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Efficient entanglement-assisted transformation for bipartite pure states
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We show that entanglement-assisted transformations of bipartite entangled states can be more efficient than
catalysis/Jonathan and Plenio, Phys. Rev. L&8, 3566(1999], i.e., given two incomparable bipartite states
not only can the transformation be enabled by performing collective operations with an auxiliary entangled
state, but the entanglement of the auxiliary state itself can be enhanced. We refer to this phenomenon as
supercatalysisWe provide results on the properties of supercatalysis and its relationship with catalysis. In
particular, we obtain a useful necessary and sufficient condition for catalysis, and provide several sufficient
conditions for supercatalysis and study the extent to which entanglement of the auxiliary state can be enhanced
via supercatalysis.
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One of the primary goals of quantum information theorytanglement is not possible under catalyi$i$ We refer to
[1] is efficient manipulation of quantum entanglement sharedhis phenomenon asupercatalysisin this paper, we study
among spatially separated parties, each of whom possessiée properties of supercatalysis and its relationship with ca-
only a subsystem of the entire entangled sfaie Such dis-  talysis, obtain a useful and succinct necessary and sufficient
tributed entanglement, as a resource, is a critical componeg@ndition for catalysis, and sufficient conditions for superca-
of quantum information protocols, such as quantum teleportalysis.
tation [3], superdense codirlg}], and distributed computing All the transformations that we consider in this paper are
algorithms[5]. Since the underlying entangled state is spa-deterministic, i.e., occur with probability 1, and are in the
tially distributed, any entanglement manipulation is necessafinite copy regime. We represent arx n bipartite pure en-
ily constrained to be carried out with local operations andtangled stat¢y), as
classical communication among the parti@®©OCC). The N
properties and classifications of both deterministic and |¢>:2 \/;|i>|i>
probabilistic/conclusive LOCC transformations have been =] : ’
pursued vigorously in the recent paét-12).

A surprising feature that sets apart entanglement fronwhere a;=a,=---=ay,, are the Schmidt coefficients or
usual physical resources is its capacity to enable, withougigenvalues of the reduced density matrices. Also,\gt
being consumed, transformations that are impossible undetenote the vector of the ordered eigenvalues. Then, it follows
deterministicLOCC[9]. This property is very similar to that from Nielsen’s resulf7] that for any two givemXn states
of catalysts in chemical reactions and is aptly termeeras [¢)=3!_ Vo [i)|i) and |@)=="_1VB;ili)li), |¥)—|e)
tanglement catalysidt has also been shown that the prob-with probability 1 under LOCC, if and only i, is ma-
ability of a conclusive conversion can be enhanced in thgorized by X, (denoted as ,<\,), i.e.,
presence of a catalyst, when a deterministic conversion is not
possible[9]. Another instance where entanglement is useful
in a sense similar to catalysige., not being consumedis >
partial recoveryof entanglement. In this case, the entangle-

ment lost in an LOCC manipulation is partially recovered Note that the above inequality is satisfied trivially when
using an auxiliary entanglement and performing collective=n since both sides equal 1. In the rest of the paper, for the
operationd 10,11]. sake of convenience, instead of representing a bipartite state

We sh_ow thgt the above two features of entanglement_caw,>z =" Jaj|i)]i), we shall represent it simply by the vec-
be exploited simultaneously and that entanglement assstqgr of its eigenvalue$y) = (a;, a, @)

LOCC transformations can be more efficient than catalysis ~gnsider the following pair of %4 bipartite incompa-
[9]. In particular, given two incomparable staté®., states e states
that are not LOCC transformable with certaintyot only '

m
a<>, Bi, foreverym=1,...n-1. (1
i=1 =1

can the transformation be enabled by performing collective |#)=(0.4,0.36,0.14,0)1 2
operations with an auxiliary entangled state, but the en-
tanglement of the auxiliary state itself can be enhanced. Such |#)=(0.5,0.25,0.25,0)0 3)

simultaneous enabling of deterministic LOCC impossible
transformations, and reduction of the overall loss in enfor which an auxiliary entangled statg)=(0.65,0.35) is a
catalyst, i.e., the transformatidg)®|x)—|#)®|x) can be
realized deterministically under LOCC. An example of su-
*Electronic address: som@ee.ucla.edu percatalysis lies in showing the existence of a state, say
"Electronic address: vwani@ee.ucla.edu lwy==X_,y|i)]i), such that |$)®|x)—|s)®|w) by
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LOCC with probability 1, wherée(w)>E(x), E being the The above example shows that one might be able to per-
entropy of entanglemer[jﬂa.g_,E(|w>):_Eik:n,i In(y)]. Let form a series of transformations with limited ancillary re-

|w)=(0.55,0.45). Note thaE(w)>E(x). The correspond- sources by improving the catalyst appropriately at every step
ing eigenvalue Vectors ;A 4o, are given by to make it useful for subsequent transformations.
X! w

In the rest of this paper, we provide results on the exis-
(0.26,0.234,0.14,0.126,0.091,0.065,0.049,000354)  tence of supercatalysts for given pairs of incomparable
states, and study its relationship with catalyst states. For ex-
(0.275,0.225,0.1375,0.1375,0.1125,0.1125,0,0 (5) ample, given a supercatalytic transformation what can we
say about the “catalytic” properties of the auxiliary states?
respectively. It can be easily verified thaf, , <\ 45,, and  Clearly, if the two auxiliary stategi.e., the initial and the
hence, the transformatioh)®|x)—|¢)®|w) is possible final auxiliary statesinvolved in the supercatalysis transfor-
under LOCC with certainty. As the final state), of the  mation are in 22, then they areboth catalysts as well.
initial auxiliary state (i)), is more entangled than its initial However, whether such a property is always true for higher-
one, supercatalysis is clearly more efficient than catalysisdimensional auxiliary states is left as an open problem, and
An equivalent interpretation of the underlying phenomenorthe following result provides a sufficient condition.
is that supercatalysis, in addition to enabling the transforma- Proposition 1.Let |y) and |¢) be the initial and final
tion, reduces the overall loss in entanglement. In catalysis thentangled states facilitating supercatalysis of the incompa-
net entanglement lost is just the difference between entangleable pair {|#),|#)}. If |w)—|x) under LOCC, then
ment of the parent states. Supercatalysis reduces this loss By ),|w)} are also catalysts for the incomparable pair
an amounts=E(w) —E(x). One can think of several inno- {|#),|#)}.
vative uses of supercatalysis, and a particular scenario, where Proof. If |w)—|x), then we have the following trans-
resources are limited and constrained is outlined next. Folormations: (1) |#)®|x)—|¢)®|w)—|d)®|x) and (2)
instance, consider a scenario where we are given two copigg)® |w)—|#)®|x)—|p)®|w) from which it follows that
of the source state, sqw)=(0.4,0.4,0.1,0.1) and we wish to {|x),|w)} are catalysts for the incomparable pgig),|¢)}.
obtain the target stategp,)=(0.5,0.25,0.25,0) andg,) [
=(0.48,0.27,0.25,0), respectively. One can easily verify that As an immediate implication of the above proposition, we
all the following pairs are incomparablef|),|¢1)},  show the following bound on the entanglement of the final
{l). o)}, and {|)@|¥),|p1)®|y)}. Since both direct auxiliary state|w).
individual LOCC transformations, and the collective LOCC  Corollary 1. For a given incomparable pajti),|#)} in
transformation are ruled out, we require either two differentn xn, let kxk states{|x),|w)} be the corresponding super-
catalyst states, one for each pair, or a single catalyst that cagatalystdi.e., |#)®|x)—|¢)®|w) with probability 1 under
work for both the transformations. Suppose the entanglementOCC, andE(|w))>E(|x))]. The improved statéw) can
supplier fails to provide two catalysts for the two pairs or anever be a maximally entangled statekir k.
common catalyst that may work for both of them, but instead proof. Let |w) be a maximally entangled state ki k.

provides only one, sayy)=(0.625,0.375), which is useful Then|w)—|x). Therefore, by lemma 1w) and|y) are the

only to carry out a single transformation, i.e., catalysts for the given incomparable pair. But a maximally
entangled state cannot be a cata[\@dt Hence the proofll
[ ex)—o0)®|x), (6) We next investigate the presence of supercatalysis when
there exist catalytic states for a given pair of incomparable
)@ x)+[h2)®|x). (7 parent states. The associatiedmalism turmns out to be ex-

It will be clear from the following discussions as to why the tremely duzﬁgjilc!itearto(\:/é?ij?tiir?(fac?reglnfsrt?umc?i\ﬁorléaatlgld t?cns?;t%ss_
given catalyst state does not work for the second transform _aré/ atn fficient conditions for rcat Igsis anﬁ allows u’s
tion. It is not entangled enough. In situations such as thi eags fo surficient co ons for supercataly

supercatalysis can provide a solution. o determine meaningful bounds on the enhanced entangle-

Step 1.(SupercatalysjsPerform a supercatalytic transfor- ment of the auxiliart state. Given an incomparable pair

o ) . , , with eigenvalue vectors\,={a;,as, ... ,a,}
mation involving the incomparable p&ff),|#,)} and the ) |¢>_} Wi 4 n
given auxiliary statdy), and N y={B1,B2, .. ..Bn}, let |x(P)) be akxk catalyst

with the eigenvalue vector
[ ®|x)—]d1)®|w), (8 k-1
A, =P= P2, - P=1— i
where the new state js)=(13,73), With E(w)>E(x). X {pl P2 P 21 i
Step 2 (Catalysig The new improved auxiliary state), )
is now sufficiently entangled to act as a legitimate catalysfVN€"€P1=p2=---=pi—1=Py. The proof of the following
for the second incomparable pair, and one can easily chedgmma provides a constructive computational procedure for

that the transformation determining all possible sudkXk catalytic states.
Lemma 1The set of alk X k catalytic states for any given
[)®|0)—|dr)®| o), (9)  nXn pair of incomparable statds$y),|¢)}, is either empty,

or a union of a finite number of polyhedra in dimension
can indeed be realized under LOCC with probability 1. <(k—1).
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Proof. Since we want auxiliary states, and(3) is S;=[12,2]. Another OPMP for the same pair but
1 corresponding to a different ordering $=[ %,12].
DN The framework introduced in Lemma 1. shows that the set
X| P1.P2, Pr= = Pif s of all possible catalysts can be structured in terms dfsa

crete and a finitemumber of polyhedra, each of which has an
efficient descriptiorii.e., the corresponding vertigeslence,

our framework provides auccinct necessary and sufficient
conditionfor determining whether a given pair of incompa-
rable states is catalyzable or not, as captured in the following
theorem.

Theorem 1A given nXn incomparable pair of states is
catalyzable if and only if there exists a nonempty OPMP in
somek X k.

Proof. Note that the computational problem for finding

such that)\¢,®x(p)<)\¢®x(p2, the set. _of all pogsible‘P
=(p1,P2, - - - Pk_1) for which the auxiliary state is a cata-
lytic state can be found as follows:

(i) Fix one possible ordering of the Schmidt coefficients
of |¢)®|x(P)), and determine the set of all possilfethat
satisfies this ordering by solving the underlying linear
inequalities. Hence, the set Bfthat correspond to a feasible
fixed ordering of the eigenvalues pb)®|x(P)), is a poly-

hedron(if an ordering is not feasible for any choice Bt catalystgi.e., given a pair of incomparable statesnixn,

then the corresponding polyhedron is an empty. &€ so- does there exist a catalytic statekix k?] is in the clasNP

lutions of a set of linear inequalities defines a polyhedron. o . . ;
Also note that there are on?y a finite number %f i;ossible(nondeterm|n|st|c polynomial[13]: in order to provide a

. : : lid certificate for a “yes” instance of the problem, all one
orderings of the eigenvectors af)®|x(P)), leadin va . ) . ;
to a g finite numbger of corcjggpokgj(inéﬁ polyhe%ra, needs to do is to provide a candidate catalytic steje and

0%,04, ... 0. An accurate estimate df can be ob- one can verify inO(nk) time whethery) is indeed a cata-

; ] . #ytic state or not. Lemma 1 and Theorem 1 provide an
talne_d by viewing the_countmg problem as the number OO([(nk)!]g) algorithm not only to solve the “yes/no” ver-
foosZ'gﬁ;;’:ﬁiﬁﬁg{esottséz I?S?gl)fo Ifelr?n%maiag beermbeorgre]g sion of the problem, but also to determine all the possible
on%t is (nk)! gtR; PP catalytic states. Whether the catalysis problem admits an ef-

(ii) Similarly, compute the polyhedron for each orderingf'C'em solution, or is alN P-complete problem, is left as an

. . S open problem. The preceding understanding of the structure
of:![)he 3lgenvalu(fs 4kh) ® | (7). Again, this yields at most ¢ o2\ tic states can now be used to establish a connection
07,0%,...,0! polyhedra.

k ; . between catalysis and supercatalysis and establish a suffi-
Now consider all possible polyhedra that are the intersec y P 4

. f vai f d ; Whedra d cient condition for the latter. First, we introduce certain
tions of pairs o nonerTJ/pty graerpresenving poyhedra Gesiructures of the majorization relations parameterizedna-
fined above, i.e.0,=0/N0O}, 1=<i,j<L. The set of all

e jorization relationship, e, (»<Ngsymp, Where P
points in any such polyhedro®, that correspond teata- =(P1,P2, - - - Pr_1), is said to bestrict if there exists an
lytic states consists of those points i@, that satisfy the oppmP of dimensior= 1 (i.e., it is nonempty and is not a
underlying nk—1 majorization linear ineqqalitie@ee Eq. single point, such that there exists a poif in the OPMP
(D], Nyexm<Myexm - Hence, the catalytic states within \yhere all the nontrivial fik)—1, majorization inequalities
Oy fprms a polyhedron itself. Thus, each pglyhedron repPréfsee Eq.(1)] are strict. We represent strict majorization as
senting yalues oP that correspond to catalyt!c states for the Ny y(7)C N gs () - Moreover, a parameterized majorization
given pair{|#),|¢)}, can be viewed as the intersections of relationship X s (<A ge(r IS Said to besemistrict if
three different polyhedrai) the set ofP corresponding to a  there exists an OPMP of dimensieal (i.e., it includes at
fixed ordering of the Schmidt coefficients pf)®[x(P)),  |east a line segmentsuch that there exist a poif, in the
(i) the set of P corresponding to a fixed ordering of the OPMP and a direction vectare R ¥~ such thaﬂ?l—e& is

Schmidt coefficients ofp) ® | x(P)), and(iii) the set of allP . . T .
that satisfy the majorization relations corresponding to theaISO in the OPMP, :and any equality relations in the major

fixed orderings defined ifi) and(ii). We define such a poly- |zat|on6 relatlon.shlp aPy h_OIdS even ifPy is replacgq b¥
hedron(which is the intersection of the preceding three poly-71~ €d on theright-hand sidewe refer to such equalities in
hedra as an order preserving majorization polyhedron the'mgjor]zat!on relat|9nsh|ps :h)enlgn[ll]..No'te thatstrict
(OPMP. [ majorization is a s_pemal_ cz.:lse.of the semistrict ceened we
For catalytic states in any dimensidoxk, a typical ~'€Present semistrict majorization &g y(p) S\ pe y(p) [11]-
OPMPS,, can be represented by the extreme pojatsver- Note also that sinc&(|x(P))) is a concave function, then

tices of the underlying polyhedronS ={P,,P,, ... Pul, without loss of genejality, we can assume thainireases
where PieR* ' and E(x(P))=E(x(P))=--- along the direction—de R X! (if not, then just reverse the
=E(|x(Py))). For example, fork=2, one can represent sign ofd).

each OPMP as an interval belonging to the segriért], Theorem 2Given annX n catalyzable incomparable pair

S=[p;.p.], where E(x(p))>E(x(p,)). By following  tl#)./#)} that admits catalysts ikxk, supercatalysis also
the procedure outlined in the proof of the preceding lemmaoccurs in k<k for the given incomparable pair if
it is fairly easy to construct all OPMPs for any given cata-Myey(?)S X gey(P) -

lyzable incomparable pair, especially for small valuesnof ~ Proof. SinceX ¢, (p) S\ ge y(p)» then it follows from the

andk. For instance, an OPMP for the states given by E2js. preceding definitions that there ex'@g,ae R*"1 and an
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€>0 such that o (p )< gsy(p, -y - The proof is direct, ~ Theorem 3.Let {[¢),[4)} be an incomparable pair
first pick a valid direction vectod and ane small enough so with  eigenvalue  vectors \,={ay,az,....an}Ng
- 7 ={B1.B2, .. . ,Bn}. If a1=p1 or ay= B, then supercataly-
that P,=P,— ed is still in the OPMP and all the majoriza- js js not possible with 22 auxiliary states. Moreover if
tion mequall_tles are still sgtl_sﬁeq Whe}ﬁz is _u_sed for the a,= 3, and a,= S, then there are no83 auxiliary states
right-hand side of the majorization inequalities. Moreover,q, supercatalysis.
note that the entropy function increases along the direction pryof |et there exist an auxiliary entangled sthig such
—d. Hence, to obtain supercatalysis, pet=|x(Py)) asthe that |¢)®|x)—|d)®|w) where E(|o))>E(|x)). Let Ay
initial entangled state anfw)=|y(P;—ed)) as the final ={p,1-p}.r,={q,1-q}. Since E(Jw))>E(|x)), there-
auxiliary entangled state. m fore,p>q. Since|y)®|x)—|d)®|w), we haveap< B17.
We next discuss the amount by which the entanglement dbince a;=B;, therefore,p=<q, which is a contradiction.
the auxiliary state can be enhanced by using the constructiv@imilar proof for the case wheag= 4.
procedure stated in Theorem 2. In other words, we would To prove the second part of the lemma assume there are
like to maximize the enhancemeft E(w) —E(x), because 3x3 auxiliary states|y) and |w) such that|)®|x)—
by doing so the overall loss of entanglement in the transfor{¢)®|w) where |x)—|d)®@|w). Let N\ ,={p;,pp1-p;
mation is minimized. In the procedure of Theorem 2, since—p,} and \,={d:,9,,1-q;—q,}. We then havea;p;
both |x) and |w) belong to the same OPMP, sa§ <p;0;=p;=0; sincea;=p3; and 1—a,(1-p;—p,)=<1
={P1,P>, ..., Py} (recall that the vertices of the OPMP are —B,(1—q;—0,)=p;+p,<0;+Q,. Hence, A, <\, and
ordered in terms of decreasing entanglemehen the maxi- |x)—|w)=E(Jo))<E(|x)) (see Ref[7]), which is a con-
mum enhancemend<E(|x(P1)))—E(x(Pm))). Take for tradiction. [ |
instance, one of the OPMP’s for the states in Egsand(3), What happens if one cannot obtain auxiliary states for
S,=[12 257 |f we choose|w)=]|x(%2)) and|y)=|y(Z supercatalysis in the same dimension as the catalysts? Since
1= Lo 5 o) =[x(1:)) 0= x(5)) the augmented paft ¢)®|x),|#)®|x) is LOCC transform-

then one can check that the transformatjgn®|x)-~|¢) _
®|w) is not possible with certainty by LOCC. This shows able, one can state the following result based on the results

that the preceding upper bound on the enhanced entangl@P "écovery of entanglement in R¢L1].

ment is not always attained. However, one can verify that the 1heorem 4. Let lh)=(ar,az, ....ay) and |¢)

conditions of Theorem 2 are satisfied 8y, and that one find = (B1:82, - - - ,Bn1), be an incomparable pair, wher,

two catalyst states i6, such that supercatalysis does indeed” Bn, and let the pair admit &xk catalyst|x). Then the

happen. Next, consider another OPMP for the same incorair {|#).|#)} admits supercatalysts, with initial auxiliary
arable pairS,=[2.12]. In this case, one can easily prove state|x’)=|x)®|x1), and the final enhanced auxiliary state
P P 25019 ' yp o')=|x)®|w.), where|y;) and |w;) are in dimension

that the upper bound is indeed attained. It is clear that th
. xm, msnk—1 andE(|w1))>E(|x1))-
amount of enhancement depends on the choice of OPMP. An™ .| summarize, we have shown the existence of entangle-

optimal strategy would be to consider all possible OPMP ent assisted transformations that are more efficient than

?)ngh;g fobtaln the ct>p|t|m_al ?ﬁ!r 'gha;[] belongs ;0 oned ?ﬁrt'CUIaEatalysis. In such transformations, called supercatalysis, the
or supercatalysis. This 1S, however, beyond the SC()pgntanglement of the auxiliary state is enhanced at the end

of ws r?(?vi\)/ecré)me to the question efficiency of supercataly- and,_therefore, the net !oss in en_t_anglement is reduceq. We
. : . p . obtained a set of sufficient conditions for supercatalysis to

SIS T_he dlmen_5|_on of the auxma_ry stalg), _plgys a crucial exist and explored several relationships between supercataly-
role in determining the complexity and efficiency of an €N"sis and catalysis. There are many open questions of interest,

tanglement assisted transformation. To reduce CompleXi%cIuding: What are some of the necessary conditions for

and increase efficiency, it is necessary to keep the d'mens'oghpercatalysis'? Are the auxiliary states participating in a su-

of the borrowed entanglement at a minimum whenever pos- : :
. . " ” ercatalysis process also catalysts for the parent incompa-
sible. Theorem 2 provides sufficient conditions where catalyp ysis b y b P

ic loads talvsigithout | 1a the di —“JTrable states? Is the existence of catalysis always sufficient to
SIS 1eads 1o supercatalysisithout Increasing the dimension o, .o supercatalysis? Are the problems of finding catalysts
of the auxiliary entangled states. However, we show next th

there exist cases where catalysts exiskik, but superca- Ir;cieiupercatalysts for a given incomparable péir com
talysis can never happen without increasing the dimension J?J ’

the auxiliary states. Consider the following incomparable

parent states in 85: =(0.4,0.3,0.2,0.05,0.05), ang This work was sponsored in part by the Defense Ad-
=(0.4,0.35,0.14,0.11,0). One can verify that this incompavanced Research Projects Agen@ARPA) Project No.
rable pair admits a catalys$)=(0.6,0.4). The following MDA 972-99-1-0017, in part by the U.S. Army Research
theorem, however, shows that the parent incomparable stat€fice/DARPA under Contract/Grant No. DAAD 19-00-1-
cannot participatein any supercatalysis, without increasing 0172, and in part by the NSF under Contract/Grant No. EIA-
the dimension of the entangled states=t8. 0113440.
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