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We apply the full power of modern electronic band struc-
ture engineering and epitaxial hetero-structures to design a
transistor that can sense and control a single donor electron
spin. Spin resonance transistors may form the technological
basis for quantum information processing. One and two qubit
operations are performed by applying a gate bias. The bias
electric field pulls the electron wave function away from the
dopant ion into layers of different alloy composition. Ow-
ing to the variation of the g-factor (Si:g=1.998, Ge:g=1.563),
this displacement changes the spin Zeeman energy, allowing
single- qubit operations. By displacing the electron even fur-
ther, the overlap with neighboring qubits is affected, which
allows two-qubit operations. Certain Silicon-Germanium al-
loys allow a qubit spacing as large as 200 nm, which is well
within the capabilities of current lithographic techniques. We
discuss manufacturing limitations and issues regarding scaling
up to a large size computer.

I. INTRODUCTION

The development of efficient quantum algorithms for classi-
cally hard problems has generated interest in the construction
of a quantum computer. A quantum computer uses superpo-
sitions of all possible input states. By exploiting this quantum
parallelism, certain algorithms allow one to factorize [1] large
integers with astounding speed, and rapidly search through
large databases [2], and efficiently simulate quantum systems
[3]. In the nearer term such devices could facilitate secure
communication and distributed computing.

In any physical system, bit errors will occur during the com-
putation. In quantum computing this is particularly catas-
trophic, because the errors cause decoherence [4] and can de-
stroy the delicate superposition that needs to be preserved
throughout the computation. With the discovery of quantum
error correction [5] and fault-tolerant computing, in which
these errors are continuously corrected without destroying the
quantum information, the construction of a real computer has
become a distinct possibility.

Even with the use of fault-tolerant computing a quantum
computer engineer would still prefer a system that exhibits
the smallest possible error rate on the qubits, the two level
systems that hold the quantum information. In fact, Preskill
[6] (in a review of the subject) presented a requirement for
fault-tolerance; the ratio of the error rate to the computer
clock rate has to be below a certain threshold.

Several systems have recently been proposed to obtain a
physical implementation of a quantum computer. These sys-

tems include cold ion traps [7], nuclear magnetic resonance
(NMR) systems [8,9], all-optical logic gates [10,11], Joseph-
son junctions [12], and semiconductor nanostructures [13].
Successful experimental demonstrations of one and two qubit
computers were reported for trapped ion systems [14] and
NMR systems [15].

Last year, Bruce Kane [16] proposed a very interesting and
elegant design for a spin resonance transistor (SRT). He pro-
posed to use the nuclear spins of 31P dopant atoms, embed-
ded in a Silicon host, as the qubits. At low temperatures the
dopant atoms do not ionize, and the donor electron remains
bound to the 31P nucleus. The control over the qubits is es-
tablished by placing a gate-electrode, the so-called A-gate,
over each qubit. By biasing the A-gate, one can control the
overlap of the bound electron with the nucleus and thus the
hyperfine interaction between nuclear spin and electron spin,
which allows controlled one-qubit rotations. A second attrac-
tive gate, a J-gate, decreases the potential barrier between
neighboring qubits, and allows two nuclear spins to interact
by electron spin-exchange, which provides the required con-
trolled qubit-qubit interaction.

The rate of loss of phase coherence between qubits in a
quantum system is typically characterized by the dephasing
time T2. The T2 dephasing time of the nuclear spins in sil-
icon is extremely long. The silicon host efficiently isolates
the nuclear spins from disturbances [17]. A quantum com-
puter based on semiconductors offers an attractive alterna-
tive to other physical implementations due to compactness,
robustness, the potentially large number of qubits [18], and
semiconductor compatibility with industrial scale processing.
However, the required transistors are very small, since their
size is related to the size of the Bohr radius of the dopant elec-
tron. Furthermore, after the calculation is completed Kane’s
SRT requires a sophisticated spin transfer between nuclei and
electrons to measure the final quantum state.

We suggest using the full power of modern electronic band
structure engineering and epitaxial growth techniques, to in-
troduce a new, more practical, field effect SRT transistor de-
sign that might lend itself to a near term demonstration of
qubits on a Silicon wafer. We alter Kane’s approach by the im-
plementation of these spin-resonance transistors in engineered
Germanium/Silicon hetero-structures that have a controlled
band structure. Si-Ge strained hetero-structures, developed
by IBM and other companies, are in the mainstream of Silicon
technology, and are currently used for high frequency wireless
communication transistors, and high-speed applications.

In Si-Ge hetero-structure layers we can control the effective
mass of the donor electron to reduce the required lithographic
precision, and to permit the SRT transistors to be as large as
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≈ 2000 Å. The Bohr radius of a bound electron in Si-Ge can
be much larger than in Silicon due to the very small effec-
tive mass in strained Si-Ge alloys, and their higher dielectric
constant. This places the lithographic burden well within
the practical range of electron beam lithography and almost
within range of contemporary optical lithography.

Among the other simplifications, we will employ an electron
spin, rather than a nuclear spin as the qubit. Owing to the
difference in the electronic g-factor, g = 1.998 for Si, and
g = 1.563 for Ge, the electron spin resonance transition can
be readily tuned by an electrostatic gate on a compositionally
modulated Si-Ge epilayer structure. By working with electron
spins rather than nuclear spins, we avoid the requirement of
a sophisticated spin transfer between electrons and nuclei,
for read-in/read-out of quantum data and for the operation
of two-qubit gates. In addition, due to their higher Zeeman
energy, electron spins will eventually permit a clock speed
up to 1 GHz compared to a speed≈ 75 kHz projected for
the nuclear spins. Likewise, isotopic purity is not critical for
electron spins.

In order to read-out the final result of a quantum calcula-
tion we will need to be able to detect single electron charges.
Individual electro-static charges are readily detected by con-
ventional field effect transistors (FET’s) at low temperatures,
which obviates the need for the sophisticated single electron
transistors (SET’s). In this paper, we illustrate our design for
an electron spin resonance transistor.

II. ELECTRON SPIN DEPHASING TIME IN

SILICON AND GERMANIUM

Electron spins benefit from the same protective environ-
ment provided by the silicon host as nuclear spins. Indeed,
the ESR line in doped Silicon at low temperatures turns out
to be exceptionally clean and narrow compared to other ESR
lines.

Feher [19–21] found that the Si:31P ESR line is inhomoge-
neously broadened by hyperfine interactions with neighboring
nuclear spins. But the nuclear spin flip T1 relaxation times
were measured [20] to be in the 1-10 hour range. Thus the
nuclei can be regarded as effectively static on the time scales
needed for quantum computing. Likewise the direct electron
spin-flip T1 is also around [20] an hour.

On the question of the critical transverse T2 ESR dephas-
ing linewidth there was only a little information. Feher and
Gere studied some heavily doped n-Si:P samples, and found
that the ESR linewidth actually narrowed [22] at high dop-
ing, down to a 1 MHz linewidth at the 9 GHz ESR frequency,
for the heavy doping level, n = 3 × 1018/cm3. This unusual
behavior was clearly the result of exchange narrowing of the
hyperfine inhomogeneity. For quantum computing, the issue
is the linewidth of a single electron spin transition, rather
than a heavily doped inhomogeneous ensemble.

Thus the outlook was optimistic. If the linewidth is only
1 MHz at such a high doping level, and is due to exchange
with neighboring electrons, then the linewidth would surely be
much narrower at lower doping levels, and especially for one
isolated electron. Indeed that was confirmed by Chiba and
Hirai [23] who measured a 1/2πT2 linewidth of only ≈1 kHz

at a doping of 1016 Phosphorus ions per cm3, by the very
reliable spin-echo technique. The residual linewidth was in-
terpreted as being due to spin diffusion via the nuclear spins.
Indeed the linewidth was shown [24] to narrow further in iso-
topically purified, 0 spin, Si28, making the T2 dephasing even
slower. The observed 1 kHz linewidth at n=1016/cm3 is al-
ready narrow enough, in relation to the 9 GHz ESR frequency
to allow enough operations for fault tolerant computing [6].

In germanium the dominant mechanism for spin dephasing
is quite different from the one in silicon. Theory [25,26] and
experiment [27] have confirmed that the dominant relaxation
in germanium is through acoustic disturbances of the spin-
orbit coupling. The g-factor in germanium is much different
from 2, the free electron value, because of the relatively strong
spin-orbit coupling. Germanium has four ellipsoidal conduc-
tion band minima, which are aligned with the 〈111〉 direc-
tions. In each minimum, the effective mass depends on the
direction of electron motion, with a low effective mass (mxy)
in the transverse direction and a high effective mass in the
longitudinal direction (mz)(see Table I). The anisotropic ef-
fective mass results in an anisotropic g-factor, with g = g‖ for
magnetic field components in the 〈111〉 direction, and g = g⊥
for magnetic field components perpendicular to this direc-
tion. For arbitrary angles φ between the magnetic field and
the 〈111〉 direction the g-factor is given by

g2 = g2
‖ cos2 φ + g2

⊥ sin2 φ (1)

The electronic ground state of the donor atom is an equal
superposition (singlet) state of the four equivalent conduc-
tion band minima, and therefore has an isotropic g-factor,
g = g‖/3 + 2g⊥/3 = 1.563. However, in the presence of lat-
tice strain, the energies of the conduction band minima shift
with respect to each other. In the new donor ground state,
probability is shifted among the four valleys, with some val-
leys more populated than others. This produces a shift ∆g in
the g-factor, since each valley forms a different angle φ with
the static magnetic field B. The corresponding relative en-
ergy shift of the spin states is proportional to (∆g)µB with µ
the Bohr magneton. At finite temperatures, acoustic phonons
cause time-varying strains with a finite power density at the
spin transition energy, which induce spin-lattice relaxation.

At these temperatures it follows from this theory that the
phase relaxation time is of the same magnitude as the popu-
lation relaxation time T2 ≈ T1. Experiments have shown that
T1 is around 10−3 seconds for germanium at 1.2 K. We are
not aware of direct measurements of T2 by electron spin reso-
nance experiments similar to those that were done in silicon.
Unless there are other, as of yet unknown T2 mechanisms in
germanium, the T2 will be determined by acoustic vibrations
and be of the order of 10−3 seconds, which is equal to the
best measured T2 in silicon, and is again sufficiently long to
allow fault tolerant computing.

Several mechanisms could lead to a further improvement in
the T1 and T2 caused by acoustic vibrations. Firstly, working
at lower temperatures will reduce the phonon energy density,
which is proportional to T 4. Secondly, for the two orientations
of germanium that we propose to use, 〈111〉 and 〈001〉, some
special considerations can make the expected lifetimes longer.
For germanium grown with strain in the 〈111〉 direction, the
conduction band minimum along the growth direction has a
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significantly lower energy than the other three minima. In
the electronic ground state, virtually all population resides in
this minimum, and there is little coupling to the three split-
off valleys. In the theory by Roth and Hasegawa [25,26], this
effect is accounted for by a square dependence of T1 on the en-
ergy splitting between the electronic ground state and excited
states (singlet-triplet splitting). The grown-in strain increases
this splitting from 2 meV to 200 meV, with a corresponding
increase in lifetime of 104. For germanium grown with strain
in the 〈001〉 direction and with the magnetic field aligned
with that direction, a symmetry argument forbids a strain
induced g-shift: the 〈001〉 direction makes equal angles with
all conduction band minima, and therefore a probability re-
distribution among these minima does not affect the g-factor,
as can be seen from Equation 1. Thus, further improvements
in the already acceptable lifetimes appear possible.

The electron spin resonance (ESR) of a bound donor in
a semiconductor host provides many advantages: Firstly, in
a magnetic field of 2 Tesla, the ESR resonance frequency
is≈56 GHz, easily allowing qubit operations at up to ≈1 GHz.
This is comparable to the clock speed of ordinary computers,
and is consistent with the precision of electronic control sig-
nals that are likely to be available. Secondly, at temperatures
well below 1 K, the electron spins are fully polarized allow-
ing a reproducible starting point for the computation. And
finally, for electron spins isotopic purity is not compulsory
since the nuclear spin inhomogeneity remains frozen at low
temperatures.

III. SRT TRANSISTOR SIZE AND

LITHOGRAPHIC CRITICAL DIMENSION

The Bohr radius of the bound carrier wave function regu-
lates the size scale of Spin Resonance Transistors. In semicon-
ductors the Bohr radius is much larger than in vacuum, since
the Coulomb force is screened by the dielectric constant, and
the effective mass is much smaller. Thus the bound carrier
roams farther. The Bohr radius is: aB = ǫ m0

m∗
( h̄2

m0q2 ) in the

semiconductor, where m∗

m0
is the effective mass relative to the

free electron mass, ǫ is the dielectric constant, ǫ = 16 for Ge,
and ǫ = 12 for Si and the quantity in parenthesis is the Bohr
radius in vacuum.

It is common in Si-Ge alloys to have strain available as an
engineering parameter. Strain engineering of valence band
masses has been very successful, and is used [28] in virtually
all modern semiconductor lasers. As discussed above, in the
conduction band, strain splits the multiple conduction band
valley energies, allowing one valley to become the dominant
lowest energy conduction band. If that valley also happens to
be correctly aligned, the donor wave functions can have a low
mass moving in the plane of the silicon wafer, and a high mass
perpendicular to the wafer surface. That is exactly what we
are looking for in spin resonance transistors. We want large
wave functions in the directions parallel to the wafer surface,
in order to relax the lithographic precision that would have
been demanded if the Bohr radius were small.

In Si-rich alloys there are 6 conduction band minima, in
the 6 cubic directions, that are frequently labeled as the X-
directions. In Ge-rich alloys, there are 4 conduction minima

located at the 〈111〉 faces of the Brillouin Zone, labeled L. The
Ge-rich case is particularly interesting, since it has a conduc-
tion band mass of only 0.082m0 in the transverse direction.
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FIG. 1. The conduction band energy in Si-Ge alloys, com-
positionally strained in the 〈111〉 direction, from neutral
strain at 100% Ge. The X-valley has 6 minima that remain
degenerate. The L-valley has 4 minima that are split be-
tween L1 and L3. The conduction band changes from the
X- to L1-character at a composition of Si0.3Ge0.7. At this
band transformation, the xy-effective mass becomes relatively
light, the Bohr radius increases, and the g-factor drops from
g ≈ 1.998 to g = g‖ ≈ 0.823. The fractional compositions D,
T, and B, will be used in our band structure engineered, spin
resonance transistor.

Under 〈111〉 strain the 4 conduction band valleys split so
that one of them is lowest in energy and is labeled L1. The
other 3 valleys remain degenerate and are labeled L3. Fig-
ure 1 shows the conduction band structure in the Si-Ge al-
loys, grown compositionally strained in the 〈111〉 direction,
with neutral strain at 100% Ge, as adapted from a more com-
plete set of band structures from Wang et al [29].

The hydrogenic Schrödinger equation for anisotropic effec-
tive mass, mxy in the plane of the wafer, and mz perpendic-
ular to the plane of the wafer, has been solved for arbitrary
values of mxy/mz by Schindlmayr [30]. The Bohr radius in
the xy-plane is influenced by both effective masses:

aB,xy =
2ǫ

3π

2 + (mxy/mz)
1/3

mxy
a0

B (2)

TABLE I. Conduction band effective masses relative to m0,
and the corresponding Bohr radii and g-factors in Si and Ge.

material ǫ mxy mz aB,xy aB,z g‖ g⊥

Germanium 16 0.082 1.59 64 Å 24 Å 0.823 1.933
Silicon 12 0.191 0.916 25 Å 15 Å 1.999 1.998
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with a0
B the Bohr radius of a free hydrogen atom and

mxy << mz is assumed, as is appropriate for the z-oriented
Si and Ge conduction band ellipsoids. The Bohr radius in the
heavy mass direction, aB,z is given by aB,z = (

mxy

mz
)1/3aB,xy.

Using the actual masses and the exact formula [30], we give
the Bohr radii in Si and Ge for z-oriented conduction band
ellipsoids in Table I.
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FIG. 2. The band structure diagram for the proposed
spin-resonance transistor, showing the Coulombic potential
well of the donor ion in the Si0.4Ge0.6 D-layer where the con-
duction band minimum is X-like. The hydrogenic wave func-
tion partly overlaps the Si0.15Ge0.85 T-layer where the con-
duction band minimum is L-like. The donor electron is con-
fined by the two Si0.23Ge0.77 B-barrier layers. The epilayer
thicknesses are not to scale.

In Table I, special note should be taken of the Bohr radius
of 64 Å for 〈111〉 strained Ge-rich alloys in which the L1 band
minimum forms the conduction band. At that orientation, the
X-band minima in Si-rich alloys would have a Bohr radius of
only ≈ 20 Å. Thus we achieve over a factor 3 increase in the
transistor spacing by using a Ge-rich layer.

Given that the exchange interaction is a dominant influ-
ence among the donor spins, we make the point that Preskill’s
de-coherence criterion can be redefined [31] as the on/off ra-
tio of the spin-spin interaction, as induced by the transistor
gates. The actual required transistor spacing is set by the
need for the weakest possible exchange interaction when the
2-qubit interaction is off, and a strong exchange interaction
when 2-qubit interactions are turned on. The exchange en-
ergy 4J between hydrogenic wave functions determines both
time scales:

4J(r)

h
≈ 1.6

q2

ǫaB
(

r

aB
)5/2 exp

−2r

aB
(3)

If we require the exchange energy in the off-state to be less
than the measured [23] T2 dephasing linewidth ≈1 kHz, then
the donor ions would have to be about 29 Bohr radii apart,
allowing a spacing of about 2000 Å. Such critical dimensions
are well within the range that can be produced by electron
beam lithography.

Later we will show that by gate-controlled Stark distor-
tion of the hydrogenic wave functions, the Bohr radius can
be further increased, switching on the 2- qubit interactions.
Thus, band structure engineering allows us to use only one
electrostatic gate to control both one- and two-qubit opera-
tions, rather than two separate A- and J-gates as required by
Kane. This reduction of the number of gates by a factor of
two, though not essential for the operation of the our ESR,
means that all lithographic dimensions are doubled, which
significantly increases the manufacturability of the device.

IV. GATE CONTROLLED SINGLE QUBIT

ROTATIONS IN THE SPIN-RESONANCE

TRANSISTOR

The essence of a spin-resonance transistor (SRT) qubit is
that a gate electrode should control the spin-resonance fre-
quency. By tuning this frequency with respect to the fre-
quency of a constant radiation field, that is always present
while the computer is being operated, single qubit rotations
can be readily implemented on the electron spin. A band
structure diagram for the SRT is shown in Figure 2.
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FIG. 3. The donor electron wave function is electrostati-
cally attracted toward the Si0.15Ge0.85 T-layer where the con-
duction band minimum is L1-like. There it will experience a
smaller g-factor, that is gate tunable. The actual g-factor will
be a weighted average between the D- and T-layers.

We rely on the difference in electronic g-factor, g = 1.998
for Si-rich alloys, and g = g‖ = 0.823 for Ge-rich alloys,
strained in the 〈111〉 direction. Thus, the electron spin res-
onance transition can be readily tuned by an electrostatic
gate on a compositionally modulated Si-Ge epilayer struc-
ture, such as shown in Figure 3. In a study of the composi-
tion dependence of the g-factor in Si-Ge alloys, Vollmer and
Geist [32] showed that the g-factor is most influenced by the
band structure crossover from X to L1 at a composition of
Si0.3Ge0.7, and hardly at all by compositional changes away
from that crossover. The 31P dopant atoms are positioned in
the Si0.4Ge0.6 D-layer, a composition which is to the left of
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the crossover in Figure 1. By electrostatically attracting the
electron wave function into the Si0.15Ge0.85 T-layer, the spin
resonance can be tuned very substantially.
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FIG. 4. A schematic of the dependence of the spin res-
onance frequency on the transistor gate voltage. As the
electrons are pulled toward the positive gate electrode and
into the more Ge-rich alloy compositions, the hetero-barrier
B-layer prevents the donors from becoming completely ion-
ized. At intermediate gate voltages, the g-factor can be tuned
from g=1.998 to g=0.823. The frequencies on the vertical axis
correspond to a magnetic field of 2 Tesla. The two-qubit tun-
ing range will be explained in the next section.

The two barrier layers of composition Si0.23Ge0.77, labeled
B in Figure 2, have a conduction band structure as indicated
in Figure 1. They have an L1-like conduction band minimum,
to the right of X-L1 band structure cross-over, and thus have
the same g-factor as the Si0.15Ge0.85 T layer. The purpose of
the B layers is to confine the donor electrons and prevent them
from tunneling away and becoming lost. The energy height
of the barrier need only be comparable to the donor binding
energy, ≈ 20meV to fulfil this task. On the other hand the
Si0.4Ge0.6 D-layer and the Si0.15Ge0.85 T-layer should have
no energy barrier between them so that the g-factor can be
freely tuned. Thus the D layer and the T layer are selected
at compositions straddling the X-L1 crossover in Figure 1, so
that their respective conduction band energies ED and ET

are the same. A schematic tuning curve for our proposed
spin resonance transistor is shown in Figure 4. As the spin
resonance transistors are tuned in and out of resonance with
the radiofrequency field the electron spin can be flipped, or
subjected to a phase change.

The wave function distortion during tuning is shown for
the left side transistor in Figure 5. The confinement barriers
of composition B Si0.23Ge0.77, play an important role. They
must confine the qubit donor electrons for long periods of
time, or the carriers and their quantum information will be
lost. For that purpose the B-barrier layers each need to be
about 200 Å thick, for a carrier lifetime comparable to the
≈1hour T1 spin-lattice relaxation for electron spin flips. The
two layers combined would total about 400 Å, well within

the practical strain limit [33] of ≈ 1000 Å for growth of
a 23% compositionally strained alloy. The D and T layers
have thicknesses similar to the aB,z vertical Bohr radius and
contribute only slightly to the strain burden.
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FIG. 5. The left transistor gate is biased V > 0 producing
single qubit unitary transformations in the left SRT. The right
gate is unbiased, V = 0. The n-Si0.4Ge0.6 ground plane is
counter-electrode to the gate, and it also acts as an FET
channel for sensing the spin.
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FIG. 6. The conduction band energy in Si-Ge alloys, com-
positionally strained in the 〈001〉 direction, from neutral
strain at 100% Ge. The L-valley has 4 minima that remain
degenerate. The X-valley has 6 minima along the cubic direc-
tions, that are split between X4 and X2. The compositions D,
T, and B are much less strained than in the 〈111〉 case, and
allow for higher barrier heights to confine the dopant electron.
For this crystal orientation, the g-factor in the Ge-rich T- and
B-layers is g = 1.563

If one uses alloys grown in the 〈001〉 direction instead, the
numbers become even more favorable. Figure 6 shows the con-
duction band structure in the Si-Ge alloys, grown in the 〈001〉
direction [33], compositionally strained from neutral strain at
100% Ge. In this growth direction, the L band remains un-
split, and the X band splits up into a doubly degenerate X2
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and a quadruply degenerate X4 band. As can be seen, the con-
duction band energy changes much more rapidly as a function
of alloy composition for the 〈001〉 growth direction. Moreover,
the X2 and the L bands cross over at approximately 90% Ge
instead of 70% as in the Ge 〈111〉 case. This allows us to
select alloys with much lower strain, while obtaining a barrier
height of 50 meV, more than twice the barrier height obtained
in the 〈111〉 direction. Consequently the layers can be made
thinner while still preventing tunneling of the dopant electron
and the strain tolerance is significantly improved. The corre-
sponding band structure diagram for the 〈001〉 oriented SRT
is shown in Figure 7.
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FIG. 7. The band structure diagram for the spin-resonance
transistor, with epilayers grown in the 〈001〉 direction. Both
the unbiased (a) and the biased case (b) are shown. The con-
duction band energies allow the selection of layers with com-
position D, T, and B such that the confining barrier height is
increased to 50 meV, while the strain in the layers is reduced,
compared to the 〈111〉 orientation. The epi-layer thicknesses
are not to scale.

However, in the 〈100〉 direction, the g-factor is equal to the
average value: g = 1.563, so that the tuning range for the
spin resonance frequency is less than in the 〈111〉 case, as is
demonstrated in Figure 8.

The use of the 〈001〉 growth direction comes at the expense
of an increased effective mass in the xy-plane and a lighter
mass in the z-direction. The conduction band ellipsoid point-
ing in the 〈111〉 direction is 55◦away from the 〈001〉 direction
and thus the z-direction no longer coincides with the heavy
mass direction (〈111〉). Some of the heavy mass is transferred
into the xy-plane, resulting in shorter Bohr radii. However,
the lightest mass in Ge is equal to the heaviest mass in Si(see
Table I). Therefore, the Ge-rich layer will always remain the
layer with Bohr radii in the xy-direction which are at least as

large as those in the Si-rich layer. Therefore Ge-rich layers
will again perform the function of the tuning T-layer, and the
barrier B-layer for structures grown in the 〈001〉 as they did
for the 〈111〉 direction.
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FIG. 8. A schematic of the dependence of the spin reso-
nance frequency on the transistor gate voltage for the case of
a 〈001〉 substrate. The static magnetic field is in the 〈001〉
direction and has a strength of 2 Tesla. The tuning range
is reduced in this growth direction with respect to the 〈111〉
case, because the g-factor in the Ge-rich layer is different:
g = 1.563.

V. TWO-QUBIT INTERACTIONS

The spin resonance transistors must be spaced far enough
apart, that they will not produce phase errors in one another.
At the same time it is necessary to allow wave function overlap
for the exchange interaction to activate the 2-qubit interac-
tions. These are needed to produce for example a Controlled
NOT (CNOT) gate, which is required to build a universal set
of quantum logic gates. To achieve this we rely on our abil-
ity to tune the Bohr radius of the donors in the xy-direction
parallel to the semiconductor surface.

The Bohr radius aB of a hydrogen-like donor increases with
decreasing binding energy. A famous example is excitons con-
fined in a 2-d flat quantum well: The excitonic binding energy
is four times greater [34] than it would be in 3 dimensions.
The reason is that spatial confinement forces the electron to
spend more time near the positive charge, and it experiences
tighter binding. Accordingly the Bohr radius is diminished.
For the same reason, confinement by heavy mass in the z-
direction reduces the Bohr radius in the xy-plane as can be
seen from Equation 4. Without this reduction the effective
mass in the xy-direction in strained 〈111〉 Ge would even be
higher.

Our technique for 2-qubit interactions does not require any
J-gates. By increasing the gate voltage, we pull the electron
wave function away from the positive ion, to reduce the bind-
ing energy, and increase the wave function overlap between
electrons bound to neighboring dopant ions. As shown in Fig-

6



ure 3, the electrons can be electrostatically attracted to one of
the barriers formed by the Si0.23Ge0.77 B-composition layer,
forming a type of modulation doped channel in the xy plane.
The binding energy to the positive ions is greatly weakened,
since the electrons are spending most of their time near the
Si0.23Ge0.77 B-barrier.

31
P

V>0

high g

low g

Si-Ge buffer layer

Si substrate

n- ground planeSi Ge0.4 0.6

Ge

Si Ge0.15 0.85

Si Ge0.4 0.6

Si Ge barrier0.23 0.77

Si Ge barrier0.23 0.77

V>0

FIG. 9. Attracting the electrons to the Si0.23Ge0.77

B-barrier reduces their Coulomb binding energy and increases
their wave function overlap, allowing 2-qubit interaction.

Consequently the Coulomb potential becomes weakened to
the following form:

V = − 1

4πǫ0ǫ

q√
r2 + d2

(4)

where r2 = x2 + y2 is the horizontal distance from the donor
ion, squared, and d is the vertical spacing from the barrier to
the donor ion, and q is the electronic charge. Thus by adjust-
ing the vertical depth of the ion, d, the Coulomb potential
can be made as weak as desired. The weak Coulomb binding
energy implies a large Bohr radius. The large radius permits
a substantial wave function overlap in the xy-plane along the
B-barrier layer, and a substantial 2-qubit exchange interac-
tion. It should be possible to tune from negligible exchange
interaction, all the way to a conducting metallic 2-d electron
gas, by adjusting the vertical spacing d. As the electrons
overlap, they will interact through the exchange interaction.
It was already shown by DiVincenzo [35], that the exchange
interaction can produce CNOT quantum gates.

The gate bias voltage range for 2-qubit entanglement, is
indicated by the second curly bracket in Figure 4. That volt-
age range attracts the electrons away from the positive ions
and toward the Si0.23Ge0.77 B barrier, thus increasing their
wave function overlap. In the mid-voltage range, the first
curly bracket in Figure 4, 1-qubit rotations take place. Thus
both one- and two-qubit interactions can be controlled by a
single gate. Gate tuning of a 2-qubit exchange interaction is
illustrated in Figure 9.

VI. DETECTION OF SPIN RESONANCE BY A

FET TRANSISTOR

FIG. 10. The current noise in a small FET at 83 K from
Kurten et al [37]. At this temperature the channel current
fluctuates between two states, caused by a single trap being
filled and emptied by a single charge. The change in channel
current is ≈2nAmps, which represents a few percent of total
channel current, and is easily measured.

It is a truism of semiconductor electronics that we need
crystals of high perfection and extraordinary purity. Semi-
conductor devices are very sensitive to the presence of chem-
ical and crystallographic faults down to the level of 1011 de-
fects/cm3 in the volume, and 108 defects/cm2 on the surface.
Such defect concentrations are far below the level of sensitivity
of even the most advanced chemical analytical instruments.
These imperfections influence the electrical characteristics of
semiconductor devices, as they vary their charge states. Thus
conventional electronic devices are sensitive to very low con-
centrations of defects.

The detection sensitivity becomes particularly striking
when the electronic devices are very tiny, as they are today.
If electronic devices are small enough, then there is a good
probability that not even one single defect might be present
in, or on, the device. That helps define the potential yield of
essentially perfect devices. But if a defect were to be present,
it would have an immediate effect on the current-voltage (I-
V) characteristics of that device. Therefore, the new world
of small transistors is making it relatively easy to detect sin-
gle defects, as their charge states directly influence the I-V
curves.

As Kane pointed out, the essential point for us is to detect
spin, not by its miniscule magnetic moment, but by virtue
[16] of the Pauli Exclusion Principle. A donor defect can
bind [36] a second electron by 1meV, provided that second
electron has opposite spin to the first electron. Thus spin
detection becomes electric charge detection, the essential idea
[35] behind Spin Resonance Transistors. In a small transistor,
even a single charge can be relatively easily monitored.

A fairly conventional, small, Field Effect transistor, (FET)
is very capable of measuring single charges, and therefore sin-
gle spins as well. A single electronic charge, in the gate insu-
lator, can have a profound effect on a low temperature FET.
At more elevated temperatures for example, the motion of
such individual charges produces telegraph noise in the FET
channel current. An illustration of such single charge detec-
tion [37] is in Figure 10. A single electrostatic charge can
add 1 additional carrier to the few hundred electrons in a
FET channel. However the 2 nAmp change in channel cur-
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rent seen in Figure 10 represents a few percent change, and
is caused by long range Coulomb scattering influencing the
resistance seen by all the electrons. At low FET operating
temperatures, ≈1 K, the random flip-flops disappear, but the
sensitivity to single charges remains [38].

In our spin-resonance transistor design, shown in Figures 5
and 9, the FET channel is labeled as the n-Si0.4Ge0.6 ground
plane counter-electrode. It is located under the 31P qubit
donor, and in turn, the donor is under the top surface gate
electrode. Thus the spin qubit is sandwiched between two
electrodes. As in a normal FET the gate electrode modulates
the n-Si0.4Ge0.6 channel current. The qubit electron donor is
positioned in the gate insulator region where its charge state
can have a strong influence on the channel current. Thus
the successive charge states: ionized donor, neutral donor,
and doubly occupied donor (D− state) are readily sensed by
measuring the channel current.

Source

Source

Drain

Drain

Gate

Gate

2000 Å

FIG. 11. Top view of the proposed device to demonstrate
a CNOT gate. A perspective view (, not including the source
and drain,) is shown in Figure 5. Fluctuations in the current
that flows from source to drain signal the charge state of the
dopant ion under each electrode.

In Figures 5 and 9, the two transistors have separate sensing
channels under each transistor, so that they can be separately
monitored, or indeed monitored differentially. By adjusting
the gate electrodes, both qubit donor electrons can be at-
tracted to the same donor. If they are in the singlet state
they can join together forming the D- state on one of the two
dopant ions, but in the triplet state they could never occupy
the same site.

Since the D− state forms on one transistor, and an ionized
donor D+, on the other transistor, there would be a substan-
tial change in differential channel current to identify the sin-
glet state. For the triplet state, both donors remain neutral
and differential channel current would be constant. As indi-
cated by the caption to Figure 10, we can anticipate a few
percent change in FET current associated with the singlet
spin state, making spin readily detectable.

VII. SMALL SCALE DEMONSTRATION

A possible 2-qubit demonstration device is shown in Fig-
ure 11. The differential current between the two FET’s chan-
nels in Figure 9 would monitor the electron spin resonance. In
practice a large number of transistor pairs would be arrayed
along the two FET channels in Figure 11, to allow for a finite
yield in getting successful pairs. A good pair can be sensed
using the same technique used in the previous section for the
detection (measurement) process.

There are two levels of doping in our proposed device: The
first level of doping is the conducting FET channel doping,
that needs to be at a heavy concentration to overcome freeze-
out at low temperatures. This is a standard design technique
in low temperature electronics. The second level of doping is
in the qubit layer, that allows only one donor ion per transis-
tor. Both doped regions need to be spatially patterned. The
doped layers can be implemented by conventional ion- im-
plantation through a patterned mask, possibly with an inter-
mediate epitaxial growth step to minimize ion straggle. Con-
ventional annealing can be used to remove ion damage.

FIG. 12. The ion implantation step for inserting an ar-
ray of qubit donor ions. The buried FET channels, that act
as counter-electrodes to the gates and sense the spin/charge
state, would be produced the same way. In a small-scale
demonstration, the array would consist of only 2 rows, aligned
with the FET channels of Figure 11. This should provide an
adequate yield of good qubit pairs.

The ion-implantation dose for the qubit layer would be
adjusted so that on average, only 1 Phosphorus ion would
fall into each opening in the photoresist layer of Figure 12.
By Poissonian statistics, the probability of getting exactly
1 Phosphorus ion is 36.7%. Thus the probability of getting
two adjacent gates to work would be 13.5%. That is adequate
yield for a small-scale two-qubit demonstration device. To
improve the yield for scale-up, there are many options. For
example, the dopant could be sensed by its electric charge,
and re-implanted if it were absent. Sensing an individual
dopant is not difficult. It can be done, for instance, by mon-
itoring the I-V curve at each site. By changing the voltage
on a particular A gate the electrons can be stripped off the
donor. As result one can see no-change, a single-change, or a
double-change of the current depending on whether there is
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no donor, one donor or two donors (etc.) in that site.

VIII. SCALING UP

There are a number of potential problems in scaling to a
large computer. The future usefulness of electron spins will
depend heavily on the favorable homogeneous T2 spin echo
linewidth [23] in Silicon, only 103Hz. The T2 lifetime in Si-Ge
alloys has not been measured, and it will have to be demon-
strated that it is as favorable as in pure Silicon. On the other
hand there also appear to be methods such as isotopic purifi-
cation, whereby this linewidth can be improved, particularly
for well-isolated electrons.

Control electrodes

high g

low g
31

P

+V
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Si-Ge buffer layer

Si substrate

Ge

Si Ge0.15 0.85

Si Ge barrier0.23 0.77

Si Ge0.4 0.6

Si Ge barrier0.23 0.77

n- ground planeSi Ge0.4 0.6

FIG. 13. In the future, we can expect arrays of Si-Ge SRT
transistors. The center-to-center spacing would be ≈ 2000 Å.
The gate electrodes on top will perform both single and
2-qubit operations, and can be used for data and instruction
read-in.

In very large arrays, there are problems associated with
the implantation yield of qubit donors. Poissonian statis-
tics gives a yield of 36.7%, while a yield of 50% will re-
quired for percolation, or quantum connectivity, through the
two- dimensional triangular array. There have been numerous
non-Poissonian doping schemes proposed including sense/re-
implant, self-assembly of molecular dopants, and scanning
probe writing. Innovative doping methods have a long his-
tory, and we should anticipate that a suitable method will be
optimized in time for scale-up to large quantum computers.

For instance, the sense/re-implant method (in which empty
sites are sensed, and re-implanted with doping probability pn

in the n’th implant) yields pe−p(1 − e−np)/(1 − e−p) good
sites when pi = p is chosen. With this formula, already n = 2
(only one additional implant) passes the percolation limit to
yield 52.16%, while more implants, n=3,5,9, and 24, yield
more than 60%, 70%, 80%, and 90% good sites respectively.
With n = 2 an optimization of the doping probability in each
implant (to be p1 = 0.632 and p2 = 1) provides the optimal
yield of 53.15%.

The other scale up issue revolves around the fact that each
transistor will not be identical. As Kane noted, the tran-
sistors will have to be checked and calibrated repeatedly for

use in a full-fledged quantum computer. The reason is that
the nuclear spins, although almost static, will be different for
each transistor. In addition the local alloy structure is dif-
ferent near every donor. We should not be discouraged by
this checking and calibration requirement. In manufacturing
classical integrated circuits, testing and repair are the biggest
expense. It is common to have only a finite yield of good de-
vices, and to reroute wiring around bad transistors. This is
probably inherent in the manufacture of any large-scale sys-
tem.

The size of spin resonance transistors, the required defect
density, the increasing use of Si-Ge alloys, are all near to the
present state of technology. If the spin resonance transistor
(SRT) is successfully developed, we can anticipate arrays of
qubits appearing much as in Figure 13.

Source
Source

Source
SourceDrain

Drain
Drain

Drain

2000 Å

FIG. 14. In a large array, the read-out qubits would be
located around the periphery. Buried FET channels would
sense the spin/charge state of a selected qubit. The channel
current can change by a few percent in response to a single
electronic charge.

The read-out of data requires that the buried counter elec-
trode, opposite the gate, should also function as an FET chan-
nel. In a quantum computer, the result of the quantum com-
putation is usually displayed on a small sub-array of all the
qubits. Hence the read-out qubits can be located at the edge
of the array. Figure 14 shows a qubit array, with read-out
FET channels (counter- electrodes) buried under the periph-
eral qubits of the array. A single buried FET read-out channel
can serve many qubits, since a chosen qubit can be selected
for readout by its gate electrode.

The read-out operation can be expedited if there is a ther-
mal reservoir of donors surrounding the peripheral qubits as
shown in Figure 15. These can be attracted by a field elec-
trode to the Si0.23Ge0.77 B-barrier under the electrode, form-
ing in effect a modulation doped layer. Since the operating
temperature of the computer is such that kT ≪ Ez with Ez

the Zeeman energy of the electron spins, these qubits would
be oriented by the magnetic field, and would act as a spin
heat bath of known orientation. By attracting those bath
spins to a peripheral read-out qubit gate electrode, a singlet
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state could be formed, sensing that the readout qubit had
been flipped. The current in the FET channel would then
change, completing the read-out operation.

Read-out Channel

Readout qubits

Thermal bath of
oriented spins

31
P

n-Ge ground plane

Fiel
d 

Elec
tro

de

FIG. 15. A perspective view of Figure 14, gives more de-
tails of the readout architecture for the peripheral qubits. The
field electrode allows the Readout Qubits to interact with the
heat bath of oriented electron spins

After readout, the gate voltage could be made even more
positive, and the read- out qubit could thermalize with the
surrounding heat bath. In effect, this resets the initial state
of that peripheral qubit, which could then be swapped into
the interior qubits for re-use as fault correcting ancilla qubits.

Without a doubt there will be many other issues regard-
ing scale-up. Semiconductors, particularly silicon, provide
a track record of being tractable, engineerable materials in
which many difficult accomplishments have become routine.
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