations
are avoided.

Proof: Let us assume that the directions permitted are
Left and Right. Assume also that none of the rows has more
than three nodes from F; if any row does, then obviously
there is no valid assignment(s) for the node(s) in the middle.
Also, note that because of near-miss situations, the rows are
no longer independent and assigning directions to the nodes
in one row may affect possible assignments of directions to

nodes in adjacent rows. The basic idea behind the algorithm
is: since in the rows with two nodes the directions are fixed,
one can systematically assign directions to the single nodes
such that near-miss situation does not occur. The algorithm
can be briefly described as follows (for more details see [131):
1) Sequentially examine the rows from bottom until a row with
two nodes is reached. 2) Now suppose there is a row with two
nodes of F, then the node on the left side is assigned the di-
rection Left and the node on the right is assigned the direction
Right. Since these directions are fixed, one can go down and
assign appropriate directions to the single nodes in the lower
rows. Stop when either a) a row is encountered for which the
direction is not determined by the assignment to the node in
the row below it; in this case, the rows below do not interact
with the rows on top and the whole algorithm can be repeated
again, or b) another row with two nodes is encountered and
there is no valid assignment. 3) If the procedure has not failed
and all the rows have not been examined, then repeat Steps 1

0
Lemma 7: There is a linear time algorithm for determining

a valid assignment for Case 3 even when near-miss situations
are avoided.

Proof: Let us assume that the permitted directions are
Left, Right, and Up. We can divide the rows into two regions,
i.e., examine the rows from the bottom until a row with more
than two nodes (belonging to f l is found; let the region above
and including this row be called B, and the region below
be called A . We know from Lemma 4 how to handle the
region B , i.e., it gets partitioned into two instances of Case 2 .
One, however, has to make assignments in the region A , such
that there are no near-misses; it can be done by applying the
algorithm developed in Lemma 6. For more details see [13].

and 2 for the unassigned rows of the grid.

U

We should mention here that efficient data structures
can be easily designed to implement all the algorithms de-
scribed in this section in the claimed time complexities.'
One way of implementing the algorithms would be to bucket-
sort the points in F according to their row and column num-
bers .

III. EFFICIENT ALGORITHMS FOR RECONFIGURATION IN MORE
GENERAL MODELS

Fig. 3 shows an augmented single-track model: it has more
switches compared to the simple single-track model, and each
switch has one more state than before. We should note here
that by adding the fifth state, the complexity of and the area
taken by a switch is not appreciably increased; moreover, it is
a common practice to assume that a switch in the single track
model will have the five states shown in Fig. 3 [12].

One would expect that the added hardware (i.e., more
switches) in the new model should facilitate reconfiguration.
It is indeed the case, and Fig. 8 shows a valid reconfiguration
when one introduces a bend in the compensation path; the
modified routing only affects the states of the switches that
are local to the compensation paths. As mentioned before, it
is not possible to have bent compensation paths in the simple
single-track model [l] , [3]. This added flexibility gives more

' In [14], an
Problem 1.

improved algorithm has been presented for

ROYCHOWDHURY et al.: ALGORITHMS FOR RECONFIGURATION IN VLSIiWSI ARRAYS

Cornpensanon

t path

Fig. 8 . A bent compensation path and a corresponding routing scheme In
the augmented single-track model.

power, e.g., in the example shown in Fig. 10, the faulty pro-
cessor x is no longer blocked and can be replaced easily in
the augmented model by a bent compensation path. The aug-
mented model, however, is still not powerful enough to handle
near-miss situations and possible complications due to adja-
cent, but bent compensation paths.

For multiple-track models, however, it is sufficient for the
compensation paths to be continuous and nonintersecting.
Hence, a generalized sufficient condition for the multiple-
track models can be stated as follows: an array grid model
with multiple-track switches is reconfigurable if one can de-
termine a set of nonintersecting and continuous compensation
paths (not necessarily straight) for the faulty PE’s in the array.
Now checking whether for an array with a given distribution of
faulty processors one can determine such compensation paths,
is equivalent to solving the following combinatorial problem:

Problem 2: Let V be the set of grid points in an n x n
two-dimensional rectangular grid, and let F c V . Determine
a set of nonintersecting paths in the grid such that

a) each vertex U E F is connected to a distinct node on the
boundary of the grid by one of the paths.

b) the paths are nonintersecting.
Theorem 2: There exists a polynomial (in n) time algo-

rithm for solving Problem 2.
Proof: We shall prove the theorem by reducing Problem

2 to the well-known MAX-FLOW problem for which there are
several efficient polynomial time algorithms [7]. The desired
network for the flow problem can be described by a directed
graph G = (V ’ , E) where

1) V‘ = V U {s, t } , where V is the set of nodes in the
grid, s is the source node, and t is the sink node.

2) E consists of three types of arcs: 1) for every pair of
nodes i, j that are adjacent in the grid, two arcs i --f j and
j + i are in E, 2) for every boundary node U E V , an arc
connecting it to the sink node t (i.e., the arc U + t) is in E ,
and 3) for every node U E F , an arc connecting the source
node s to it (i.e., the arc s -+ U) is in E.

3) The capacity of every e E E , denoted by c(e), is unity.
4) The capacity of every node U E V (i.e., every node in

V ’ , except the source node s, and the sink node t) , denoted
by c(u) , is unity.

Fig. 9 shows a grid and the corresponding network derived

~

487

(b)
Fig. 9. Construction of the network G in Theorem 2 : (a) shows a grid with

points belonging to F (marked by cross signs); (b) shows the corresponding
network G.

Fig.
path for w .

10. Example of valid reconfiguration in a case where the sufficient
conditions in the reconfigurability theorem arc not satisfied.

according to the above rules. We can make the following ob-
servations about the network derived above.

1) Since the out-degree of the source node is IF1 and ev-
ery edge has unit capacity, the maximum possible flow in the
network is IF 1 .

2) Every unit of flow pushed from the source to the sink
defines a unique directed path connecting a node in F to one
of the boundary nodes. This follows directly from the follow-
ing facts: a) all edges have unit capacity b) the only way the
source node can push a unit of flow is through one of the
nodes in F , and c) the only way the sink node can receive a
unit of flow is through one of the boundary nodes.

3) Since every node (except the source and the sink nodes)
in the network has unit capacity, only one edge coming into a
node can be saturated, i.e., has unit flow. Hence, every unit
of flow in the network not only defines a unique path, but the
corresponding paths are also nonintersecting.

4) A path defined by a unit flow in the directed network
is also a path in the undirected grid (excluding of course the
edges from the source and to the sink). This follows from the
fact that if the arc i + j in G is saturated, then the reverse
arc j + i cannot be saturated; if it is, then the two arcs will
form a circular flow which does not contribute to the net flow
from the source to the sink.

Our claim is that, there is a solution to Problem 2 if and
only i f the maximum flow in the network G, as defined
above, is IF 1 . It follows directly from the above remarks that
if the maximum flow in the network G is lFI, then there are

488 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39. NO. 4. APRIL 1990

IF 1 nonintersecting paths in the corresponding grid such that
each one connects one of the nodes in F to a node in the
boundary. Each such path is defined by a unit flow from s to
t in the network G.

Now if there is a solution to Problem 2, then we know that
there is a set P, of IF 1 nonintersecting paths in the grid con-
necting each node in F to a distinct boundary point in the grid.
One can make the paths in P directed in the corresponding
network G by choosing the appropriate arcs such that the paths
are from the nodes in F t o the respective boundary points. One
can now determine a flow IF 1 in the network G as follows:
1) assign unit flow to all the arcs coming out from the source
node s, and the arcs lying on the paths in P , 2) assign unit
flow to the arcs that join the boundary points belonging to the
paths in P, to a sink node, and 3) assign 0 flow to the rest
of the arcs in E . By construction then, the network has flow

Note that by solving the corresponding flow problem, one
not only determines whether Problem 2 is feasible, but one
also gets a required set of nonintersecting paths when it is
possible to do so. Also, since in the network all edges and
nodes have unit capacities, the complexity of the maximum-
flow algorithm can be shown to be O(n3) [7].

IF 1 . c

IV. CONCLUDING REMARKS

In this paper, we have addressed some of the combinatorial
problems that arise while reconfiguring processor arrays with
fixed hardware resources. In the case of an array grid model
with single-track switches, the problem of reconfiguring the
array can be reduced to the combinatorial problem of deter-
mining a set of nonintersecting straight lines in a grid. In the
case of more general models such as the array grid models
with multiple-track switches, the reconfigurability problems
can be reduced to the problem of determining a set of nonin-
tersecting paths in a two-dimensional grid. For the first prob-
lem we provide an efficient geometric algorithm while for the
latter problem we derive an efficient algorithm by reducing it
to a MAX-FLOW problem. A few remarks.

1) Failures in Switches/Connections: In this paper we
have considered only processor failures. However, often
switch failures are modeled by disallowing certain compensa-
tion paths or by considering that certain PE’s are faulty (see
[3]). We have mentioned in Section I1 how our algorithm can
be adapted if, for individual faulty processors, compensation
paths in certain directions are not allowed. In that sense, we
have shown that reconfiguration in single-track models,
even with switch failures, is of polynomial complexity.

Moreover, another reason for concentrating on processor
failures is that the yield for switches and connections is much
higher than the corresponding yield for processors [4].

2) Hexagonal,/Triangular Grid: The general topology
considered in this paper is that of a rectangular grid: how-
ever, one would be interested in addressing similar issues for
other kinds of grids. A little thought will show that Problem
2 , when translated to any other grid, can still be solved in
polynomial time by using MAX-FLOW algorithms. It is not
clear, however, how to solve Problem 1 for grids with arbi-

APPENDIX
THE SUFFICIENT CONDITIONS FOR RECONFIGURABILITY ARE NOT

NECESSARY

Herein we shall show why the conditions in the reconfig-
urability theorem [l] , [3] are not necessary. The reason lies
in the fact that in the theorem nothing is said about compen-
sation paths for healthy processors; however, as we are going
to illustrate, one can gain by replacing healthy processors too.
Consider for example, the faulty processor x in Fig. 10; it is
blocked by faulty processors on all four sides and according
to the reconfigurability theorem one cannot determine a valid
compensation path for x. However, as shown in Fig. 10, one
can still reconfigure the given array by replacing the whole
row containing the processor x by one of the spare rows; the
faulty processors that are left (i.e., y and w) can be replaced
by the usual compensation paths. For more examples see [131.

1141

1151

REFERENCES
S. N. Jean and S . Y. Kung, “Necessary and sufficient conditions for re-
configurability in single-track switch WSI arrays,” in Proc. Inr. Conf.
Wafer Scale Integration, Jan. 1989.
S. Y. Kung. VLSI Array Processors. Englewood Cliffs, NJ:
Prentice-Hall, 1987.
S . Y. Kung, S . N. Jean, and C. W. Chang, “Fault-tolerant array
processors using single-track switches. ’’ IEEE Trans. Cornput., vol.
38. no. 4, pp. 501-514. Apr. 1989.
T. Leighton and C. E. Leiserson. “Wafer-scale integration of systolic
arrays.” IEEE Trans. Comput.. vol. C-34. no. 5 , pp. 448-461. May
1985.
F. Lombardi, M. Ci. Sami. and R. Stefanelli, “Reconfiguration of
VLSI arrays by covering,” IEEE Trans. Cornput.-Aided Design.
1989.
W. R. Moore, “A review of fault-tolerant techniques for the enhance-
ment of integrated circuit yield.” Proc. IEEE, pp. 684-698. May
1986.
C. H . Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall.
1982.
A. L. Rosenberg, “The Diogenes approach to testable fault-tolerant ar-
ray of processors,” IEEE Trans. Comput., pp. 902-910. Oct. 1983.
M. Sami and R. Stefanelli, “Reconfigurable architectures for VLSI
processing arrays.” Proc. IEEE, pp. 712-722, May 1986.
D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reli-
able System Design.
L. Snyder. “Introduction to the configurable. highly parallel com-
puter.” IEEE Trans. Cornput., vol. C-15. pp. 47-56. Jan. 1982.
S . K. Tewksbury. Wafer-Level Integrated Systems: Implementation
Issues. New York: Kluwer Academic, 1989.
V . Roychowdhury, J . Bruck, and T. Kailath, “Efficient algorithms
for reconfiguration in VLSlANSI arrays,” Tech. Rep., Stanfor Univ.,
Nov. 1989.
Y. Birk and J . B. Lotspiech, “On finding non-intersecting straight-
line connections of grid points to the boundary,” Tech. Rep. RJ 7217
(67984). IBM, Almaden Research Center, San Jose, CA, Dec. 1989.
J. W. Greene and A. El Gamal, “configuration of VLSI arrays in
the presence of defects.” J . ACM, vol. 31, no. 4. pp. 694-717, Oct.
1984.

Bedford, MA: Digital, 1982.

Vwani P. Roychowdhury was born in Asansol. In-
dia, on April 16. 1961. He received the B. Tech de-
gree from the Indian Institute of Technology. Kan-
pur, the M.S. degree from University of Rochester,
Rochester, NY. and the Ph.D. degree from Stan-
ford University. Stanford. CA. in 1982. 1983, and
1988. respectively. all in electrical engineering.

He is currently associated with the Information
Systems Laboratory at Stanford University as a Re-
search Associate. His research interests include par-
allel algorithms and architectures. special P U ~ O S K trary topologies. . .

ROYCHOWDHURY et al. : ALGORLTHMS FOR RECONFIGURATION IN VLSliWSI ARRAYS 489

computing arrays and VLSI design, fault-tolerant design. and the theory of
neural networks.

a research staff memb
tational complexity, eri
computing, and neural

er.

nc
*or

Jehoshua Bruck (M’90) was born in Haifa. Is-
rael, on April 19, 1956. He received the B.Sc. and
M.Sc. degrees in electrical engineering from the
Technion-Israel Institute of Technology, Haifa, in
1982 and 1985, respectively. and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, in 1989.

From 1982 to 1985 he was with the 1BM Haifa
Scientific Center, Israel. In March 1989. he joined
the IBM Research Division at the Almaden Re-
search Center, San Jose, CA, where he is presently
His research interest5 include algorithms, compu-

‘-correcting codes, fault-tolerant computing, parallel
:Works.

Thomas Kailath (S’57-M’62-F’70) wd5 educdted
in Poona, India, and at the Massachusetts Institute
of Technology (S M , 1959, Sc D . 1961)

Atter a year at the Jet Propulsion Laboratories,
Pasadena, CA. he joined Stanford University, Stan-
ford, CA, as an Associate Professor of Electrical
Engineering in 1963 He wds promoted to Full Pro-
cessor in 1968, served as Director of the Informa-
tion Systems Laboratory from 1971-1980, as Asso-
ciate Department Chairman from 1981 to 1987, and
currently holds the Hitachi America Professorship

in Engineering He has worked in a number of areas including information
dnd communication theory, signal processing, linear systems, linear algebra.
operator theory, and control theory His recent research intere5ts include ar-
rdy processing. fast algorithms for nonstationary signal processing, and the
design of special purpose computing arrays He is the author of Linear Sys-
tems (Englewood Cliffs, NJ Prentice-Hall, 1980) and Lectures on Wiener
and Kalman Filtering (Berlin, Germany Springer-Verlag, 1981)

Dr Kailath has held Guggenheim and Churchill fellowships, among others,
and received awards from the IEEE Information Theory Society, the lEEE
Signal Processing Society and the American Control Council He served as
President of the IEEE Information Theory Group in 1975 He I$ a Fellow
of the Institute of Mathematical Statistics and is a member of the Nationdl
Academy of Engineering

