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Efficient Algorithms for Reconfiguration in 
VLSIDVSI Arrays 

Abstmct-This paper deals with the issue of developing effi- 
cient algorithms for reconfiguring processor arrays in the pres- 
ence of faulty processors and fixed hardware resources. The 
models discussed in this paper consist of a set of identical pro- 
cessors embedded in a flexible interconnection structure that is 
configured in the form of a mtangular grid. We first consider 
an array grid model based on single-track switches for which 
simulations performed by previous researchers have shown that 
considerable enhancement in yield can be achieved by reconfigur- 
ing arrays according to a set of conditions that can be formally 
stated in the form of a so-called raconf $umbility theorem. How- 
ever, the important issue of developing efficient algorithms for 
determining whether the conditions in the reconfigurability the- 
orem are met has not been resolved, and the algorithms pro- 
posed in the literature to do so are of exponential complexity. 
In this paper, we resolve this open problem by proposing an 
efficient polynomial time algorithm for determining feasible re- 
configurations for an array with a given distribution of faulty 
processors. In the process, we also show that the set of condi- 
tions in the reconfigurability theorem is not necessary. Finally, 
we develop a polynomial time algorithm for finding feasible re- 
configurations in an augmented single-track model and in array 
grid models with multiple-track switches. 

Index Terms- Efficient polynomial time algorithm, fault- 
tolerant architecture, reconfigurable processor arrays, single- 
track and multiple-track models, wafer scale integration (WSI) 
technology. 

I. INTRODUCTION 

This paper deals with the issue of developing efficient al- 
gorithms for reconfiguring processor arrays in the presence 
of faulty processors. Such studies can be easily motivated in 
the case of wafer scale integration (WSI) technology where, 
for example, a large number of processors, configured in the 
form of a grid, can be put on a single wafer. Due to yield 
problems, some of the processors are invariably going to be 
faulty. In such a case, instead of treating the whole wafer as 
defective, one can work around the faulty processors and re- 
configure the rest in the form of a grid. Thus, reconfiguration 
methodologies can be viewed as possible tools to increase the 
effective yield of the processing technology. 
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Fig. 1. The array grid model based on single-track switches, shown with 
the possible states of a switch. 

The general model discussed here (see e.g., [SI, [61, 
[8]-[12], [15]) consists of a set of identical processors embed- 
ded in a flexible interconnection structure that is configured in 
the form of a rectangular grid. Each grid line in the mesh has 
a fixed number of data paths that can be routed along it (i.e., 
the model has fixed channel width); switches can be placed 
at every grid point and at every location where a processor 
is connected to the grid. Furthermore, often the processors 
are divided into a set of nonspare PE’s (say an rn x n array) 
and a set of spare PE’s that are distributed in a predeter- 
mined fashion. The general question asked in such models is: 
if some of the nonspare PE’s are faulty, then can the array be 
reconfigured to replace the faulty PE’s with some of the spare 
PE’s? Obviously, the power of the reconfigurable architecture 
is determined by the available hardware resources such as the 
channel width, the complexity of the switches, and their dis- 
tribution in the array. Although one would like to put as much 
hardware as possible, often it is expensive to do so. 

A particularly simple but useful model is an array grid 
model based on single-track switches (see Fig. 1) that has been 
studied in [2] and [3]. It consists of an rn x n array of non- 
spare PE’s, double-row-column of spare PE’s, and single- 
track switches; the allowed states of the switches are also 
shown in Fig. 1. The model is single-track in the sense that 
only one communication path is allowed along each horizon- 
tal/vertical channel. It is further assumed in the model that 
a faulty PE can be converted into a connecting element. The 
single-track model’s advantages arises from its inherent sim- 
plicity: since data paths take up a significant amount of area 
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Fig. 2. Compensation paths: (a) shows the routing required by a compensa- 
tion path; (b) shows a near-miss situation; (c) shows a nonnear-miss situation. 

on a waferlchip, considerable saving in area is achieved by 
allowing only one data path along every grid line; moreover, 
the simplicity of the switches makes the routing hardware 
more reliable. Furthermore, extensive simulations reported 
in [3] show that considerable enhancement in yield can be 
achieved by reconfiguring the array grid models with single- 
track switches. 

We now briefly discuss the results reported in [3] .  The pa- 
per derives a set of sufficient conditions (stated in the form 
of a so-called recon figurability theorem presented below) for 
determining whether an array with a particular distribution of 
faulty processors is reconfigurable, where a given array is 
recon figurable if the nonfaulty processors can be connected 
to form an m x n array. The sufficient conditions in the re- 
configurability theorem can be stated in terms of the so-called 
compensation paths. Let a nonspare PE at location ( x ,  y )  
be faulty, then in any valid reconfiguration it has to be re- 
placed by a healthy processor. Let the faulty PE at ( x ,  y )  be 
replaced by a healthy PE, say at location ( x ' ,  y ' ) ,  which in 
turn is replaced by a healthy PE, say at location (x" ,  y") ;  
one can continue this chain until one ends up at a spare PE. 
Now a compensation path can be defined as the ordered se- 
quence of nodes ( x ,  y ) ,  ( x ' ,  y ' ) ,  (x" ,  y" ) ,  . . ' ,  involved in 
the replacement chain. Fig. 2(a) shows a compensation path 
and the corresponding routing required for replacing a single 
faulty processor in the single-track model; note that the com- 
pensation path is straight and continuous. This simple concept 
of using straight and continuous compensation paths can be 
also used in the presence of multiple faulty processors and the 
sufficient conditions can be formally presented in the form of 
the so-called reconfigurability theorem (for a formal proof, 
see [2]  and [ 3 ] ) .  

Reconfigurability Theorem: Given an m x n array of 
nonspare PE's, with spare PE's along the sides, it is recon- 
figurable into an m x n array of healthy processors by single- 
track switches if 1)  there exists a set of continuous and straight 
compensation paths covering all the faulty nonspare PE's and 
2 )  there is neither intersection nor near-miss among the com- 
pensation paths. 

A near-miss situation occurs if two compensation paths in 
neighboring rows (columns) overlap and are in opposite di- 

rections (see Fig. 2 ;  note that a near-miss situation does not 
occur if the compensation paths overlap by one node). 

In [ 3 ] ,  an algorithm to determine valid reconfigurations 
that satisfy the conditions in the reconfigurability theorem is 
also presented. The algorithm is developed by reformulating 
the reconfigurability problem as a maximum independent set 
problem, and then adapting a well-known algorithm for de- 
termining maximum independent sets in a graph. However, 
the maximum independent set problem is NP-complete and 
the best known algorithms take exponential time; hence, the 
algorithm presented in [3] has exponential complexity. The 
question whether efficient polynomial time algorithms ex- 
ist was left as an open one. Moreover, efficient algorithms 
were not known even for the restricted cases where spare 
processors are available only along, for example, two or 
three sides (as opposed to on all four sides as shown in 
Fig. I ) .  

In view of the above results, the contributions of this paper 
with regard to the single-track models can be summarized as 
follows. 

.We show that the conditions in the reconfigurability theo- 
rem are not necessary, correcting a claim made in [l].  

.We present a polynomial time algorithm (in fact, the com- 
plexity is O(IF12), where IF( is the number of faulty pro- 
cessors) for determining valid reconfigurations according to 
the sufficient conditions. Moreover, linear time algorithms for 
determining valid reconfigurations are developed for the re- 
stricted cases where the spare processors are not present along 
all four sides of the array. 

We should note here that the combinatorial problem under- 
lying the reconfigurability issues in the single-track model is 
by itself quite interesting. The algorithm presented in this pa- 
per appears to be the first-known polynomial time algorithm 
for this problem. 

One can easily observe that the sufficient conditions for re- 
configuration as discussed above are also valid for more gen- 
eral array models such as the ones with multiple tracks. One, 
however, hopes that for such more powerful models it should 
be possible to develop more general conditions to allow recon- 
figuration of arrays that otherwise could not be reconfigured in 
the single-track model. With such motivation in mind, we first 
consider an augmented single-track switch model as shown in 
Fig. 3. We show that the augmented model is more powerful 
than the simple single-track model: the compensation paths in 
the augmented model need not be straight any more and can 
have bends. In general, if one allows more data paths along 
every grid line (i.e., a multiple-track model), then the com- 
pensation paths can be crooked and the restriction of near 
misses is no longer required. Hence, a generalized sufficient 
condition can be stated as follows: an array grid model with 
multiple-track switches is reconfigurable if one can determine 
a set of nonintersecting compensation paths (continuous, but 
not necessarily straight) for the faulty PE's in the array. We 
show that the combinatorial problem corresponding to such 
a sufficient condition can be efficiently solved by reducing it 
to the well-known problem of determining maximum flow in 
networks. 

The rest of the paper is organized as follows. In Section 11, 
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Fig. 3. An augmented single-track model. 

we present polynomial time algorithms for determining valid 
reconfigurations in the single-track model. In Section 111, we 
study more general models such as an augmented single-track 
model and multiple-track models, and present a polynomial 
time algorithm for searching for valid reconfigurations in such 
models. Section IV has some concluding remarks and in the 
Appendix we show that the conditions in the reconfigurability 
theorem are not necessary. 

11. EFFICIENT ALGORITHMS FOR RECONFIGURATION IN 

SINGLE-TRACK MODELS 

Although we show in the Appendix that the conditions in the 
reconfigurability theorem are not necessary for a valid recon- 
figuration to exist, extensive simulations reported in [3] show 
that by reconfiguring arrays according to the sufficient con- 
ditions, one can enhance the yield considerably. Now, check- 
ing whether the sufficient conditions are met is equivalent to 
solving the following problem: given a set of points in a two- 
dimensional grid, find a set of nonintersecting straight lines 
such that every line starts at a point and connects it to one of 
the boundaries of the grid, and there is no near-miss situation. 
We recall that a near-miss situation occurs if two lines in 
opposite directions overlap in adjacent rows or columns. If for 
the moment we relax the restriction of no near misses, then 
the sufficient condition reduces to the purely combinatorial 
problem stated in Problem 1 below. 

In this section, we shall first present an efficient algorithm 
for solving Problem 1 and then show how the algorithm can 
be modified to avoid near-miss situations. The algorithm pre- 
sented in this paper not only determines whether a compatible 
set of compensation paths exist, it also determines such a set 
whenever it is possible to do so. In the process, we shall de- 
velop efficient algorithms for the cases where spare processors 
are not available on all four sides; in fact, the algorithms for 
the restricted cases are only of linear (in a number of faulty 
processors) complexity. 

The combinatorial problem can be stated as follows: 
Problem I :  Let V be the set of grid points in an m x n 

two-dimensional rectangular grid, and let F c V .  Determine 

a set of straight lines such that 

a) each vertex U E F is assigned a straight line connecting 
it to one of the four boundaries of the grid 

b) the straight lines are nonintersecting . 
We can make the following observations: 

1) If there is a row (column) in the grid that contains none 
of the vertices in F,  then it is clear from the definition of 
our problem that the row (column) has no role in searching 
for a valid assignment of line segments. Hence, without loss 
of generality, we can delete such rows (columns) from the 
description of our problem and assume that 1 5 m ,  n 5 IF 1. 

2 )  Each vertex U E F can be assigned to at most one of 
four possible line segments, where each segment is along one 
of the four grid lines intersecting at v. Hence, instead of talk- 
ing in terms of assigning line segments we can talk in terms 
of assigning directions, e.g., assigning a segment that con- 
nects a vertex v to the left side of the grid, can be interpreted 
as assigning the direction Left to the node v. In the rest of 
this paper, we shall interchangeably use the two equivalent 
descriptions. 

Definition I :  An assignment for Problem 1 is a mapping 
of every node in the set F to the set of four possible directions 
D = { L e f t ,  Right, U p ,  Down}. 

An assignment is a valid assignment if the corresponding 
line segments do not intersect. 

Definition 2: A direction d is said to be a valid direction 
for a node U E F if there is a valid assignment in which v is 
mapped to d. 

The basic principle underlying our algorithm will be a 
greedy one, and we shall try to assign valid directions to nodes 
of F with only a minimal search. In particular, we are always 
able to find a node U E F for which we can assign a valid 
direction efficiently (in time at most linear in IF I). Thus, the 
total complexity of the algorithm will be at most quadratic in 

The greedy principle that will be used quite often in our 
algorithms is formalized by the following lemma. 

Lemma I :  If a node U E F can be assigned a direction, say 
d, that does not conflict with any direction that could possibly 
be assigned to the rest of the nodes in F, then it is sufficient 
to just search for a valid assignment for the nodes in F - {U} 
and assign the direction d to v. 

A proof of the above lemma is quite obvious; however, 
the underlying principle is very useful. That is, if one can 
identify such a node v,  then one can assign it a valid direction 
immediately without any further search. The algorithm can 
then remove the node and deal with a problem of a smaller 
size. The algorithms that we are going to develop utilize the 
geometry of the grid appropriately to identify such specialized 
nodes in a systematic manner. 

In case there are no nodes that can be assigned a direction 
using the above idea, then we are able to chose nodes appro- 
priately such that they can be assigned a valid direction with 
only a linear search. The principles used are slightly more 
complicated; however, they use the structure of the grid and 
are also greedy in nature. The principles can be best explained 
by describing the individual algorithms. 

IFI .  
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A .  Efficient Algorithms for  Special Cases 

We are going to develop our algorithm by first consider- 
ing several special cases, wherein the possible directions that 
can be assigned to the vertices in F are restricted. We shall 
then use the special cases appropriately to search for valid 
assignments, if there are any, in the case where all the four 
possible directions are permitted. The four special cases are 
as follows. 

Case I :  The line segments assigned to the nodes in F can 
be along only two directions, and the permitted directions are 
opposite to each other, e.g., {Left, Right). 

Case 2: The line segments assigned to the nodes in F can 
be along only two directions, and the permitted directions are 
at right angles, e.g., {Left, Down} [see Fig. 4(a)]; note that 
in the figures, a permissible direction is shown by drawing a 
line along the corresponding side. 

Case 3: The line segments assigned to the nodes in F can 
be along only three directions, e.g., {Left, Right, Up}  [see 
Fig. 4(b)]. 

Case 4: The nodes in the grid are partitioned into three 
distinct regions, as shown in Fig. 5(a). In region A ,  there 
are three permissible directions (e.g., {Left, Up,  Right)), 
in region B,  there are two permissible directions (e.g., 
{Left, Right}) and in region C, there are three permissible 
directions (e.g., {Left, Down, Right)). 

Lemma 2: There is a linear time algorithm for determining 
a valid assignment for Case 1. 

Proof: Let us consider, without loss of generality, the 
case when the permissible directions are Left and Right. It is 
clear that for the case under consideration, a valid assignment 
exists if and only if every row contains two or less nodes 
belonging to F. Thus, a linear time algorithm can be designed 
by sequentially examining the rows from top to bottom until 
either a row containing three or more nodes in F is detected 
(in which case no valid assignment exists) or all the rows are 
examined. n 

Lemma 3: There is a linear time algorithm for determining 
a valid assignment for Case 2. 

Proof: Without loss of generality, let us assume that the 
permissible directions are Left and Down [see Fig. 4(a)]. An 
algorithm for determining a valid assignment can be described 
as follows. Sequentially examine the rows of the grid starting 
with the bottom row. If it is possible, then for every node 
U E F in the row assign the direction Down. Thus, there are 
two cases. 

1) All nodes in the row can be assigned the direction 
Down; in which case go to the upper row and repeat the 
procedure. 

2)  There is a node x f F that cannot be assigned the direc- 
tion Down; note that this can happen only if there is another 
node in F that is the same column as x but in a row that has 
already been examined. Try to assign the direction Left to the 
node x, if it cannot be down then there is no valid assignment. 

If x can be assigned the direction Left, then as shown in 
Fig. 4(a), the unexamined region of the grid is divided into 
two distinct regions, namely A and B. Assign all the nodes in 
region A the direction Left; if it is not possible to do so, then 

(a) (b) 
Special Cases 2 (a) and 3 (b) in Section 11-A Fig. 4. 

there is no valid assignment. If the nodes in region A are all 
successfully assigned the direction Left, then go to the bottom 
row in the region B and repeat the procedure described until 
now. 

The above algorithm visits every node exactly once; hence, 
it is of linear complexity. The correctness of the above algo- 
rithm can be proved by justifying each step of the algorithm. 

U 

Lemma 4: There is a linear time algorithm for determining 
a valid assignment in Case 3. 

Proof: Without loss of generality, let us consider an in- 
stance of Case 3 as shown in Fig. 4(b), where the permitted 
directions are Left, Right, and Top. An algorithm for finding 
a valid assignment can be described as follows. 

Sequentially examine the rows of the grid starting with the 
bottom row of the grid. Depending on the number of nodes 
belonging to F in the row make the following assignments. 

1) If the row has only one node belonging to F,  then assign 
it the direction Left or Right and move to the next upper row. 

2 )  If the row has two nodes, then assign the left node the 
direction Left and the right node the direction Right; move 
to the next upper row. 

3) If the row has three or more nodes, then assign the left- 
most direction Left, the rightmost node the direction Right, 
and the nodes in the middle the direction Up. The rest of the 
grid now gets partitioned into several distinct regions as shown 
in Fig. 4(b). The nodes in the inner regions have only one per- 
missible direction and hence they are assigned the direction 
Up. If such assignments lead to contradiction (i.e., there are 
two nodes in the same column in one of these regions), then 
there is no valid assignment. 

Now, in each of the two outer regions, namely A and B ,  
there are two permissible directions that are at right angles. 
Hence, each such region can be tested for valid assignments 
by following the algorithm outlined in Lemma 3. 

The above algorithm visits every node only once and hence 
it is of linear complexity. Also, note that the above algorithm 
is a combination of the algorithms developed in Lemma 2 
and Lemma 3. In particular, the algorithm follows the assign- 
ment procedure in Lemma 2 until it finds a row with three or 
more nodes of F,  and from then on it follows the algorithm 
in Lemma 3. A formal proof of correctness for the above al- 
gorithm will be skipped here; however, we should note here 
that a justification for the above algorithm can be constructed 

0 
We should note here that the algorithms outlined in Lemmas 

2,  3, and 4 (and the ones to be presented later in this section) 

by combining the justifications for Cases 1 and 2. 
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Fig. 5 .  The special case corresponding to Case 4 in Section 11-A. 

can be easily adapted to work for restricted versions of the 
respective cases. For example, in Case 3, one can restrict 
possible assignments to a particular node in F by disallowing 
the assignment of one of the feasible directions to it. A pos- 
sible motivation behind such a restriction may be to indicate 
that the spare processor along the forbidden direction is itself 
faulty, and hence one cannot allow a compensation path in 
that direction. 

There are several ways of adapting the above algorithms; 
however, one particularly simple one is described here. With- 
out loss of generality, assuming that the direction Left is disal- 
lowed for the node x E F ;  this restriction is meaningful only 
if there is no node to the left of x in the same row as x. In 
order to accommodate this restriction, augment the set F with 
a node y and place it in the same row as x, but on the extreme 
left edge of the grid in a newly added column. Now in the 
augmented problem, the direction Left is no longer feasible 
for x ;  moreover, since the node y is at the very edge of the 
grid, it can be always assigned the direction Left without af- 
fecting possible assignments to the rest of the nodes in F (see 
Lemma 1). 

Lemma 5: There is a linear time algorithm for determining 
a valid assignment in Case 4. 

Proof: Let us consider an instance of Case 4 as shown 
in Fig. 5(a). An algorithm for determining valid assignments 
can be outlined as follows. 

Sequentially examine the rows of the grid, starting with the 
bottom row, and consider the nodes of F that are in region A 
only. The motivation is the same as before: to identify nodes 
that can be assigned directions which do not interfere with the 
rest. 

If the row under consideration has only one node in the 
region A ,  then assign it the direction Left and go to the next 
upper row. If the row has no nodes from F,  then also go to 
the next upper row and repeat the procedure. 

If the row has two or more nodes, then the rightmost node, 
say x, has at most two directions (namely, Right and Up) 
that can be assigned to it. The algorithm checks for valid 
assignments by first assigning the direction Right to node x, 
and then assigning the direction Up as follows. 
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1) Assign x the direction Right; Fig. 5(b) shows the par- 
titioning of the grid under this assignment. The unassigned 
parts of the grid get partitioned into four different regions 
and each such region can be labeled as one of the cases that 
we have already discussed. For example, the region A has 
two permissible directions that are opposite to each other and 
hence can be searched for valid assignments using the algo- 
rithm discussed in Lemma 2. 

However, consider the region D and C together; the whole 
region can be treated as a restricted version of Case 3 dis- 
cussed in Lemma 4. It is restricted in the sense that for the 
nodes of F that are in the region C, the direction Up is disal- 
lowed. We have already discussed how to adapt algorithms to 
accommodate such restrictions; hence, the combined region 
D and C can be searched for valid assignments by using the 
algorithm outlined in Lemma 4. Similarly, one can again use 
the algorithm of Lemma 4 to search for valid assignments in 
the combined region A and B [see Fig. 5(b)]. 

2) If the result of the previous search is in negative, then 
assign x the direction Up; Fig. 5(c) shows the resulting parti- 
tioning of the grid. The grid gets partitioned into six regions 
and each region can be labeled by the case it corresponds to. 
For example, the region A has two permissible directions that 
are at right angles; hence, it corresponds to Case 2. Similarly, 
the region C has only one permissible direction and hence all 
nodes in the region are assigned the direction Right. 

Search the regions sequentially in the following order: A ,  
B ,  C,  D ,  and E ,  F (combined) using the corresponding algo- 
rithms [as shown in Fig. 5(c)]. 

Note that if none of the rows in the region A of Fig. 5(a) 
has more than one node belonging to F,  then one can assign 
the direction Left to the nodes in the region A. One can 
then search for valid assignments in the regions B and C of 
Fig. 5(a), by combining the two regions and then treating the 
combined region as a restricted version of Case 3. 

In the above algorithm, each node is visited at most twice 
and hence the algorithm is again of linear complexity. 0 

B .  Efficient Algorithms for the General Case 
The algorithm for the general case where all the four di- 

rections are permitted can be described as a layer peeling 
algorithm. It starts with the outermost rows and columns of 
the grid and determines valid directions for the nodes of F 
that are in these outer layers; it then performs the same oper- 
ations on the inner layers. The algorithm can be discussed in 
two parts. 

Part I: In the first part of the algorithm, one attempts to 
determine valid directions using the principle of Lemma 1, 
and it can be described as follows. 

1) Sequentially examine the columns of the grid starting 
with the leftmost column. Try to assign the direction Left to 
every node of F that is on the column under consideration. If 
all the nodes can be successfully assigned the direction Left, 
then go to the next column. If there is a node that cannot be 
assigned the direction Left, then go to the next step. 

2) Sequentially examine the rows of the reduced grid (i.e., 
the portion of the original grid that is unassigned in Step 1) 
starting with the top row. If possible, then assign to every 
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Fig. 6 .  (a) The configuration of the reduced grid after executing Part 1 of 

the algorithm in Section 11-B. (b) Enumeration of the possible assignments 
of directions to nodes x and y .  

node in the row under consideration the direction Up. If all 
nodes can be assigned the direction Up, then go to the next 
row, else go to the next step. 

3) Sequentially examine the columns of the reduced grid 
(i.e., the portion of the original grid that is unassigned after 
Steps 1 and 2) starting with the rightmost column. If possible, 
then assign to every node on the column the direction Right. 
If all nodes can be assigned the direction Right, then go to 
the next row, else go to the next step. 

4) Sequentially examine the rows of the reduced grid (i.e., 
the portion of the original grid that is unassigned after Steps 
1,  2, and 3) starting with the bottom. If possible, then assign 
to every node on the row the direction Down. If all nodes 
can be assigned the direction Down, then go to the next row, 
else go to the next step. 

5) After completion of the four steps, one has a reduced 
grid which has been obtained by peeling off the outer layers 
of the original grid. Next, repeat Steps 1-4, until the reduced 
grid is of the form shown in Fig. 6(a). In particular, each 
of the outermost row and column of the reduced grid should 
have at least one node that is blocked on the outside. 

Part 2: The next part of the algorithm determines valid 
directions for the nodes on the outermost rows and columns 
of the grid shown in Fig. 6(a). The objective is to show that 
we can determine such valid directions in linear time. 

Let us assume, without loss of generality, that each of the 
outermost rows and columns in the grid, shown in Fig. 6(a), 
contains only one node of F, if an outer row or column con- 
tains more than one node, then the search for valid directions 

Case 1 Case 2 

Case 3. C d X  4 

Fig. 7. Enumerating the possible assignments of directions to nodes w and 
z in Case 7 of Fig. 6 .  

is going to be simpler and we shall mention such simplifica- 
tions later in this section. 

Let us consider the nodes x and y in Fig. 6(a); each node 
has at most three possible directions that can be assigned to 
it. It turns out that altogether there are seven possible ways 
in which x and y can be assigned directions [see Fig. 6(b)], 
and one has to check for valid assignments under each of 
the assignments. However, each of the first six cases can be 
searched for valid assignments by breaking up the regions into 
special cases (or their restricted versions) that were considered 
in Section 11-A. The breaking up of the regions and the special 
cases they correspond to are shown in Fig. 6(b). Note that 
the algorithms developed for the special cases are of linear 
complexity; hence, each of the first six cases can be searched 
for valid assignments in linear time. 

The seventh case, where the node x is assigned Left and 
the node y is assigned Right, can be further simplified by 
considering possible assignments to nodes w and z .  Each of 
the nodes w and z has only two permissible directions and 
they together lead to four cases (see Fig. 7). Three of the 
cases can be searched for valid assignments in linear time by 
using the algorithms developed for the special cases. 

Thus, a complete algorithm for a systematic search of a 
valid assignment for the nodes in the outer layers of the grid 
shown in Fig. 6(a) can be summarized as follows. 

1) Use the algorithms developed for special cases to search 
for valid assignments in each of the first six configurations, 
which are illustrated in Fig. 6(b). If any of the searches finds 
a valid assignment for every node in the reduced grid, then 
there is a successful solution to Problem 1 .  

2)  Enumerate the seventh case as shown in Fig. 7, and 
search for valid assignments for the first three enumerations. 

3) If every search in Steps 1 and 2 fails then assign direc- 
tions to nodes x ,  y ,  w, and z that are shown in Case 4 of Fig. 
7, and go to the inner portion of the grid (i.e., peel off the 
outermost layer) and repeat Parts 1 and 2 for the new reduced 
grid obtained after peeling off the outer layers. The idea is 
the following: in Steps 1 and 2, we have checked all but one 
possible assignment to the nodes in the outermost layer of the 
reduced grid. If none of these cases leads to a valid assignment 
for nodes of F that are in the grid. then for a valid assignment 
to exist the last possible assignment (i.e., Case 4 in Fig. 7) is 
the only candidate. 
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We can make the following remarks about the procedure 
discussed so far. 

1) Until now we have assumed that every outermost row 
or column in the reduced grid shown in Fig. 6(a) has only 
one node. Consider, however, the case where in addition to 
x,  there are other nodes in the upper outermost row of the 
grid. This would imply that the possible directions that could 
be assigned to x are restricted and some of the cases shown in 
Fig. 6(b) are not valid. Hence, the search for valid assignments 
becomes simpler. The same comment holds if all the four 
nodes (i.e., x,  y ,  w and z )  are not distinct. 

2 )  The relative positioning of the nodes w and z in Fig. 
6(a) has also been chosen to illustrate the worst case situation. 
Consider, for example, the case where the node z is located 
lower than w. Then, one can easily show that even Case 4 
of Fig. 7 can be searched for valid assignments by utilizing 
the algorithm for the Special Case 4, that was discussed in 
Section 11-A. 

Theorem I :  There is a quadratic time algorithm (0( IF 1 2 ) )  
for determining if there exists a valid assignment for Problem 
1 .  

Proof: Follows directly from the description of Parts 1 
and 2 of the algorithm. To decide on valid directions for nodes 
lying on the outermost layers of the grid, one needs at most 
O((F() time. Since there are at most IF( such layers in the 

0 grid, the complexity of the algorithm is O( IF 1 2 ) .  
C .  Avoiding Near-Miss Situations 

We can make the following remarks. 
1) A near-miss situation can occur only among nodes in 

F that are in adjacent rows and columns. Hence, if there is 
more than one consecutive row (column) that contain none of 
the vertices in F,  then clearly all but one of these blank rows 
(columns) can be deleted. Thus, without loss of generality one 
can assume that I 5 m, n 5 2 (F 1. 

2 )  While discussing the algorithms without considering 
near-miss situations, only cases that needed new algorithms 
are Cases 1 ,  2, and 3 (see Section 11-A). The algorithms for 
the general case as well as Case 4 were developed by ju- 
diciously making use of the algorithms for the other special 
cases. The same argument holds when one considers near-miss 
situations; i.e., one needs to develop algorithms only for the 
three special cases. However, Case 2 can never have a near- 
miss situation; this is because the two permissible directions 
are always at right angles and can never be running opposite 
to each other. Thus, we have developed algorithms only for 
Cases 1 (line segments along two opposite directions are al- 
lowed) and 3 (line segments along at most three directions are 
allowed). 

Lemma 6: There is a linear time algorithm for determining 
a valid assignment for Case 1 even when near-miss situations 
are avoided. 

Proof: Let us assume that the directions permitted are 
Left and Right. Assume also that none of the rows has more 
than three nodes from F; if any row does, then obviously 
there is no valid assignment(s) for the node(s) in the middle. 
Also, note that because of near-miss situations, the rows are 
no longer independent and assigning directions to the nodes 
in one row may affect possible assignments of directions to 

nodes in adjacent rows. The basic idea behind the algorithm 
is: since in the rows with two nodes the directions are fixed, 
one can systematically assign directions to the single nodes 
such that near-miss situation does not occur. The algorithm 
can be briefly described as follows (for more details see [ 131): 
1) Sequentially examine the rows from bottom until a row with 
two nodes is reached. 2) Now suppose there is a row with two 
nodes of F, then the node on the left side is assigned the di- 
rection Left and the node on the right is assigned the direction 
Right. Since these directions are fixed, one can go down and 
assign appropriate directions to the single nodes in the lower 
rows. Stop when either a) a row is encountered for which the 
direction is not determined by the assignment to the node in 
the row below it; in this case, the rows below do not interact 
with the rows on top and the whole algorithm can be repeated 
again, or b) another row with two nodes is encountered and 
there is no valid assignment. 3) If the procedure has not failed 
and all the rows have not been examined, then repeat Steps 1 

0 
Lemma 7: There is a linear time algorithm for determining 

a valid assignment for Case 3 even when near-miss situations 
are avoided. 

Proof: Let us assume that the permitted directions are 
Left, Right, and Up. We can divide the rows into two regions, 
i.e., examine the rows from the bottom until a row with more 
than two nodes (belonging to f l  is found; let the region above 
and including this row be called B,  and the region below 
be called A .  We know from Lemma 4 how to handle the 
region B ,  i.e., it gets partitioned into two instances of Case 2 .  
One, however, has to make assignments in the region A ,  such 
that there are no near-misses; it can be done by applying the 
algorithm developed in Lemma 6. For more details see [13]. 

and 2 for the unassigned rows of the grid. 

U 

We should mention here that efficient data structures 
can be easily designed to implement all the algorithms de- 
scribed in this section in the claimed time complexities.' 
One way of implementing the algorithms would be to bucket- 
sort the points in F according to their row and column num- 
bers . 

III. EFFICIENT ALGORITHMS FOR RECONFIGURATION IN MORE 
GENERAL MODELS 

Fig. 3 shows an augmented single-track model: it has more 
switches compared to the simple single-track model, and each 
switch has one more state than before. We should note here 
that by adding the fifth state, the complexity of and the area 
taken by a switch is not appreciably increased; moreover, it is 
a common practice to assume that a switch in the single track 
model will have the five states shown in Fig. 3 [12]. 

One would expect that the added hardware (i.e., more 
switches) in the new model should facilitate reconfiguration. 
It is indeed the case, and Fig. 8 shows a valid reconfiguration 
when one introduces a bend in the compensation path; the 
modified routing only affects the states of the switches that 
are local to the compensation paths. As mentioned before, it 
is not possible to have bent compensation paths in the simple 
single-track model [l] ,  [3]. This added flexibility gives more 

' In  [14], an 
Problem 1. 

improved algorithm has been presented for 



ROYCHOWDHURY et al.: ALGORITHMS FOR RECONFIGURATION IN VLSIiWSI ARRAYS 

Cornpensanon 

t path 

Fig. 8 .  A bent compensation path and a corresponding routing scheme In 
the augmented single-track model. 

power, e.g., in the example shown in Fig. 10, the faulty pro- 
cessor x is no longer blocked and can be replaced easily in 
the augmented model by a bent compensation path. The aug- 
mented model, however, is still not powerful enough to handle 
near-miss situations and possible complications due to adja- 
cent, but bent compensation paths. 

For multiple-track models, however, it is sufficient for the 
compensation paths to be continuous and nonintersecting. 
Hence, a generalized sufficient condition for the multiple- 
track models can be stated as follows: an array grid model 
with multiple-track switches is reconfigurable if one can de- 
termine a set of nonintersecting and continuous compensation 
paths (not necessarily straight) for the faulty PE’s in the array. 
Now checking whether for an array with a given distribution of 
faulty processors one can determine such compensation paths, 
is equivalent to solving the following combinatorial problem: 

Problem 2: Let V be the set of grid points in an n x n 
two-dimensional rectangular grid, and let F c V .  Determine 
a set of nonintersecting paths in the grid such that 

a) each vertex U E F is connected to a distinct node on the 
boundary of the grid by one of the paths. 

b) the paths are nonintersecting. 
Theorem 2: There exists a polynomial (in n )  time algo- 

rithm for solving Problem 2. 
Proof: We shall prove the theorem by reducing Problem 

2 to the well-known MAX-FLOW problem for which there are 
several efficient polynomial time algorithms [7]. The desired 
network for the flow problem can be described by a directed 
graph G = ( V ’ ,  E )  where 

1) V‘ = V U {s, t } ,  where V is the set of nodes in the 
grid, s is the source node, and t is the sink node. 

2 )  E consists of three types of arcs: 1) for every pair of 
nodes i, j that are adjacent in the grid, two arcs i --f j and 
j + i are in E,  2) for every boundary node U E V ,  an arc 
connecting it to the sink node t (i.e., the arc U + t )  is in E ,  
and 3) for every node U E F ,  an arc connecting the source 
node s to it (i.e., the arc s -+ U )  is in E. 

3) The capacity of every e E E ,  denoted by c(e),  is unity. 
4) The capacity of every node U E V (i.e., every node in 

V ’ ,  except the source node s, and the sink node t) ,  denoted 
by c(u) ,  is unity. 

Fig. 9 shows a grid and the corresponding network derived 

~ 
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(b) 
Fig. 9. Construction of the network G in Theorem 2 :  (a) shows a grid with 

points belonging to F (marked by cross signs); (b) shows the corresponding 
network G. 

Fig. 
path for w .  

10. Example of valid reconfiguration in a case where the sufficient 
conditions in the reconfigurability theorem arc not satisfied. 

according to the above rules. We can make the following ob- 
servations about the network derived above. 

1) Since the out-degree of the source node is IF1 and ev- 
ery edge has unit capacity, the maximum possible flow in the 
network is IF 1 .  

2) Every unit of flow pushed from the source to the sink 
defines a unique directed path connecting a node in F to one 
of the boundary nodes. This follows directly from the follow- 
ing facts: a) all edges have unit capacity b) the only way the 
source node can push a unit of flow is through one of the 
nodes in F ,  and c) the only way the sink node can receive a 
unit of flow is through one of the boundary nodes. 

3) Since every node (except the source and the sink nodes) 
in the network has unit capacity, only one edge coming into a 
node can be saturated, i.e., has unit flow. Hence, every unit 
of flow in the network not only defines a unique path, but the 
corresponding paths are also nonintersecting. 

4) A path defined by a unit flow in the directed network 
is also a path in the undirected grid (excluding of course the 
edges from the source and to the sink). This follows from the 
fact that if the arc i + j in G is saturated, then the reverse 
arc j + i cannot be saturated; if it is, then the two arcs will 
form a circular flow which does not contribute to the net flow 
from the source to the sink. 

Our claim is that, there is a solution to Problem 2 if and 
only i f  the maximum flow in the network G, as defined 
above, is IF 1 .  It follows directly from the above remarks that 
if the maximum flow in the network G is lFI, then there are 
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IF 1 nonintersecting paths in the corresponding grid such that 
each one connects one of the nodes in F to a node in the 
boundary. Each such path is defined by a unit flow from s to 
t in the network G.  

Now if there is a solution to Problem 2, then we know that 
there is a set P,  of IF 1 nonintersecting paths in the grid con- 
necting each node in F to a distinct boundary point in the grid. 
One can make the paths in P directed in the corresponding 
network G by choosing the appropriate arcs such that the paths 
are from the nodes in F t o  the respective boundary points. One 
can now determine a flow IF 1 in the network G as follows: 
1) assign unit flow to all the arcs coming out from the source 
node s, and the arcs lying on the paths in P ,  2) assign unit 
flow to the arcs that join the boundary points belonging to the 
paths in P,  to a sink node, and 3) assign 0 flow to the rest 
of the arcs in E .  By construction then, the network has flow 

Note that by solving the corresponding flow problem, one 
not only determines whether Problem 2 is feasible, but one 
also gets a required set of nonintersecting paths when it is 
possible to do so. Also, since in the network all edges and 
nodes have unit capacities, the complexity of the maximum- 
flow algorithm can be shown to be O(n3)  [7]. 

IF 1 .  c 

IV. CONCLUDING REMARKS 

In this paper, we have addressed some of the combinatorial 
problems that arise while reconfiguring processor arrays with 
fixed hardware resources. In the case of an array grid model 
with single-track switches, the problem of reconfiguring the 
array can be reduced to the combinatorial problem of deter- 
mining a set of nonintersecting straight lines in a grid. In the 
case of more general models such as the array grid models 
with multiple-track switches, the reconfigurability problems 
can be reduced to the problem of determining a set of nonin- 
tersecting paths in a two-dimensional grid. For the first prob- 
lem we provide an efficient geometric algorithm while for the 
latter problem we derive an efficient algorithm by reducing it 
to a MAX-FLOW problem. A few remarks. 

1) Failures in Switches/Connections: In this paper we 
have considered only processor failures. However, often 
switch failures are modeled by disallowing certain compensa- 
tion paths or by considering that certain PE’s are faulty (see 
[3]). We have mentioned in Section I1 how our algorithm can 
be adapted if, for individual faulty processors, compensation 
paths in certain directions are not allowed. In that sense, we 
have shown that reconfiguration in single-track models, 
even with switch failures, is of polynomial complexity. 

Moreover, another reason for concentrating on processor 
failures is that the yield for switches and connections is much 
higher than the corresponding yield for processors [4]. 

2) Hexagonal,/Triangular Grid: The general topology 
considered in this paper is that of a rectangular grid: how- 
ever, one would be interested in addressing similar issues for 
other kinds of grids. A little thought will show that Problem 
2 ,  when translated to any other grid, can still be solved in 
polynomial time by using MAX-FLOW algorithms. It is not 
clear, however, how to solve Problem 1 for grids with arbi- 

APPENDIX 
THE SUFFICIENT CONDITIONS FOR RECONFIGURABILITY ARE NOT 

NECESSARY 

Herein we shall show why the conditions in the reconfig- 
urability theorem [ l ] ,  [3] are not necessary. The reason lies 
in the fact that in the theorem nothing is said about compen- 
sation paths for healthy processors; however, as we are going 
to illustrate, one can gain by replacing healthy processors too. 
Consider for example, the faulty processor x in Fig. 10; it is 
blocked by faulty processors on all four sides and according 
to the reconfigurability theorem one cannot determine a valid 
compensation path for x. However, as shown in Fig. 10, one 
can still reconfigure the given array by replacing the whole 
row containing the processor x by one of the spare rows; the 
faulty processors that are left (i.e., y and w )  can be replaced 
by the usual compensation paths. For more examples see [ 131. 
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