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Abstract

In ensemble (or bulk) quantum computation, all com-
putations are performed on an ensemble of computers
rather than on a single computer. Measurements of qubits
in an individual computer cannot be performed; instead,
only ezxpectation values (over the complete ensemble of
computers) can be measured. As a result of this limita-
tion on the model of computation, many algorithms can-
not be processed directly on such computers, and must
be modified. We provide modification of the fault toler-
ant quantum computation protocols to enable processing
on ensemble guantum computers.

1. Introduction

Quantum computing is a new type of computing
which uses the properties of quantum mechanics to con-
struct fast algorithms to solve several important prob-
lems. For example, Shor’s quantum algorithm [22] for
factoring large numbers is exponentially faster than
any known classical algorithm. Similarly, by utiliz-
ing Grover’s algorithm [12], it is possible to search a
database of size N in time O(v/N), compared to O(N)
in the classical setting.

Nuclear Magnetic Resonance (NMR) computing,
first suggested by Cory, Fahmy and Havel [10], and
by Gershenfeld and Chuang [11], is currently one of
the most promising implementations of quantum com-
puting. Several quantum algorithms involving only few
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qubits have been demonstrated in the laboratory set-
ting [10, 11, 9, 13, 17, 23]. In such NMR systems, each
molecule is used as a computer. Different qubits in the
computer are represented by spins of different nuclei.
Many identical molecules (in fact, a macroscopic num-
ber) are used in parallel; hence, there is an ensemble of
quantum computers. This model is called the ensem-
ble or bulk quantum computation model. In such bulk
models, each operation is applied to each computer in
the ensemble. Qubits in a single computer cannot be
measured, and only expectation values of each partic-
ular bit over all the computers can be read out.

The impossibility of performing measurements on
the particular qubits of individual computers causes
severe limitations on ensemble quantum computation.
In particular, for quantum cryptography tasks, ensem-
ble quantum computers appear to be useless. It was
generally assumed that rather simple strategies of de-
laying (or avoiding) measurements can be used to by-
pass these limitations, in order to enable the implemen-
tation of all quantum algorithms. We show here that
the existing strategies are insufficient for fault toler-
ant computation, and we develop novel strategies that
resolve this problem.

In this paper, we restrict ourselves to issues re-
lated solely to the ensemble—measurement prob-
lem. The results here are vital for bulk computation;
in addition, the specific results obtained regarding uni-
versal and fault tolerant sets of gates are also important
for other implementations of quantum computing de-
vices where reducing the number of measurements re-
quired for computation is desired.
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2. The measurement in ensemble quan-
tum computation

The measurement process in quantum mechanics
can be described simply as follows: To measure the
state of a qubit, say |¢)) = «|0) + §|1) in the com-
putation basis (/0);|1)), one measures the Hermitian
operator (the observable)

({1 0
==\ o0 -1

to get the outcome Ao = 1 with probability |a|? and
A1 = —1 with probability |3|2. In an NMR ensemble
model, the corresponding qubit in every computer is
measured simultaneously, resulting in the expectation
value, i.e., the outcome of the measurement is a signal
of strength proportional to || — |8|%.

The inability to measure bits in individual comput-
ers precludes using measurements to reset bits. A sim-
ple way to reset a bit is to measure it and flip it if
the outcome is |1). Since each computer in the en-
semble will have a different outcome, this is impos-
sible on an ensemble computer. Algorithmic cooling
has been proposed to reset bits in ensemble comput-
ing settings[20, 7).

The measurement process lies at the heart of all
quantum information processing and computing pro-
tocols and algorithms, and hence, needs to be carefully
addressed in any proposed implementation scheme.
Clearly, when the outcome of a measurement is ex-
pected to be the same on each of the computers, the
ensemble measurement is as good as the standard (sin-
gle computer) measurement. Usually, this is not the
case. In fact, to the best of our knowledge, the follow-
ing two protocols cannot be implemented on an ensem-
ble quantum computer due to the measurement issue:

Random number generator (RNG): One can easily
create an RNG Using a single qubit. To create a bi-
nomial probability distribution with parameter p, one
prepares a state /p|0) + /1 —p|1), and measures in
the computational basis to obtain the desired RNG.
This, as far as we know, cannot be done on an en-
semble quantum computer, where only the expectation
value pXg + (1 — p)A; can be monitored.

Teleportation: Standard teleportation can easily be
performed on a three qubit quantum computer. Strictly
speaking however, it cannot be performed on an ensem-
ble quantum computer. This is because a direct Bell-
state measurement of the ensemble quantum computer
is computationally useless: each computer will yield a
random result (of the Bell measurement), and on aver-
age the outcome is (1/2) Ao+ (1/2) A, for each of the two
measured qubits; hence, there is no way to decide how

to rotate the third qubit in each individual computer.
Yet, a “fully-quantum teleportation” of the type sug-
gested in [8] can be, and has been {17}, performed on
an ensemble quantum computer: in this fully-quantum
teleportation, the measurement of an individual com-
puter is never monitored, and a classically-controlled
rotation of the third qubit is replaced by a quantum
control operation, in which the control qubits dephase
before being used.

To better appreciate the measurement problem it
is instructive to review the basic anatomy of a quan-
tum computer. At a very high level, a quantum algo-
rithm can be described as a set of unitary transfor-
mations to be applied to an n-qubit system, followed
by a measurement of m of the qubits to obtain a clas-
sical m-bit output. The m-bit classical output is ei-
ther (i) One of many possible “correct” or “ good” an-
swers. For example, a database search using Grover’s
algorithm will return one of the entries satisfying the
query. If there are multiple possible query hits, then
every time the algorithm is run, it will return any one
of the hits with equal probability. Thus, in ensemble
quantum computing, even though all the computers
do identical operations, they will have different out-
comes after the measurement process, and one cannot
get one correct answer by the reading process we de-
scribed. (ii) The m-bit output is either the “desired”
or “good” solution or it is a spurious or “bad” candi-
date, and the whole process has to be repeated again.
For example, in Shor’s factorization algorithm the mea-
surement process yields an integer, which a set of clas-
sical operations can process to verify whether it yields
the correct answer (i.e., the order of the input inte-
ger) or not. The probability that the output will yield
the correct answer is such that one is guaranteed to ob-
tain such an output in a few number of repeated execu-
tions of the algorithm. Again, in the case of ensemble
quantum computing different computers will yield dif-
ferent results, and the task of identifying the correct
answer needs to be addressed.

If the role of measurements was restricted to only
the two cases described above then it is not that dif-
ficult to come up with solutions to the measurement
problem for ensemble quantum computation. However,
there are other “hidden” uses of the measurement pro-
cess, particularly involving error correction and fault
tolerance, during the execution of the algorithm (i.e.,
during the part that we broadly described as involv-
ing only unitary operations) that are a lot harder to
address. In this paper, we solve the problem of per-
forming fault-tolerant ensemble quantum computation
that had remained unanswered.

We next briefly review some of the strategies that
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one can adopt to successfully overcome the measure-
ment problem in ensemble quantum computers, which
in turn will allow us to point out why the existing ap-
proaches will not work for the fault tolerant computing
problem, addressed in this paper.

1. Let us consider the case, where the measurement
output is processed/used in one of the following
ways (i) The classical output is processed to de-
termine whether it yields the “desired” outcome
or not. For example, in Shor’s algorithm the out-
put is processed to determine if it yields the or-
der or not. (ii) The classical output is used to per-
form specific unitary operations on the rest of the
qubits, as in the case of quantum error-correction.

This case was recognized in the seminal work of
Gershenfeld and Chuang [11]. The most effective
scheme is to simply delay (or even avoid) the mea-
surements, and incorporate the post-measurement
processing step into the quantum algorithm, as a
controlled operation.

In the case of Shor’s algorithm one can per-
form the classical computation necessary to ver-
ify whether the candidate output generates a cor-
rect order or not. After these operations, the an-
swer is yes or no, and all the computers with
the “yes” answer, will have the same answer, i.e.,
the desired order. However, the computers with
“no” answers, will have different answers after the
post-measurement processing steps. We can solve
the problem posed by the interference due to the
“bad” candidates by replacing bad results with
random data, which will not interfere on average
with the reading of the “good” result. Previous
work by Gershenfeld and Chuang [11] noted that
Shor’s factorization algorithm can be implemented
on ensemble quantum computers, by incorporating
the post-measurement processing steps into the
quantum algorithm. However, Shor’s algorithm on
ensemble computers suffers also from problem of
generating a number of “bad” solutions, and hence
the modified algorithm suggested in [11] is not suf-
ficient. The algorithm requires a further modifi-
cation (the randomizing-bad-results strategy) in
order to work in the general case. Alternatively,
one might be able to control-repeat the compu-
tation in case the classical verification part shows
that the algorithm yielded a bad output. Unfortu-
nately, such strategy is not easily implementable
and cannot be easily justified; furthermore it leads
to a much longer computation process, and hence
to higher sensitivity to errors.

2. The algorithm has more than one correct final out-
come and the measurement process directly yields

one of the correct solution [e.g., Grover’s search
algorithm with several solutions that we already
pointed out]. First, note that for a measurement
model where all the 2™ states of an n-qubit sys-
tem can be distinguished, the multiple-solutions
case is not a problem. However, such a scheme is
not practical for any algorithm involving even tens
of qubits, and the exponential resolution require-
ment makes it no better than a classical computer.
[6] suggests modifications for scalable measure-
ment processes (i.e., where measurement is done
one qubit at a time) so that problem due to the
multiple search outputs can be resolved. One so-
lutions involves making multiple searches on the
same computer and then sorting the results. This
way with high probability the computers will have
the same sorted list.

It is fair to say that it was generally assumed that
the strategy of delaying measurements (as in case (1)
above) could be used to save all quantum algorithms.
However, as pointed out in both the above-mentioned
cases, delaying measurements by control operations
solves only some of the problems, and both the Shor
and Grover algorithms require strategies that are very
different and were not considered explicitly in prior lit-
erature. The measurement problem becomes even more
acute in the case of fault-tolerant computations, which
is the subject of this paper. The schemes proposed so
far for quantum fault tolerant computation provide an
incomplete set of gates, i.e., a set of gates that is not
universal for quantum computation. In order to com-
plete the set to a universal set, the schemes use inter-
actions with ancilla qubits, which are then measured
[21, 16, 19]. Each such measurement is followed by an
application of a unitary operation, U;, that depends on
the outcome of the measurement (j). A direct scheme
for removing such measurements (followed by the re-
quired unitary operations U;), and replacing them by
controlled operations, A(U;), will not in general be re-
alizable. This is because, A(U;) might not be realizable
by the incomplete set of fault tolerant gates. For exam-
ple, if one attempts to remove measurements in Shor’s
scheme for fault tolerant realization of Toffoli gate [21],
then the corresponding controlled operations would it-
self require Toffoli gates! We believe that this issue was
not explicitly addressed in previous works. The rest of
this work will describe how an analysis of error propa-
gation and a careful usage of classical reversible circuits
can allow one to delay measurements in a fault toler-
ant manner, and allow for fault tolerant NMR quan-
tum computing.
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3. Review of Fault Tolerant Quantum
Computing

The idea of quantum fault tolerant computation {21,
3, 16, 14, 19] can be described briefly as follows. Sup-
pose that we have a (noise-less) quantum circuit C
which we want to simulate by a noisy quantum com-
puter. On the noisy quantum computer, instead of cir-
cuit C we perform a fault tolerant circuit C. The phys-
ical bits |0) and |1) are replaced by logical bits |0),
and |1),, where these are some entangled states of a
block of physical qubits. While C' operates on physi-
cal qubits representing the data, in the circuit C' all
operations are performed on logical qubits which are
error-correction-encoded data, i.e., each data qubit or
a set of data qubits is represented as a block of qubits
that belongs to some quantum error—correcting code.
Then each operation of C' performed by a gate g; is
simulated by a procedure (sub-circuit) g; in the circuit
C such that in gj each computation transforms code-
words to codewords. In order to avoid accumulation of
errors, after each computation in g; a correction pro-
cedure is performed to correct any error that is intro-
duced in that computation. Thus, in the fault tolerant
circuit C each computation step is followed by a cor-
rection step.

The operations on the encoded qubits introduce a
large number of additional gates and qubits, and, un-
less one is careful, it is possible that more errors are in-
troduced than can be corrected by the code. To avoid
any such catastrophic accumulation of errors, it is de-
sirable that the operations in the fault tolerant cir-
cuits prevent “spreading of errors” by making sure that
each gate error causes at most a single error in each
block. It is useful now to review how errors propa-
gate in quantum circuits. For example, consider the
CNOT (controlled—not) gate which performs the oper-
ation |a), |b), — |a),|a ® b), in the computation basis;
for the rest of this paper, we shall drop the subscripts
¢ (control) and ¢ (target) and designate the control bit
as the one on the left side. Clearly, applying the CNOT
operation from one bit to many target bits can propa-
gate one bit error from the control bit to all the target
bits. On the other hand, applying CNOT from many
control bits to one target bit can propagate one phase
error from the target bit to all the control bits. It is
easy to observe this “back” propagation of the phase
errors: if a phase error happens on the second (tar-
get) qubit in the state (|0) + [1)) ® (|0) + |1)) and a
CNOT is applied after, we will get

(10) + 1)) ® (l0) - 11))
c_g_c_))T [0} ® (|0) — |1)) + 1) ® (J]1) — |0))

= (10-)®(0)-[1))

which results in a phase error in the control qubit.
Hence, fault tolerant computation requires that this
gate be applied only in the case where the control qubit
|a) and the target qubit |b) belong to different blocks.

This error-propagation phenomenon is also true for
other controlled operations, and this motivated a suf-
ficient condition for fault tolerance: only perform bit-
wise or transversal! operations on qubits within a code.
It is, however, not a necessary condition for fault tol-
erance, and careful constructions may allow one to ap-
ply control gates from many control bits onto one tar-
get bit, without destroying the fault tolerant computa-
tion.

Therefore, to achieve a quantum fault tolerant com-
putation, it is enough to show that a universal set of
quantum gates can be constructed with only bit-wise
and transversal operations on a quantum code. Quan-
tum fault tolerant schemes usually (see, e.g., [21, 19])
depend on measurements to ensure that the set of the
operations permissible on encoded data is actually a
universal set. Recall that we cannot depend on mea-
surements in ensemble computers, but must still cre-
ate a universal set to achieve fault tolerance. Some of
the gates in the universal set do not require measure-
ments, e.g., the operations H, a;/z, and CNOT. [For a
class of codes called CSS codes [21], H, 0., and CNOT
can simply be achieved by performing the same gate
bit-wise on the individual qubits (e.g., H is achieved on
code words via applying H on individual qubits), while
the bit-wise a;/ 2 yields a az_l/ 2 logical gate, hence re-
quires an additional step of bit-wise ¢, to yield the de-
sired logical gate.] In previous works [21, 4, 5] at least
one gate in the universal set requires measurements.
That’s bad for ensemble computers. We now present
tools that will allow us to create a measurement-free
universal quantum fault tolerant set of gates.

4. Measurement-free Quantum Fault

Tolerant Gates

There is always a simple scheme that potentially al-
lows one to postpone measurements of ancilla qubits
in quantum computation. Unfortunately, the simple
scheme never works in the case of generating univer-
sal fault tolerant gates. In fault tolerant computation
and error recovery, often a measurement is followed by

1 By transversal operations, we mean operations that act on at
most one qubit in any code block. For instance, a gate applied
from the first bit of one codeword and the first bit of a second
codeword, and second bit of one codeword and a second bit of
a second codeword, and so fourth.
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an operation U; ? if the outcome of the measurement
is 1. As explained in Section 2, the scheme for delay-
ing the measurement can be successfully implemented
only if the measurement followed by a U; operation
can be replaced by controlled-U; (denoted A(Uj)) in
the set of available measurement—free operations; i.e.,
control operations which can be implemented on en-
coded data fault tolerantly and directly without us-
ing any measurements. However, in the schemes pro-
posed so far, the required control operations A(U;) are
not implementable in a direct fault tolerant manner.
For instance, in Shor’s fault tolerant set of gates [21], a
measurement is required for the preparation of a Tof-
foli gate, but a Toffoli gate is required if we want to
delay that measurement. This is because the measure-
ment is followed by a CNOT operation, and hence can
only be replaced by a controlled-CNOT, which is a Tof-
foli gate. This seems like a catch-22 situation! 3

The solution comes from the vital observation that
some operations need protection only from the bit er-
rors, and do not need to use full quantum codes: by
replacing the quantum ancilla (in a logical basis |0)r,
and |1)) by a “classical ancilla” in a “classical” basis
|0) =]0---0) and |T) = |1---1), we can use the classi-
cal ancilla to perform A(U;) in a fault tolerant manner.
This can be done in the two cases where the the Tof-
foli gate is required for Shor’s fault tolerant set of gates,
and the A(a;/ ?) gate required for the basis of [4]. One
can interpret the classical basis as the classical repe-
tition code. We call the ancilla in these states “classi-
cal” since we are not concerned with phase errors on
these bits. A classical error-correction code can cor-
rect bit errors in the classical ancilla. Despite the fact
that phase errors are not corrected in the classical an-
cilla, we found that the use of such a classical ancilla
is still good enough for our purpose.

4.1. Replacing Measurements of Encoded
Ancilla Qubits

In the following, we shall replace the measurement
of the quantum ancilla followed by the operation U
acting on the quantum data, by a sequence of opera-
tions: we copy the two basis states of a quantum an-
cilla into a classical ancilla, we perform classical error

2 Uj; can be performed fault tolerantly using the given, non-

universal, set of operations.

3 Similarly, in the fault tolerant universal set of gates suggested
in [4], the generation of the ol/* gate without measurements
leads to a catch-22 problem;a a;/ 2 gate (which follows the mea-

surement) needs to be replaced by a A(a;/2) gate, which is not

available as long as the a';“ gate is not available.

correction on the classical ancilla, and we use the clas-
sical ancilla as a control bit for performing the opera-
tion A(U;) with the quantum data as the target bit.

The measurement of the quantum ancilla in the orig-
inal protocol can be done as follows [19]: measure each
of the physical qubits, and perform a classical error cor-
rection on the outcome of this measurement to deter-
mine the state of the ancilla. For example, if the 7-bit
CSS code [21] is used to encode data, then a measure-
ment will yield a (possibly corrupted) codeword of a
classical 7-bit Hamming code. After classical error cor-
rection, if the parity of the codeword is even, then the
ancilla has collapsed to the state |0), ; otherwise, it has
collapsed to the state |1) ;. Classical error correction is
enough to protect the output bit b, because phase er-
rors before a measurement will not change the outcome
probabilities.

In Figure 1, we represent a circuit that computes
operation N) for the seven-bit CSS code, where N
stands for Eq.(1) with only one bit of the classical an-
cilla. The ancilla bits labeled syndrome are used to pre-
vent the spread of one bit error from the quantum an-
cilla into the classical bit. These bits are exactly the
parity check of the syndrome of the 7-bit Hamming
code. Only two errors (in any of the inputs, the gates
or the time steps) shall yield an error in the classical
bit.

The circuit A; flips the bit & if the quantum ancilla
(acting here as a control bit) is |1);, and does noth-
ing otherwise. This circuit operates properly as long as
there is up to one bit error in the quantum data (there
can actually be an unlimited number of phase errors).
Note that phase errors in the lower part will spread to
the quantum ancilla. This is of no consequence, how-
ever, since the quantum ancilla never interacts with the
quantum data in later stages. Bit errors in the quan-
tum ancilla are important, since the process is repeated
n times; hence, bit errors, created in the quantum an-
cilla at initial stage of Nj, will spread errors into the
next bits of the classical ancilla. Fortunately, bit errors
are not transmitted from the classical to quantum sec-
tion, and the quantum ancilla cannot be disturbed by
a bit error in bits of the classical ancilla or the syn-
drome ancilla.

As a step toward removing the measurement from
the original protocol, we propose a new gate that copies
an encoded quantum ancilla word onto a classical an-
cilla:

|0)L®|q; — |0)L®|q>»

) o) e(l)y — [0), ®]1),

N ety — e, W
M, ®I1) — [1),®][0).
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Figure 1. The operation \;. Note that the circuit shows the generation of only one classical target bit |b);
the operations on the last bit have to be repeated to generate multiple target bits.

Let N be a unitary operation that implements the
above transformation. In the next section we show that
the complete A operation can be done fault tolerantly.
In sections 4.4 and 4.5, the operation N will enable us
to construct gates for universal fault tolerant compu-
tation, without measurement.

4.2. The operation N': quantum-to-classical
controlled—-NOT

The N operation “copies” the encoded quantum bit
onto the encoded classical ancilla. The repetition code
can only correct for bit errors in the classical ancilla,
but one must be sure that the classical ancilla can still
be used to perform A(U;) without putting the quan-
tum data in jeopardy. Perhaps counter-intuitively, this
is not a problem, since phase errors are transmitted
from target bit to control bit, hence cannot be trans-
mitted from the classical ancilla (control) to the quan-
tum data (target). This leads to the most interesting
aspect of our scheme: the data in the classical repe-
tition code, or any classical function of this data, can
act as control bits in a bit-wise controlled-U operation
onto quantum data.

In the complete N circuit, the A computation on
the bottom four bits is repeated at most n times, where
n is the number of qubits in a codeword. At each rep-
etition stage, the syndrome bits are discarded, and an-
other bit b; is created (¢ € 1...n). In principle, the syn-
drome bits could be ignored, reset, or measured. These
bits will not affect the operation beyond their use as a
form of error detection in the codeword. The bits b; are
then corrected (to yield the classical 0 or 1) using a ma-
jority vote.

In order to reduce the number of operations (and
hence improve the fault tolerant threshold), we only
need to use a repetition code that will successfully re-
cover from k' errors. Once this number %' is equal to,
or greater than, the number of errors, k, that the quan-
tum code can correct for, we may stop. For a probabil-
ity p of an error (per gate, per input bit, and per de-
lay line), the resulting error rate of this circuit is O(p?),
as required for fault tolerant computation. The thresh-
old can easily be calculated by counting the potential
places for two errors, and the threshold can be much
improved by enhancing the parallelism, and by repeat-
ing N7 only 2k + 1 times (e.g., with the 7-bit quan-
tum code, that is n = 7, which corrects k = 1 error, it
is enough to repeat the circuit 3 times, correct the out-
come using a majority vote, and then copy the result
into seven bits).

Later, in sections 4.4 and 4.5, we show cases where,
indeed, the operations between the classical ancilla and
the quantum data can be performed bit-wise, while
the same operations cannot be performed bit-wise be-
tween quantum ancilla and the quantum data (as the
naive solution of delaying measurements would have
suggested).

Note that the quantum data may add phase errors
to the repetition code, but that is of no concern to us,
since the classical repetition code also loses phase co-
herence in the measured case. If there are ¢ bit errors in
the repetition code, it will result in ¢ errors in the quan-
tum data. Fortunately, bit errors are corrected in the
repetition code. Hence, the operation N enables one to
create universal bases without measurement.
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Figure 2. Preparing an eigenvector.

4.3. Creating the special states required
for fault tolerant universal computa-
tion, without using a measurement

In sections 4.4 and 4.5 we describe how to construct
gates to produce a universal set without measurement.
In both of those sections, we will make use of “spe-
cial states” which enable the construction of the gate.
In this section we describe a general method to pro-
duce these special states under general circumstances.
Once presented, the descriptions in sections 4.4 and 4.5
become much simpler.

Assume that a quantum code of length n is used for
encoding data. Suppose that U € U(2!) [for our pur-
pose it is enough to consider up to three qubits (I = 3)
operations], and U = U®" is the unitary operation on
the codewords obtained by applying U bit-wise. Sup-
pose that U has eigenvectors |¢o) and |¢1) such that

Ulgo) =Igo)  and  Ulg1) = —|¢1).

Then the quantum circuit in Figure 2 outputs the
eigenvector |@) if the input state is a |¢o) + B |¢1) for
any a, 8. In figure 2, fjﬂip is a unitary operation that
maps |¢o) on |¢1) and vice versa. The operations A)
(i-e., the controlled—U ), and H are applied bit-wise.
This scheme is practical if it is possible to prepare
a state a|dp) + B |#1), where the values of & and 8 do
not matter. In this circuit the first line is a single parity
bit, and each of the second and third inputs are blocks
of n qubits, containing the cat-states lines and the spe-
cial state lines, respectively. The third gate, the CNOT
gate which we call here P, is a parity gate which calcu-
lates the parity of the cat-state lines and puts the re-
sult in the parity bit. This is done by a sequence of
CNOTs from each control bit onto one target bit. The
figure only demonstrates the creation of one parity bit
|¢o) in an unprotected manner as far as a bit error in
the parity bit is concerned. The real circuit is a bit dif-
ferent: The operations A(U), H and P, are repeated n
times, each time with fresh cat-states and a fresh par-
ity bit (but on the same special state’s lines). Then a
majority vote is calculated on the parity bits, in order

to reduce the probability that an error in a cat state or
in the parity bit will ruin the result. Then the n parity
results are corrected, so that the probability of two er-
rors becomes low [that is, of order O(p?)]. Finally, the
parity result is used to control ﬁﬂip in a bit-wise man-
ner, so that the special state is created via a fault tol-
erant operation.

4.4. Fault tolerant 0,'/* without measure-
ment.

We show here a modified version of the original
method for implementing o,/ on codewords [4] which
does not use measurements. Using the method de-
scribed in Section 4.3, we need to prepare the following
state

1 in
75 (10, +eF10),).
This state can be prepared with a circuit of form given
in Figure 2. For this purpose, let U = e% 0,0,0,!/?
and [p1) = Jz (10), — €% |1, ). Then T lwo) = [¥o),

U [11) = — J¢1), and Ugip = o,. Finally, see that |0) =
%(liﬁo) + |#1)). Note, as required in section 4.3, both

|10) =

U and Utip are in the directly fault tolerant set. Hence
we have all the requirements of the previous section,
and thus we may use that method to create {1)p).

Now we are ready to describe the fault tolerant o, /4
without measurement. The circuit in Figure 3 shows
the fault tolerant implementation of ¢,/ on a code-
word |z),. In this circuit, N is the unitary operation
defined in (1). Apart from replacing the standard mea-
surements by the N circuit, this figure is exactly the
same as the one drawn in [4] to implement the o,'/*
gate. In this figure each input in fact denotes a block
of qubits, and operations are bit-wise.

4.5. Fault tolerant Toffoli without mea-
surement

The more conventional (and more complicated) set
of universal fault tolerant gates contain the Toffoli in-
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Figure 3. Fault tolerant o'/ without measurement.
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Figure 4. Fault tolerant Toffoli without measurement.

stead of the o,1/%. We show explicitly how to imple-
ment Toffoli on encoded data without using any mea-
surement. This scheme is a modified version of Shor’s
original method for implementing Toffoli on codewords
[21], and is similar to the one applied to o,1/4.

In Shor’s method (as in the other basis we have
shown) a preparation of a special state is required,
hence we first prepare the state

(2
without using measurement, based on our scheme pre-

sented in Section 4.3..
To get |AND) we let U = A(o,;) ® 0., and we chose

|AND ) = 1 (|001),, +[011),, +[101),, +[110) ).

Then U|AND) = |AND), U|AND) = —|AND),
Uip =1 ® I ® 0, and

1 (JAND) + |AND ) = (H ® # ® H)[000), .

|AND) = L (000),, + [010), + [100), + [111) ),

Note, as required in section 4.3, both U and Utip are
in the directly fault tolerant set. Hence we have all the

requirements of the previous section, and thus we may
use that method to create |AND).

A different solution to this step was given (indepen-
dently) by D. Aharonov and M. Ben-Or [2]. Our pro-
cedure for constructing the fault tolerant Toffoli gate
is presented in Figure 4. In this circuit A is the uni-
tary operation defined in (1); apart from replacing the
standard measurements by our N circuit, this figure
is exactly the same as the one drawn by Preskill [19]
to describe Shor’s way of obtaining the Toffoli gate.
Note that in this figure each input represents a block
of qubits and operations on these blocks are defined in
the natural way. Also note that the first three top out-
puts of this circuit are in a tensor product with the rest
of the outputs.

5. Error recovery in the error correction
process

Standard error correction can be viewed as a com-
putation with more than one good answer, and thus
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belongs to case (1) discussed in Section 2. On differ-
ent computers in the ensemble the syndrome of the er-
ror will be different, and thus is not unique. In the
standard error correction prescription, measurement is
used to collapse the ancilla qubits containing the in-
formation as to which error occurred (the syndrome).
Then these syndrome bits are processed by a classi-
cal reversible algorithm to determine the errors, and
a unitary operation to correct the error is applied to
the data qubits by the output bits of the classical algo-
rithm. In the measurement-free case, the ancilla qubits
need not be measured, and the classical subroutine (fol-
lowing the measurement) could be incorporated into
the original quantum algorithm.

The standard error correction operations require the
use of a universal set of classical gates (e.g. NOT,
CNOT, Toffoli). As in Section 3, for the classical part
of the computation we do not care about phase errors,
and as such we do not need the full power of quantum
fault tolerance in this part of the computation. Hence,
the techniques of Section 3 can be applied so that the
classical subroutine is carried out on a classical code.
The state of the ancilla qubits can be first copied onto
a classical repetition code using the N gate. Now clas-
sical reversible computation can be performed on the
repetition code and then a control operation can be
performed on the quantum data to correct for the er-
rors.

Since phase errors from the classical sub-circuit will
not propagate to the quantum data, using repetition
codes to correct for any bit errors in the sub-circuit
is sufficient. The observation that phase errors cannot
propagate from the “classical” part of the computation
allows one to fault tolerantly replace quantum Toffoli
gates by classical ones in the error recovery process.

6. Concluding Remarks

To summarize, we showed that running algorithms
on bulk (ensemble) computers is not always straight-
forward. We modified fault tolerance protocols so that
they can run on ensemble computers, such as NMR
quantum computers, where individual qubit measure-
ment is not available.

In a prior work, addressing fault tolerant compu-
tation, Aharonov and Ben—Or [3] have observed that
the measurements required for fault tolerant compu-
tation can be substituted by reversible classical cir-
cuits performing controlled operations. D. Aharonov
also sent us a manuscript[1] with results regarding Tof-
foli gate which are very similar to those obtained here.
Knill, Laflamme, and Zurek [15] followed a different ap-
proach that potentially does not require measurements.

However, to the best of our knowledge, a proof of uni-
versal fault tolerant computation via their approach is
not available. In particular, a measurement-free imple-
mentation of the Hadamard gate using that approach
has not been demonstrated. Finally, Peres [18] also
discusses the possibility of measurement-free encoding
and decoding procedures in quantum error-correction.
However, in his scheme the quantum information is
transformed to a single qubit, and his method is not
suitable for fault tolerant computation.

We are thankful to Dorit Aharonov for many helpful
remarks.
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