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Efficient entanglement-assisted transformation for bipartite pure states

Somshubhro Bandyopadhyay* and Vwani Roychowdhury†
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We show that entanglement-assisted transformations of bipartite entangled states can be more efficient than
catalysis@Jonathan and Plenio, Phys. Rev. Lett.83, 3566~1999!#, i.e., given two incomparable bipartite states
not only can the transformation be enabled by performing collective operations with an auxiliary entangled
state, but the entanglement of the auxiliary state itself can be enhanced. We refer to this phenomenon as
supercatalysis. We provide results on the properties of supercatalysis and its relationship with catalysis. In
particular, we obtain a useful necessary and sufficient condition for catalysis, and provide several sufficient
conditions for supercatalysis and study the extent to which entanglement of the auxiliary state can be enhanced
via supercatalysis.
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One of the primary goals of quantum information theo
@1# is efficient manipulation of quantum entanglement sha
among spatially separated parties, each of whom posse
only a subsystem of the entire entangled state@2#. Such dis-
tributed entanglement, as a resource, is a critical compo
of quantum information protocols, such as quantum telep
tation @3#, superdense coding@4#, and distributed computing
algorithms@5#. Since the underlying entangled state is sp
tially distributed, any entanglement manipulation is neces
ily constrained to be carried out with local operations a
classical communication among the parties~LOCC!. The
properties and classifications of both deterministic a
probabilistic/conclusive LOCC transformations have be
pursued vigorously in the recent past@6–12#.

A surprising feature that sets apart entanglement fr
usual physical resources is its capacity to enable, with
being consumed, transformations that are impossible un
deterministicLOCC @9#. This property is very similar to tha
of catalysts in chemical reactions and is aptly termed asen-
tanglement catalysis. It has also been shown that the pro
ability of a conclusive conversion can be enhanced in
presence of a catalyst, when a deterministic conversion is
possible@9#. Another instance where entanglement is use
in a sense similar to catalysis~i.e., not being consumed!, is
partial recoveryof entanglement. In this case, the entang
ment lost in an LOCC manipulation is partially recover
using an auxiliary entanglement and performing collect
operations@10,11#.

We show that the above two features of entanglement
be exploited simultaneously and that entanglement ass
LOCC transformations can be more efficient than cataly
@9#. In particular, given two incomparable states~i.e., states
that are not LOCC transformable with certainty!, not only
can the transformation be enabled by performing collec
operations with an auxiliary entangled state, but the
tanglement of the auxiliary state itself can be enhanced. S
simultaneous enabling of deterministic LOCC impossi
transformations, and reduction of the overall loss in e
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tanglement is not possible under catalysis@9#. We refer to
this phenomenon assupercatalysis. In this paper, we study
the properties of supercatalysis and its relationship with
talysis, obtain a useful and succinct necessary and suffic
condition for catalysis, and sufficient conditions for superc
talysis.

All the transformations that we consider in this paper a
deterministic, i.e., occur with probability 1, and are in th
finite copy regime. We represent ann3n bipartite pure en-
tangled stateuc&, as

uc&5(
i 51

n

Aa i u i &u i &,

where a1>a2>•••>an , are the Schmidt coefficients o
eigenvalues of the reduced density matrices. Also, letlc
denote the vector of the ordered eigenvalues. Then, it follo
from Nielsen’s result@7# that for any two givenn3n states
uc&5( i 51

n Aa i u i &u i & and uw&5( j 51
n Ab j u j &u j &, uc&→uw&

with probability 1 under LOCC, if and only if,lc is ma-
jorized by lw , ~denoted aslc,lw!, i.e.,

(
i 51

m

a i<(
i 51

m

b i , for every m51, . . . ,n21. ~1!

Note that the above inequality is satisfied trivially whenm
5n, since both sides equal 1. In the rest of the paper, for
sake of convenience, instead of representing a bipartite s
uc&5( i 51

n Aa i u i &u i &, we shall represent it simply by the vec
tor of its eigenvaluesuc&5(a1 ,a2 , . . . ,an).

Consider the following pair of 434 bipartite incompa-
rable states,

uc&5~0.4,0.36,0.14,0.1!, ~2!

uf&5~0.5,0.25,0.25,0.0!, ~3!

for which an auxiliary entangled stateux&5(0.65,0.35) is a
catalyst, i.e., the transformationuc& ^ ux&→uf& ^ ux& can be
realized deterministically under LOCC. An example of s
percatalysis lies in showing the existence of a state,
uv&5( i 51

k Ag i u i &u i &, such that uc& ^ ux&→uf& ^ uv& by
©2002 The American Physical Society06-1
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LOCC with probability 1, whereE(v).E(x), E being the
entropy of entanglement@e.g.,E(uv&)52( i 51

k g i ln(gi)#. Let
uv&5(0.55,0.45). Note thatE(v).E(x). The correspond-
ing eigenvalue vectorslc ^ x ,lf ^ v are given by

~0.26,0.234,0.14,0.126,0.091,0.065,0.049,0.035!, ~4!

~0.275,0.225,0.1375,0.1375,0.1125,0.1125,0,0!, ~5!

respectively. It can be easily verified thatlc ^ x,lf ^ v , and
hence, the transformationuc& ^ ux&→uf& ^ uv& is possible
under LOCC with certainty. As the final stateuv&, of the
initial auxiliary state (uc&), is more entangled than its initia
one, supercatalysis is clearly more efficient than cataly
An equivalent interpretation of the underlying phenomen
is that supercatalysis, in addition to enabling the transform
tion, reduces the overall loss in entanglement. In catalysis
net entanglement lost is just the difference between entan
ment of the parent states. Supercatalysis reduces this los
an amountd5E(v)2E(x). One can think of several inno
vative uses of supercatalysis, and a particular scenario, w
resources are limited and constrained is outlined next.
instance, consider a scenario where we are given two co
of the source state, sayuc&5(0.4,0.4,0.1,0.1) and we wish t
obtain the target statesuf1&5(0.5,0.25,0.25,0) anduf2&
5(0.48,0.27,0.25,0), respectively. One can easily verify t
all the following pairs are incomparable:$uc&,uf1&%,
$uc&,uf2&%, and $uc& ^ uc&,uf1& ^ uf2&%. Since both direct
individual LOCC transformations, and the collective LOC
transformation are ruled out, we require either two differe
catalyst states, one for each pair, or a single catalyst that
work for both the transformations. Suppose the entanglem
supplier fails to provide two catalysts for the two pairs o
common catalyst that may work for both of them, but inste
provides only one, sayux&5(0.625,0.375), which is usefu
only to carry out a single transformation, i.e.,

uc& ^ ux&→uf1& ^ ux&, ~6!

uc& ^ ux&yuf2& ^ ux&. ~7!

It will be clear from the following discussions as to why th
given catalyst state does not work for the second transfor
tion. It is not entangled enough. In situations such as
supercatalysis can provide a solution.

Step 1.~Supercatalysis! Perform a supercatalytic transfo
mation involving the incomparable pair$uc&,uf1&% and the
given auxiliary stateux&,

uc& ^ ux&→uf1& ^ uv&, ~8!

where the new state isuv&5( 8
13 , 5

13 ), with E(v).E(x).
Step 2. ~Catalysis! The new improved auxiliary stateuv&,

is now sufficiently entangled to act as a legitimate cata
for the second incomparable pair, and one can easily ch
that the transformation

uc& ^ uv&→uf2& ^ uv&, ~9!

can indeed be realized under LOCC with probability 1.
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The above example shows that one might be able to
form a series of transformations with limited ancillary r
sources by improving the catalyst appropriately at every s
to make it useful for subsequent transformations.

In the rest of this paper, we provide results on the ex
tence of supercatalysts for given pairs of incompara
states, and study its relationship with catalyst states. For
ample, given a supercatalytic transformation what can
say about the ‘‘catalytic’’ properties of the auxiliary state
Clearly, if the two auxiliary states~i.e., the initial and the
final auxiliary states! involved in the supercatalysis transfo
mation are in 232, then they areboth catalysts as well.
However, whether such a property is always true for high
dimensional auxiliary states is left as an open problem,
the following result provides a sufficient condition.

Proposition 1.Let ux& and uf& be the initial and final
entangled states facilitating supercatalysis of the incom
rable pair $uc&,uf&%. If uv&→ux& under LOCC, then
$ux&,uv&% are also catalysts for the incomparable p
$uc&,uf&%.

Proof. If uv&→ux&, then we have the following trans
formations: ~1! uc& ^ ux&→uf& ^ uv&→uf& ^ ux& and ~2!
uc& ^ uv&→uc& ^ ux&→uf& ^ uv& from which it follows that
$ux&,uv&% are catalysts for the incomparable pair$uc&,uf&%.

j
As an immediate implication of the above proposition, w

show the following bound on the entanglement of the fin
auxiliary stateuv&.

Corollary 1. For a given incomparable pair$uc&,uf&% in
n3n, let k3k states$ux&,uv&% be the corresponding supe
catalysts@i.e., uc& ^ ux&→uf& ^ uv& with probability 1 under
LOCC, andE(uv&).E(ux&)#. The improved stateuv& can
never be a maximally entangled state ink3k.

Proof. Let uv& be a maximally entangled state ink3k.
Thenuv&→ux&. Therefore, by lemma 1,uv& andux& are the
catalysts for the given incomparable pair. But a maxima
entangled state cannot be a catalyst@9#. Hence the proof.j

We next investigate the presence of supercatalysis w
there exist catalytic states for a given pair of incompara
parent states. The associatedformalism turns out to be ex
tremely useful. It provides a general framework and a nece
sary and sufficient condition for constructing catalytic stat
leads to sufficient conditions for supercatalysis and allows
to determine meaningful bounds on the enhanced entan
ment of the auxiliart state. Given an incomparable p
$uc&,uf&%, with eigenvalue vectorslc5$a1 ,a2 , . . . ,an%
and lf5$b1 ,b2 , . . . ,bn%, let ux(P)& be a k3k catalyst
with the eigenvalue vector

lx5P5H p1 ,p2 , . . . ,pk512 (
i 51

k21

piJ ,

wherep1>p2>•••>pk21>pk . The proof of the following
lemma provides a constructive computational procedure
determining all possible suchk3k catalytic states.

Lemma 1.The set of allk3k catalytic states for any given
n3n pair of incomparable states$uc&,uf&%, is either empty,
or a union of a finite number of polyhedra in dimensio
<(k21).
6-2
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Proof. Since we want auxiliary states,

UxS p1 ,p2 , . . . ,pk512 (
i 51

k21

pi D L ,

such that lc ^ x(P),lf ^ x(P) , the set of all possibleP
5(p1 ,p2 , . . . ,pk21) for which the auxiliary state is a cata
lytic state can be found as follows:

~i! Fix one possible ordering of the Schmidt coefficien
of uc& ^ ux(P)&, and determine the set of all possibleP that
satisfies this ordering by solving the underlyingnk linear
inequalities. Hence, the set ofP that correspond to a feasibl
fixed ordering of the eigenvalues ofuc& ^ ux(P)&, is a poly-
hedron~if an ordering is not feasible for any choice ofP,
then the corresponding polyhedron is an empty set!: the so-
lutions of a set of linear inequalities defines a polyhedr
Also note that there are only a finite number of possi
orderings of the eigenvectors ofuc& ^ ux(P)&, leading
to a finite number of corresponding polyhedr
O 1

c ,O 2
c , . . . ,O L

c . An accurate estimate ofL can be ob-
tained by viewing the counting problem as the number
possible waysk sorted lists, each of lengthn, can be merged
to generate distinct sorted lists of lengthnk; an upper bound
on it is (nk)!.

~ii ! Similarly, compute the polyhedron for each orderi
of the eigenvalues ofuf& ^ ux(P)&. Again, this yields at mos
O 1

f ,O 2
f , . . . ,O L

f polyhedra.
Now consider all possible polyhedra that are the inters

tions of pairs of nonempty order-preserving polyhedra
fined above, i.e.,Ok5O i

cùO j
f , 1< i , j <L. The set of all

points in any such polyhedronOk that correspond tocata-
lytic states, consists of those points inOk that satisfy the
underlying nk21 majorization linear inequalities@see Eq.
~1!#, lc ^ x(P),lc ^ x(P) . Hence, the catalytic states withi
Ok forms a polyhedron itself. Thus, each polyhedron rep
senting values ofP that correspond to catalytic states for t
given pair$uc&,uf&%, can be viewed as the intersections
three different polyhedra:~i! the set ofP corresponding to a
fixed ordering of the Schmidt coefficients ofuc& ^ ux(P)&,
~ii ! the set ofP corresponding to a fixed ordering of th
Schmidt coefficients ofuf& ^ ux(P)&, and~iii ! the set of allP
that satisfy the majorization relations corresponding to
fixed orderings defined in~i! and~ii !. We define such a poly
hedron~which is the intersection of the preceding three po
hedra! as an order preserving majorization polyhedro
~OPMP!. j

For catalytic states in any dimensionk3k, a typical
OPMPSi , can be represented by the extreme points~or ver-
tices! of the underlying polyhedron:Si5$P1 ,P2 , . . . ,Pm%,
where PiPR k21 and E„ux(P1)&…>E„ux(P2)&…>•••

>E„ux(Pm)&…. For example, fork52, one can represen

each OPMP as an interval belonging to the segment@ 1
2 ,1#,

S5@pl ,pu#, where E„ux(pl)&….E„ux(pu)&…. By following
the procedure outlined in the proof of the preceding lemm
it is fairly easy to construct all OPMPs for any given ca
lyzable incomparable pair, especially for small values on
andk. For instance, an OPMP for the states given by Eqs.~2!
04230
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and~3! is S15@ 10
19 , 25

38 #. Another OPMP for the same pair bu

corresponding to a different ordering isS25@ 13
25 , 10

19 #.
The framework introduced in Lemma 1. shows that the

of all possible catalysts can be structured in terms of adis-
crete and a finitenumber of polyhedra, each of which has a
efficient description~i.e., the corresponding vertices!. Hence,
our framework provides asuccinct necessary and sufficie
condition for determining whether a given pair of incomp
rable states is catalyzable or not, as captured in the follow
theorem.

Theorem 1.A given n3n incomparable pair of states i
catalyzable if and only if there exists a nonempty OPMP
somek3k.

Proof. Note that the computational problem for findin
catalysts@i.e., given a pair of incomparable states inn3n,
does there exist a catalytic state ink3k?# is in the classNP
~nondeterministic polynomial! @13#: in order to provide a
valid certificate for a ‘‘yes’’ instance of the problem, all on
needs to do is to provide a candidate catalytic stateux&, and
one can verify inO(nk) time whetherux& is indeed a cata-
lytic state or not. Lemma 1 and Theorem 1 provide
O„@(nk)! #2

… algorithm not only to solve the ‘‘yes/no’’ ver-
sion of the problem, but also to determine all the possi
catalytic states. Whether the catalysis problem admits an
ficient solution, or is anNP-complete problem, is left as a
open problem. The preceding understanding of the struc
of catalytic states can now be used to establish a connec
between catalysis and supercatalysis and establish a s
cient condition for the latter. First, we introduce certa
structures of the majorization relations. Aparameterizedma-
jorization relationship, lc ^ x(P),lf ^ x(P) , where P
5(p1 ,p2 , . . . ,pk21), is said to bestrict if there exists an
OPMP of dimension>1 ~i.e., it is nonempty and is not a
single point!, such that there exists a pointP1 in the OPMP
where all the nontrivial (nk)21, majorization inequalities
@see Eq.~1!# are strict. We represent strict majorization
lc ^ x(P),lf ^ x(P) . Moreover, a parameterized majorizatio
relationship lc ^ x(P),lf ^ x(P) is said to besemistrict if
there exists an OPMP of dimension>1 ~i.e., it includes at
least a line segment!, such that there exist a pointP1 in the
OPMP and a direction vectordW PR k21 such thatP12edW is
also in the OPMP, and any equality relations in the maj
ization relationship atP1 holds even ifP1 is replaced by
P12edW on theright-hand side; we refer to such equalities in
the majorization relationships asbenign@11#. Note thatstrict
majorization is a special case of the semistrict case, and we
represent semistrict majorization aslc ^ x(P)#lf ^ x(P) @11#.
Note also that sinceE„ux(P)&… is a concave function, then
without loss of generality, we can assume that itincreases

along the direction2dW PR k21 ~if not, then just reverse the
sign of dW ).

Theorem 2.Given ann3n catalyzable incomparable pa
$uc&,uf&% that admits catalysts ink3k, supercatalysis also
occurs in k3k for the given incomparable pair i
lc ^ x(P)#lf ^ x(P) .

Proof. Sincelc ^ x(P)#lf ^ x(P) , then it follows from the
preceding definitions that there existP1 ,dW PR k21, and an
6-3
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e.0 such thatlc ^ x(P1),lf ^ x(P12edW ) . The proof is direct,

first pick a valid direction vectordW and ane small enough so
that P25P12edW is still in the OPMP and all the majoriza
tion inequalities are still satisfied whenP2 is used for the
right-hand side of the majorization inequalities. Moreov
note that the entropy function increases along the direc
2dW . Hence, to obtain supercatalysis, setux&5ux(P1)& as the
initial entangled state anduv&5ux(P12edW )& as the final
auxiliary entangled state. j

We next discuss the amount by which the entanglemen
the auxiliary state can be enhanced by using the construc
procedure stated in Theorem 2. In other words, we wo
like to maximize the enhancementd5E(v)2E(x), because
by doing so the overall loss of entanglement in the trans
mation is minimized. In the procedure of Theorem 2, sin
both ux& and uv& belong to the same OPMP, sayS
5$P1 ,P2 , . . . ,Pm% ~recall that the vertices of the OPMP a
ordered in terms of decreasing entanglement!, then the maxi-
mum enhancementd<E„ux(P1)&…2E„ux(Pm)&…. Take for
instance, one of the OPMP’s for the states in Eqs.~2! and~3!,

S15@ 10
19 , 25

38 #. If we chooseuv&5ux( 10
19 )& and ux&5ux( 25

38 )&
then one can check that the transformationuc& ^ ux&yuf&
^ uv& is not possible with certainty by LOCC. This show
that the preceding upper bound on the enhanced entan
ment is not always attained. However, one can verify that
conditions of Theorem 2 are satisfied byS1, and that one find
two catalyst states inS1 such that supercatalysis does inde
happen. Next, consider another OPMP for the same inc

parable pair,S25@ 13
25 , 10

19 #. In this case, one can easily prov
that the upper bound is indeed attained. It is clear that
amount of enhancement depends on the choice of OPMP
optimal strategy would be to consider all possible OPM
and to obtain the optimal pair that belongs to one particu
OPMP for supercatalysis. This is, however, beyond the sc
of this paper.

We now come to the question ofefficiency of supercataly
sis. The dimension of the auxiliary stateux&, plays a crucial
role in determining the complexity and efficiency of an e
tanglement assisted transformation. To reduce comple
and increase efficiency, it is necessary to keep the dimen
of the borrowed entanglement at a minimum whenever p
sible. Theorem 2 provides sufficient conditions where cata
sis leads to supercatalysis,without increasing the dimensio
of the auxiliary entangled states. However, we show next
there exist cases where catalysts exist ink3k, but superca-
talysis can never happen without increasing the dimensio
the auxiliary states. Consider the following incompara
parent states in 535: c5(0.4,0.3,0.2,0.05,0.05), andf
5(0.4,0.35,0.14,0.11,0). One can verify that this incom
rable pair admits a catalystux&5(0.6,0.4). The following
theorem, however, shows that the parent incomparable s
cannot participatein any supercatalysis, without increasin
the dimension of the entangled states to>3.
04230
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Theorem 3. Let $uc&,uf&% be an incomparable pai
with eigenvalue vectors lc5$a1 ,a2 , . . . ,an%,lf
5$b1 ,b2 , . . . ,bn%. If a15b1 or an5bn then supercataly-
sis is not possible with 232 auxiliary states. Moreover if
a15b1 andan5bn then there are no 333 auxiliary states
for supercatalysis.

Proof.Let there exist an auxiliary entangled stateux& such
that uc& ^ ux&→uf& ^ uv& where E(uv&).E(ux&). Let lx

5$p,12p%,lv5$q,12q%. Since E(uv&).E(ux&), there-
fore, p.q. Sinceuc& ^ ux&→uf& ^ uv&, we havea1p<b1q.
Since a15b1, therefore,p<q, which is a contradiction.
Similar proof for the case whenad5bd .

To prove the second part of the lemma assume there
333 auxiliary statesux& and uv& such that uc& ^ ux&→
uf& ^ uv& where ux&→uf& ^ uv&. Let lx5$p1 ,p2,12p1
2p2% and lv5$q1 ,q2,12q12q2%. We then havea1p1
<b1q1⇒p1<q1 since a15b1 and 12an(12p12p2)<1
2bn(12q12q2)⇒p11p2<q11q2. Hence, lx,lv and
ux&→uv&⇒E(uv&),E(ux&) ~see Ref.@7#!, which is a con-
tradiction. j

What happens if one cannot obtain auxiliary states
supercatalysis in the same dimension as the catalysts? S
the augmented pair$uc& ^ ux&,uf& ^ ux& is LOCC transform-
able, one can state the following result based on the res
on recovery of entanglement in Ref.@11#.

Theorem 4. Let uc&5(a1 ,a2 , . . . ,an) and uf&
5(b1 ,b2 , . . . ,bn1), be an incomparable pair, wherean
Þbn , and let the pair admit ak3k catalystux&. Then the
pair $uc&,uf&% admits supercatalysts, with initial auxiliar
stateux8&5ux& ^ ux1&, and the final enhanced auxiliary sta
uv8&5ux& ^ uv1&, where ux1& and uv1& are in dimension
m3m, m<nk21 andE(uv1&).E(ux1&).

To summarize, we have shown the existence of entan
ment assisted transformations that are more efficient t
catalysis. In such transformations, called supercatalysis,
entanglement of the auxiliary state is enhanced at the
and, therefore, the net loss in entanglement is reduced.
obtained a set of sufficient conditions for supercatalysis
exist and explored several relationships between superca
sis and catalysis. There are many open questions of inte
including: What are some of the necessary conditions
supercatalysis? Are the auxiliary states participating in a
percatalysis process also catalysts for the parent incom
rable states? Is the existence of catalysis always sufficien
ensure supercatalysis? Are the problems of finding catal
and supercatalysts for a given incomparable pairNP com-
plete?

This work was sponsored in part by the Defense A
vanced Research Projects Agency~DARPA! Project No.
MDA 972-99-1-0017, in part by the U.S. Army Resear
Office/DARPA under Contract/Grant No. DAAD 19-00-1
0172, and in part by the NSF under Contract/Grant No. E
0113440.
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