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ABSTRACT

Pan, Hong, Ph.D., Purdue University, May, 1999. Optimal Global Error Measure
Approach to Risk Reduction in Modern Regression.  Major Professor: Vwani P.
Roychowdhury.

We first review the concepts fundamental to the statistical inference procedures
using nonparametric regression models. The global error properties of an estimator
over its parameter space are employed to define a general framework that puts various
existing optimality criteria and heuristics into a coherent and rigorous perspective. A
class of Bayes robust and asymptotically minimax estimator is then constructed by
comprehensively considering all the major aspects of their global error measures. This
new estimator is shown to have a better risk behavior than the usual Least Squares
and other Bayesian procedures, and to be robust with respect to misspecification
of the prior assumption on the parameters, among several other desirable proper-
ties. Moreover, the related single-run algorithm does not incur extra computational
cost, while delivering improved risk performance. As a case study, the prediction
performance of the new widely applicable and well-balanced estimation procedure is
then evaluated and compared critically on a class of generalized additive regression

method, i.e., the feedforward neural network model.






1. Introduction

1.1 Trends in Regression Analysis
1.1.1 Basics of a regression model

The essential part of data analysis is to study various types of relationship between
two random variables, a response variable Y and an explanatory variable (a.k.a. pre-
dictor variable, regressor variable) X, based on a training sample of size n taken from
a sample space (X,)) according to an unknown joint distribution F. A regression
model is a statistical tool for summarizing the dependence of the expectation of Y on
X, E(Y|X), as a real-valued function of X, say, f(X) so that f(z) = F(Y|X = z)
for x in a real-valued interval. In most of applications, one typically has more than
one predictor variable in hand, i.e., X is vector-valued as X = (Xi,..., Xy)". In gen-
eral, the unknown true conditional expectation f*: R — R is only assumed to be
Borel measurable (i.e., f* € B). For modeling the response function f*, one usually
starts with a specific class of functions C, a much smaller subset of the all-possible
Borel measurable functions in B. For instance, C is chosen to be the class of linear

regression functions Crys in the form

d
f(:8) = frr, s waa,b) = at Y b, (1.1)

=1

or a class of generalized additive models C;4ps in the form

h d
[(@:0) = f(1,wg;008) =Y Bgn(Y | apias) (1.2)
k=1 =1

with certain nonlinear function ¢.(-). In both cases, the problem of determining an
unknown function is converted into the identification of an unknown parameter vector
0 from a parameter space ®. Once the presumed class is chosen, the first step in

a regression analysis is then to select a function wz?wv = f(a; @Quﬁvv from C with
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relatively small error measure according to the data D, = {(®1,y1), .., (€0, Yn) }-
This problem of determining a suitable estimate wz will be the focus throughout this
thesis.

Error measure: Goodness-of-fit

In principle, a function from any chosen class, f(X;8), is defined over both the
sample space X' and the parameter space @. The specific value of 8 in ® and
therefore the specific form of f at 8 in C as the estimands remain to be identified in
a point estimation procedure. Suppose now that the unknown true response function
f=f(z;0)=E(Y|X = @), and is in the class one chooses. From an abstract random

observation S, = {(X1,Y1),....,(X,,Y,)}, an estimator of 6, 3%3? is selected so
that [ = %TFS@LV is to be close to f. The value @Quﬁv and the resulting f. =
fle; @Quﬁvv as the realizations of the estimator at the observed data set D,, are called
the estimates of 8 and f. Clearly, the estimator 3%& is a random variable defined
over the sample space (X, )) itself. Because of this fact, an appropriate measure

of the closeness of an estimator to f shall be taken in certain average sense. For

example, if one chooses a quadratic loss function

L(J.f) = L(O(5,).6) = [f(2:6) = f(2:6(S.))]" (1:3)
to measure the lack-of-closeness of an estimator to its target, then a reasonable es-
timator @@u& should be the one that minimize the expected loss, namely the risk

function

R(f,f) = R(6(S.),0) = ExL(f, f) = \Sﬁ& — (@ 6(S))dF . (1.4)
After taking the expectation over the whole sample space according to the joint
distribution F, the risk function is no longer a random variable but a real-valued
function of the parameter vector. In practice, the corresponding sampling version of

(1.4), the empirical risk (a.k.a. average squared residual (ASR))

n

Ry = =3y~ fles6(D,) . (15)

n
t=1



%
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Fig. 1.1. The triangle decomposition of a risk function ||f — f*||3: approximation error
||f = f*|l2 and estimation error ||f — f]]|2.

as an estimate of the risk, is used to serve as the error measure. However, there
are no uniformly best estimators that minimize the risk for all values of 8 in the
parameter space under (1.4), provided the target function is not constant (see [1],
p.5). Clearly, additional optimality criteria are needed to help specify a uniquely
determined estimator or substantially smaller subclass of estimators with desirable
statistical properties. In this thesis, we shall show that a thorough analysis on the
behavior of the risk function over parameter space of a regression model can provide
the road map and mathematical machinery needed for this purpose.

One question remains to be answered before we get further into the statistical
procedure of point estimation. In the light of data, what is the theoretical ground on
which a specific class of regression model is chosen? If, in general, the unknown true

*

response function f* is not in the class of models one has chosen, the risk function

A

of the selected estimator f to the true one f* (denoted as an Ly norm ||f — f*||
for quadratic loss) can be decomposed into two parts (see Figure 1.1) in a triangle

inequality

WF =l < 1f = Flla+ 11f = Fllz Viec. (1.6)

The first part, ||f — f*||2, is due to the approximation error originated from the
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limited capacity of the selected class of functions f’s € C. For example, evidently,
a large approximation error is expected when the class of linear models in (1.1) is
used to fit a nonlinear relation (see Figures 1.2 and 1.3). Suppose that f is the best
possible choice out of the whole class C such that ||f — f*||2 is minimized if f* is not
in C and ||f — f*|| = 0 if f* € C. The second part, ||f — f||2, is the estimation
error owing to the limited knowledge of f* obtained from the finite-sized sample 5,,.
Obviously, these two parts are only related through one’s choice of C, with the first
part completely determined by the choice of C. To reduce the overall risk, one must

first make an assessment on the capacities of various available regression models.

1.1.2 From parametrics to nonparametrics

There are mainly two classes of regression models: parametrics and nonparamet-
rics. To use the definition given in [2], an estimator f is sald to be parametric if
f € C where C is a collection of Borel measurable functions which can be defined in
terms of a finite number of unknown parameters. Otherwise, the estimator f is said

to be nonparametric.
Parametrics

The most commonly used parametric regression function is the multiple linear
regression model in (1.1). The number of parameters in (1.1), (d41), is predetermined
and finite because it only depends on the dimensionality of X. In applied statistics,
there are many other commonly used parametric regression models that depend on
their parameters in nonlinear fashion. For instance, the class of quadratic regression

models in the form

f(a:;e):a—l-ZbixH-

=1 7

E CZ']‘J}Z'J}]‘ 5

1 5=1

d d

takes into account of interaction effects among predictors; the class of additive re-

gression model

f(x;0) = a+ Zgz(%) )
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with presumed forms for ¢;’s, is used in analysis of variance; and the hazard model

in the form
d

f(@;0) = axg ™ exp(a Y i)

i=1
plays a central role in survival analysis. Parametrics generally have certain advan-
tages: their parameters usually bear some physical meanings which means better
interpretability; their exact and explicit formulations make mathematical analysis
more tractable; and their statistical estimation procedure is usually efficient, which is
one of several additional optimality criteria needed to identify a desirable estimator.
In spite of these positive factors, any specific @ priori formulation assumed for regres-
sion may not be adequate for modeling the underlying response surface determined
by an arbitrary distribution F, especially when one has no precise knowledge about
the form and class of the true response surface. In the terminology of approximation
theory, a parametric model cannot serve as a universal approximator to an unknown
response function f*. The approximation capacity of parametrics is severely limited
in the sense that their approximation error can be arbitrarily large so that the overall
risk cannot be reduced, regardless of how many samples might be available and how
low the estimation error might be made (see Figures 1.1, 1.2, 1.3 and 1.4). A further
look at the bias-variance decomposition of the risk function in the next section will

shed more light on this issue (see Figure 1.5).
Nonparametrics

On the other hand, instead of an assumed parametric form, a nonparametric re-
gression model is only defined as an element of some infinite dimensional function
space with certain smoothness properties. The generalized additive model in (1.2)
is nonparametric, for the number of the additive terms, h, can be any positive inte-
ger so that the total number of parameters, h(d + 1), is arbitrary. This interesting
class of model arises in feedforward neural network regression and projection pursuit
regression among several others. With a feedforward neural network, for instance,

the gi(+)’s take the logistic (or sigmoidal) form, ¢ (u) = €“/(1 4+ €"), the x;’s are
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Fig. 1.2. Two commonly used nonparametric regression models, the splines and the
neural networks, are used to analyze the ozone data (see Figure A.1 in Appendix A), and
compared with the linear regression model. The upper plot shows the separate relations
between the ozone measurement and its nine predictors, summarized by a simple fit using

univariate spline with pointwise standard-error curve attached. It also shows that the
predictors doy, dpg, wind and ibh appear convincingly nonlinear. The lower plot shows

the estimated response functions for these four particular predictors by these three
methods. The nonparametrics provide better fits which lead to significant performance
gain, as shown in Figure 1.3.



MSPEs of 9 Predictors on Ozone Data
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Greater Performance Gains for
High-Dimensional Data by Nonparametrics
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Fig. 1.3. The upper bar plot compares mean squared prediction error (MSPE) for each of
the nine one-dimensional predictors. It also shows that the nonparametrics gain significant
improvements on the four predictors with evident nonlinearity. The lower bar plot shows
the nonparametrics gaining even greater improvement when all nine predictor variables
are used to form a multivariate regression model for predicting the response variable.
While for one-dimensional predictors the average MSPEs of the spline and the neural
network drop 9.44% and 10.30% from the MSPE of the linear regression respectively, the
performance gains for the nine-dimensional regression models are increased to 31.10% and
46.56% by each. The middle bars in the lower plot labeled ‘9-D MSPE*’ show that the
spline with four apparently nonlinear predictors in nonlinear terms and the rest in linear
terms manages a 28.16% improvement over the linear model, which constitutes 90% of
performance gain by a full-scale spline shown in the same plot. [Note: The .632 bootstrap
estimates of MSPE are used with 1000 resamples for each case. The smoothing additive cubic
splines are used to represent the spline method, which has the best performance among several
other spline methods reported in [3]. The neural networks with A = 9 (i.e., nine hidden units) and
no skip layer are also regulated with the decay parameter set to 0.01 for d = 9 and 0.025 for d = 1.]
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rescaled in the d-dimensional unit cube I = [0,1]¢ € R?, and the parameter vector
0 = (o, B) € R? with ¢ = h(d 4 1). If the number of additive terms, h, is permitted
to be sufficiently large, the regression model (1.2) is capable of approximating any
continuous response surface to any desired degree of accuracy [4, 5, 6, 7, 8]. To be
specific, if the target response function f* is continuously differentiable and the gra-
dient of its Fourier transformation is integrable, then the rate of convergence to zero
of the approximation error utilized by the model in (1.2) to f* is O(1/vh) in a L,
norm on compacta I in R¢. The resulting response functional form is more heavily
relied on and potentially, therefore, more appropriately determined by the given set

of data (see Figures 1.2, 1.3, 1.4 and 1.5).

1.1.3 Evolution of nonparametrics

Probability density estimation

Nonparametric regression has its roots in probability density estimation back in
the Sixties [9, 10]. The research and development of nonparametric regression meth-
ods has been intensified considerably since then, with a huge body of literature mainly
devoted to two large classes of conventional nonparametrics called kernel and spline
methods. Indeed, some very basic statistics like the histogram can be seen as nonpara-
metrics. For instance, in the one-dimensional case, to estimate an unknown density

function p(x) from a sample {X;}7_,, one first divides the real line into bins
m\a = ﬁ%o + A\A — Hv\f Lo + \A\wv 5

with h the binwidth and z( the origin, and count how many data points fall into each

bin. The histogram is then defined by

pz) = :w Y ) I(Xi € By)l(x € By)

1 (number of X; in the same bin By, as ) (1.7)

n (width of bin containing =)

with [(-) the indicator function. It is natural to take one step further by defining a

kernel function on every data point, so that the averaging of the kernels leads to the
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Fig. 1.4. The empirical risks (ASRs) and empirical prediction risks (MSPEs) of
multivariate linear regression and six neural network models with h = 1,3,6,9,12, 36 and
no skip layers on nine-dimensional ozone data. The average squared residual of the neural

network with 36 hidden units is virtually reduced to zero at 2.981857 x 10~7. However,
overfitting and curse-of-dimensionality may severely damage the prediction performance of
nonparametrics, as in the case of ozone data which has only 330 data points compared
with 12, 34, 67, 100, 133 and 397 parameters in these six neural network models
respectively. The overfitting phenomenon is shown graphically in the case of
one-dimensional predictors in the lower plot. [Note: Bootstrap estimates of ASRs and MSPEs
are used with 1000 resamples for each case. There is no smoothing term added for the neural

networks in order to show their universal approximation capacity and overfitting phenomenon.]
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kernel density estimator

ple) = %Mﬁﬁv - wM:ﬁka (1.8)

with h the bandwidth. Therefore, the histogram in (1.7) is a kernel estimator with
a uniform kernel function K(u) = I(Ju| < 1) and bandwidth 2A. It still remains to
choose the bandwidth h, that controls the extent to which the data are smoothed
according to bias-variance trade-off (see Section 1.2.1). For example, in terms of
minimizing the approximate mean integrated square error (see [11]), it has been

shown that the ideal kernel function is in the form

2 (1 —L4u?), —Vi<u<Vb
K= { w73 mvhsuss

0, otherwise .

Kernel regression method

In the context of regression, the target unknown function f(x) is the conditional

expectation

flz)=EYI|X =2) = %

Y

with p(x,y) the joint density of (X,Y") and p(x) the marginal density of X. A natural
extension from the kernel density estimator in (1.8) leads to the Nadaraya-Watson

kernel regression estimator [12, 13]

R — LK
flz) = Hrw < . if vm
- AT T A SWHH pRr
szN»A h v
= stus\C«|wM3U:2% X,)Y; (1.9)
_— SwHH 5.& w|3wHH m.&y | EIEEES n t - .

The only difference between (1.9) and (1.8) is that a weight function Wj,(+) is defined
for the response variable Y in a neighborhood of x, instead of weighting the frequencies

of X itself. Certainly, more flexibility can be utilized if the amount of smoothing is
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adapted to the local density of data. For example, the variable bandwidth kernel

estimator in the form

e 1 r— X,
- NNA v<
n Ww hdy, \ hd,, )
o Mzu 1 N&A& — ub,v
n —1 \w&ﬁm \w&ﬁm

with d;, the distance from X, to the s-th nearest point, is closely related to the

/(=)

nearest neighbor protocol.
Spline regression method

Basically, there are two different scenarios for constructing a conventional non-
parametric model. Firstly, they can be considered as a weighted linear summation of
the response variable in a flexible neighborhood of the observed explanatory variables
as in (1.9). Secondly, the flexibility of a nonparametric model is controlled by the
way that the local density of data is taken into account and then fitted piecewise, as
premiered in the histogram. Instead of using a kernel (variable or not), one may di-
vide the bins according to the local density of data and then use a set of well-defined
orthogonal basis functions to fit the local data in each bin while satisfying some
continuity constraints at the knots (the conjunctions of bins). Splines are piecewise

polynomials in the later fashion.

Example 1 (Cubic Spline) Suppose « is in some real-valued interval [, @4z
which is divided into A + 1 bins by knots x,,;, < t; < 13 < ... < 1t} < Tyae, then a

cubic spline is a response function f(x) on [#min, Tmaez] in the form
%A&v = &wm& — N_wvw + QAA& — N_wvw + ?AA& — N_wv + ag Vi, <z < thtt s AHHOV

with the constraints that f(x) and its first and second derivatives are continuous
at each knot t, V1 < k < h. There are 4(h + 1) apparent parameters in (1.10)
if we define tg¢ = @min, the1 = Tmaw, and the second and third derivatives of f(x)

are zero at to and t;4; so that the spline is linear on [¥,in,t1) and [th, Xmas] and
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do = ¢o = dpr1 = ¢ = 0 as in the so-called natural cubic spline. However, the
effective number of parameters is only h+4, since the maximum continuity conditions

specify the following relations

di(teyr — tr)® + cu(tprr — tu)* 4 bp(tipr — tr) +ax = app
Bdi (thr — k) + 2ek(thsr — tr) + by = bipa (1.11)
6y (trt1 — te) + 2¢k = 2Cp41

so that there is basically only one effective coefficient for each bin. The cubic spline

estimator w is defined as a modified least squares estimator that minimizes

wMUE — f(X))* + y\Esw% : (1.12)

with A the smoothing parameter that controls the trade-off between the residual error
and the local variation oﬁw (see further detailed discussion in Sections 1.2.1 and 1.2.2).

a

Moreover, it is well known (cf. [14]) that the smoothing spline fin (1.12) can be

expressed as a weighted linear summation of ¥;’s in the form
R l &
flx) = mﬁle:\%%E“ (1.13)

with W, the weight function depending on A. There are further striking relations
between kernels and splines in an asymptotic sense (cf. [15]). For large n, small A and
the sample X; not too close to the boundary, the effective weight function Wy (z,s) ~

L1 ° &v with a effective local bandwidth h(s) = AY4p(s)~"/* and p(X)

K
P ) )
the marginal density of X. This fact places the smoothing spline between the fixed

kernel (not depending on p(z)) and k-nearest-neighbor kernel (with h(s) oc p(s)™!),
and rather close to the ideal variable kernel estimator (with A(s) oc p(s)~'/%). It is
also shown that a cubic spline estimator can be seen as a variable kernel estimator

with the kernel in the form

K(w) = 5 exp(~Jul/V3)sin(lul /v + 7/4)
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which is symmetric with exponentially decreasing tails and negative sidelobes. After
all, in the terminology of approximation theory, the kernel and spline methods belong
to the class of linear integral operators (or so-called linear approximators). It is also
well-known that for either case the estimator f — [ in probability if the sample
size n — oo, the bandwidth (or effective bandwidth) h — 0 and with other suitable
regularity conditions.

So far in this section our discussion has focused on the case for a single predictor.
When the predictor variable is vector-valued so that X € R?, however, there are some
serious problems in choosing the appropriate shape of the kernel and defining the
localness in high dimensions, if one wants to adopt the above-mentioned conventional
nonparametrics directly. Though there are various generalizations devised (e.g., thin-
plate spline and tensor product spline), they are usually not practical for more than
two or three predictors (cf. [3], p.32). The major issue here is how to deal with a

dismal phenomenon known as the curse of dimensionality.

1.1.4 Curse-of-dimensionality and nonlinear approximators

In any high-dimensional sample space, the data points from any practical data set
of reasonable size are always not dense enough. For example, in a nine-dimensional
unit cube (the same case as the ozone data), a subcube neighborhood containing 1%
of the points should have a side length (0.01)'/% = 0.6, while it is simply 0.01 for one-
dimensional case. This fact has considerable impact on many aspects of regression
analysis (see more discussion in Section 1.2.1). For conventional nonparametrics, the
increase in dimensionality results in drastic decrease in the rate of convergence to
zero in terms of approximation error and estimation error. If the target function
is assumed to be in a space of functions with r degree of smoothness (e.g., r = 2
in Example 1) with ¢ the number of effective parameters, then the typical rate of
convergence for linear approximators is O(¢~"/?). The fact that g is typically in the
order of h? does not ease the devastating rate, by two reasons: (1) ¢ is bounded from
above by the sample size n in practice; (2) an increase in r will lead to an increase

in i accordingly. A similar situation occurs when the estimation error is considered.
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The optimal convergence rate in estimation error for conventional nonparametrics is
typically O(n="/+d) (cf. [16, 2]).

However, the generalized additive models in (1.2) are the very few exceptional
nonparametrics that are able to evade (but not break) the curse of dimensionality to a
certain extent. Suppose that Cy = [ _S__gm?cv_&é < 00, i.e., the first absolute moment
of the Fourier magnitude of f is bounded, where f is the Fourier representation of
f. Then the approximation error of a generalized additive model f; in (1.2) with A
additive terms, ||f — full2 < O(Ct/v/k), and the estimation error, ||fy — fanllz <
@Qwh log n)'/?) (cf. [17,18, 4, 19]). In fact, this class of nonlinear approzimators eases
the problem by projecting the high-dimensional data into low-dimensional subspace.
The price to paid is to impose increasingly strict constraint on the smoothness of
the target function f as d increases by implicitly setting r o« d (r = |d/2] + 2, for
instance) [4, 20]. Nevertheless, the class of function represented in (1.2) is rather large
in general. Although (' is dimension-dependent and may grow exponentially fast in d,
the equivalent measure for the conventional methods can be superexponentially large
in term d in comparison [4]. While the conventional nonparametrics are not practical
even for the cases with moderate dimensionality once d > 3, the generalized additive
model as an archetype of modern regression method is the only viable multivariate
tool for the data sets with mild dimensionality so far.

There is an important subclass of the generalized additive model in (1.2) that can

be written in the form
d
f(@:0) =" augi(a) - (1.14)
=1

If the target function f is genuinely additive in terms of each predictor (and the pre-
dictors are not correlated with each other), the conventional nonparametric method
can be employed to fit each predictor, and the total summation may be accurate
enough for a given application. Though there is no apparent improvement in terms
of approximation error, the estimation error of (1.14) is no longer exponentially de-

pendent on d at the attractive O(n="/ 1)) [3, 7, 8]. It is the model in (1.14) that is



- 15 -

titled to the name of generalized additive model in statistics, whilst an appropriate
name for a neural network model in the terminology of statistics would be generalized
additive logistic model. For the sake of convenience, however, we shall use the shorter

nomenclature in referring the whole class of model defined in (1.2).

1.1.5 New challenges in regression analysis

Today most of data analysis takes place in the fields outside statistics community.
With the amount of data and related applications growing exponentially such as
computer automated data collections in science and engineering and commercial data
warehouses, there are strong and legitimate demands from all areas of information
processing to develop a new generation of automated procedures aimed at discovering
patterns and relationships in large complex data sets.

There are two distinctive attributes in this recent surge of activity. First, the data
sets tend to be high-dimensional (in hundreds), meanwhile there are usually multiple
data sets relating to the same object so that the size of a data set is easily up to mega-
or giga-bytes. This fact profoundly increases the level of difficulty in performing data
analysis by any data analyst even with the help of most advanced data visualiza-
tion tools, and indicates the need of developing general-purpose statistical tools that
possess superior accuracy yet require less human-machine interaction to the extent
that it is possible. Second, due to ever-increasing computing power, many compu-
tationally intensive and sophisticated methods are now feasible. The progress made
in nonparametrics incarnates this trend and provides potentially widely applicable
solutions to this increasingly pressing challenge.

However, many methodologies (such as neural networks) originally proposed in
data related fields other than statistics are usually only ‘tried-and-true’ by simulations
over certain data sets or are rationalized by preliminary arguments. An analytic
attention based on probabilistic inference is then in order. As we shall demonstrate
in this thesis, contrary to popular belief, such an approach will not hamper the
progress of the methodology in terms of its applications. In fact, it will only enhance

it, and provide algorithms and tools that are computationally feasible and possess
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characteristics such as reliability, robustness, and improved performance over a wide

variety of data sets.

1.2 Statistics of A Regression Model
1.2.1 Bias and variance

The generalized additive regression method has many desirable features regarding
its approximation capacity in general. It is not all so clear, on the other hand, how
good can one make this method in practice. To answer this question, we shall first
take a closer look at the error measure introduced earlier in Section 1.1.1, which is
the key statistic of one’s regression model.

In practice, the model in (1.2) is to be estimated from a data set of size n, D,, =
{1}y = {xu, ooy 2eq, ¥ }7-;. An estimation error is introduced in this procedure
in addition to the approximation error after the number of additive terms, £, is chosen.
Conventionally, the model can be formulated with an associated additive residual as

in
Yy = .\.Amﬂ?%v + &= mAM\W_N = %wwv + & 5 Vit = H“ ey 1 AHHWV

The residual random variables, ¢;, are assumed to have a zero mean and a unknown
covariance matrix X (with two notable special cases: the residuals are uncorrelated,
Y = diag(c?2); the residuals are i.i.d. with a common variance o? = QW\_NHe (cf.
eqn.(1.19)) so that ¥ = ¢2I,,). The residuals encompass all the remainders overlooked
by the model, which include the misspecification of the class of model one chooses
(that constitutes the approximation error), the unobservable and unaccounted-for
predictors, and so on. An ideal estimator of 8 would be the one that minimizes
the risk function mCﬂ f) in (1.4). Unfortunately, the risk function is also unknown
because it is a function of the unknown 6. In reality, instead of minimizing the
risk, the empirical risk in (1.5), an estimate of the risk from D,,, is computed and
minimized with respect to 8 to obtain an estimate of the ideal estimator for 8. The

~LS

usual Least Squares (LS) estimate, 8, , of the unknown parameters § = (a, 3)" is a

n
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class of very restricted point estimation procedure in such fashion

n

~ LS 1

?n amésmMU@“ #@:ém. E@

Namely it concerns with the property

MzU@ﬁ — iargv% =0, (i=1,...,q), (1.17)

t=1 " le=6

that is, the estimators are restricted by the impartiality (or unbiasedness) requirement
for all value of 6.

The LS criterion is closely related to another well-known measure of (lack of)

performance, the mean-squared prediction error (MSPE)

H n+m )
MSPE = — Y (y— f(6,)) Ym>1, (1.18)

m
t=n+1

which is the quadratic empirical risk of the estimate 8,, evaluated on m new observa-
tions. While the quadratic empirical risk in (1.5) is an estimate of the risk in (1.4),
the MSPE as the quadratic empirical prediction risk is an estimate of the prediction

risk in the following abstract form

P(J.1) = P(B(S,),0) = \ (Y = fla:0(S,))2dF
n \ Qiﬁséf \ SZIAHW%%M%

N

BV — B(YIX = @) + Er(f(2:0) — f(a: 8(5,)))?
= Q.MN\_NH& + mmgm“ \.v
= e+ HB(5.).0) (1.19)

where QW\_NHe = o2 is the variance of the residual at @ in (1.15), which is the discrep-
ancy between R(-,-) and P(-,-). Ideally, an estimator that minimizes the risk R(-,-)
shall also minimize P(-,-) and vice versa, according to (1.19). It is simply not the case
for the empirical versions, due to the fact that the empirical risk in its ordinary form

(1.5) is not a good estimate of the true risk. When implementing a LS estimator,
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the resulting parameter estimate and the estimate of the response surface are based
solely on the data points in the training set to reduce the model bias over these data
points while everything in between is left unregulated. This can be seen clearly in
the well-known bias-variance decomposition of the empirical risk.

The quadratic empirical risk R, is also known simply as the mean-squared-error

(MSE), that can be further decomposed into two parts as follows in the abstract form

A

RS = [(r(@i8) — flasb(s.))dr

= [f(;0) = Exf(@;0(5.))) + Ex[f(2;0(S5,)) — Exf(2:0(5,)))’

— biast [ (s 0(5.))] + varlf(w: B(5,)] (1.20)
which is the above-mentioned decomposition of mean-squared bias and model variance.
Nonparametrics are also called exact methods in applied statistics, due to the fact
that their model bias can be made as low as one’s wish. When £ is chosen sufficiently
large in (1.2), the resulting response function is able to go through every data point
y: (or nearly so) to satisfy the unbiasedness criterion (see Figure 1.2). However, what
is left to be unaccounted-for is the variance component of the estimation error, and
consequently causes a phenomenon called overfitting (see Figure 1.4). The imminent
consequence is that the trained regression model will reveal not only true but also
spurious dependence between the pair of random variables (X,Y’), so that the model
will perform poorly over the samples other than the training set yet from the same
unknown underlying distribution. The ‘curse of dimensionality’ that stems from the
sparsity of the data points in the high-dimensional sample space, makes the situation
of overfitting even worse when the sample size is relatively small with respect to d and
the effective number of parameters, which is rather common in practice. To reduce
the estimation error, an alternative optimality criterion that minimize the average loss
has to be defined. A straightforward heuristic is to drop the impartiality restriction
for every possible parameter value, take into account of and penalize the variance part
of the estimation error. In mathematical statistics literature, mainly two such error

reduction methodologies have been considered: minimizing the maximum average loss
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and minimizing the expected loss weighted by a prior density function of 8, that led
to minimax estimator and Bayes estimator respectively. The rationale here is that
the over all error will be reduced by allowing a suitable amount of bias in estimation

while lowering the variance part to an ‘optimal’ extent (see Figure 1.5).

1.2.2 Generalities on risk reduction

There is a long list of criteria which address different aspects of the risk function
of an estimator or a class of estimators, and are often used to construct or select a
single estimator or a substantially small set of estimators in a particular application.
We shall hereby introduce the important ones which are most relevant to regression
analysis, and employ them in depth in later chapters. For the sake of clarity, the
linear regression model is used to showcase the conceptual matters associated with

these classical risk properties.

Example 2 Consider a linear regression model in the usual normal-theory setting
y=BO0+e,

where y = (y1,...,yn) is the n x 1 vector of response variable, n is the sample size,
B = (@,....,2,) is an n x ¢ matrix with rank ¢ (n > ¢), € is the ¢ x 1 vector of
unknown regression coefficients, and the residual vector € ~ N, (0,021,) with o2
assumed to be known at this point. Under quadratic loss hag 0)=(6— 3\% — @Y

the usual LS estimator of 8 is

9" = (B'B)"'By (1.21)

which is an unbiased estimator with covariance matrix ¢Z(B'B)~! as in

~LS

0 ZEQA%“QWAQ\QVLV )

and has a constant prediction risk at (n + ¢)o?, hence a constant risk at qo?.

. . . LS
However, there are two deficiencies in 6
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Model Bias, Variance and MSPE on Ozone Data
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Fig. 1.5. The bias-variance decomposition of regression models on ozone data (a detailed
look at the left bars in the lower plot in Figure 1.3). [Note: Bootstrap estimates of model bias
and variance are used with 1000 resamples for each case. The smoothing additive cubic splines are
used to represent the spline method. The neural networks (with no skip layer) are also regulated
with the decay parameter set to 0.1 for h = 1,3, 0.01 for h = 6,9,12,36. Comparing with the
performance by unregulated neural networks in the top plots in Figure 1.4, the regulated neural
networks (using single-prior Bayes estimators discussed in Chapter 2) achieve superior overall
prediction performances by allowing certain amount of model bias while drastically reducing model
variability. The trade-off between model bias and variance is obtained by finely tuning decay
parameter to an appropriate value (k=0.01 for the case of neural network with 9 hidden units) as

shown in the lower plot.]
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. . ~LS . .
1. From computational perspective, @  will be unstable in the sense that a nearly
singular (B'B) will yield an inverse with inflated diagonal values so that small

LS
changes in y may produce large changes in 6

~LS
2. From the perspective of global error property, @ is inadmissible (when ¢ > 2)

in the sense that there are other classes of estimators whose risk are lower than

or equal to that of @hm for all possible 6.

Motivated to correct the first deficiency in @hm“ Hoerl and Kennard [21, 22, 23]

proposed a ridge estimator in the form
6(k)=(B'B+kI,) "By, withk>0. (1.22)

It is evident that the ridge estimator is numerically stabilized by adding a positive
constant to the diagonal elements of the design matrix B'B, so that the later is
averted from singularity. The resulting estimator in (1.22) is a biased estimator with

shrunk magnitude as shown in the form

N

0(k) ~ N,(B'B+kI,)'B'B8,c*(B'B+kl,) 'BB(BB+kI,)""). (1.23)

~LS
This is also reasonable, since the expected magnitude of 8  is always higher than

the true length as shown in

E[(6” —0Y(0"" —0)]=E(8")8"") - 06 = (BB >0.
Moreover, it can be shown that for a fixed parameter point 8y (and fixed (B'B)),
there exists a k£ > 0 depending on 8y, for which the risk of @Q& is smaller than the
risk of 877 (see Figure 1.6).

The ridge estimator @Q& can be seen as a single-prior Bayes estimator with respect
to a prior density of the parameter vector 8, 7(8) ~ N,(O0, %MQY over the parameter
space ®. For a Bayesian point of view, the ridge estimator is the posterior mean

of the distribution of the parameter given data, p(8|D,,), as presented in (1.23). In

fact, any estimator of parameters in a regression model is a random variable itself as
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Fig. 1.6. The Diagram of risk behavior of an ordinary ridge regression model.

mentioned in Section 1.1.1. According to Bayesian philosophy, it is natural to treat
any unknown parameter in one’s model as a random variable and to assign a prior

density function 7(8) over the parameter space. The Bayes expected loss (Bayes risk)

is then sought to remove the randomness in the risk function.

Definition 1 (Bayes estimator) An estimator, @ﬁ which minimizes r(, 3 is called

a Bayes estimator with respect to m(8). O

However, a further examination by global property analysis will show that no fixed
(chosen) k > 0 can dominate the LS estimator for all possible 8 and (B’B). The risk

function of the ridge estimator has the following bias-variance decomposition

RB() = B|f0()— F(O)|F = (Bo(k) — BOY(BA(K) - BO)
— k6'(B'B+kI,)'B'B(B'B + kI,)"'0
+%Emﬁm\m 4 kI vLm\mE\m + k) B
= \%MUC i T MUQ

A A

= bias? [f(O(k))] + variance[f(O(k))] ,

where a canonical reduction is performed by letting B'B = (G7'YAG™, A =
diag();), and ¥ = G™'0. It is then obvious that the risk of @Q& becomes unbounded
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when either the magnitude of the true 8 or k increases (see Figure 1.6). An ordinary
ridge estimator has bad tail risk behavior, though it is admissible with respect to the
LS estimator (i.e., its risk can be lower than that of the LS estimator somewhere over
the parameter space but not everywhere). It can easily shown that a ridge estimator
(i.e., with a normal prior assumed) would have infinite Bayes risk if the true prior
were Cauchy [24].

A conservative approach to risk reduction is then devoted to minimize the maxi-
mum risk of a possible estimator.

Definition 2 (Minimax estimator) An estimator, & , which satisfies

sup m%i“mv = infsup m%“mv ,
6 6 o

is called a minimax estimator. O

It is clear that the LS estimator (1.21) is a minimax estimator itself. Though there
is no simple direct method to construct a minimax estimator, the class of shrinkage
estimators originated from James-Stein estimator [25, 26, 27] possesses very attractive
classical risk properties. For instance, the Berger-Hudson estimator [28, 29] in the
canonical form

3BH _ [ _ (g —2)al);

. W29 o ey, 1.24
oF VR ¥i Vi q (1.24)

n _ ~ LS ~BH A . PR . .
with 4 = G™'8 and 8 = GAP is a minimax estimator (see Figure 1.7).

Compared with the left diagram in Figure 1.6, the risk function of @@& has a nice
tail behavior (i.e., its risk never exceeds the risk of LS estimator). It can be shown
that a Berger-Hudson estimator can be seen as a generalized ridge regression model
in the form

N

(C)=(B'B+C)"'By .
with the matrix C having the elements

(g —2)o?
I B



- 924 -

Risk Behavior of A Minimax Estimator
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Fig. 1.7. The risk behavior of a Berger-Hudson minimax estimator in (1.24). [Note: An
example from [30] is plotted here to show the minimaxity of Berger-Hudson estimator. For various

types of the eigenvalue spectrum of B’ B and true values of the regression coefficients in a linear
. . . ~BH . .
regression model with ¢ = 6 and o2 = 1, the risks of 8 is illustrated as percentages of the
) ~LS
constant risk of 8 ]

where b;; = {B'B},; and 6;; is 0 if ¢ # ¢ and 1 if ¢ = j. Hence, the minimax
estimator in (1.24) shares the numerical stability possessed by the ridge procedures,
and is admissible at the same time. However, the build-in nature of the shrinkage
factor in a James-Stein estimator limits its usage, because it makes difficult (if not
entirely impossible) to directly incorporate any prior knowledge. When certain prior
knowledge (even if it is rather vague) is variable, a Bayesian treatment is definitely
in order to enable one to finely tune the significantly improved regions on parameter
space for a particular application. In fact, Bayesian procedure is one of the methods
for constructively generating estimators with optimal frequentist properties such as

minimaxity.

In general, all alternatives of the ordinary LS estimator improve their performance
only over certain regions of the parameter space. Outside these regions, their risks
are either essentially equal to or worse than that of the LS estimator. An reasonable
thought is that such region should be somehow determined by the data in hand when

the estimate is sought. Hence it is natural to adopt the Bayesian approach in such
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Fig. 1.8. Possible risk behaviors of various improved alternative estimators.

direction so that one can incorporate any prior knowledge to take advantage of the
parameter regions of significant improvement in risk. For example, for the linear
regression model, a vague prior believe of 8 can be phrased as follows: the regression
coefficients should reflect the order of magnitude of the response variable. According

)

k in (1.22). The rationale here is to consider a class of prior instead of fixed one,

. ~LS
/]

to this prior believe, [31, 32] suggested to use k = 62/[1/q( 9"

] in the place of

and then use the data set in hand to select the most probable one which reflects
the preferred regions on parameter space. FEmpirical Bayes, hierarchical Bayes and
robust Bayes estimators can all be seen as variants in this direction, and the resulting
estimators can be viewed as certain trade-offs among single-prior Bayes, minimax
and LS estimators (see a conceptual diagram of possible risk properties of various

estimators in Figure 1.8 and further details in Chapter 2). O

Finally, we summarize a set of desirable properties of an alternative improved
estimator from the perspective of its global error measure in 1-4 and others from

other practical considerations in 5-6 as follows:

N

1. 8 and f(e, 3 should be ready for incorporating prior information on the residu-

als and the parameters, and should possess Bayesian robustness, i.e., be robust
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with respect to misspecification of prior information.

N N

2. 0 and f(«,0) should keep classical risk properties of Stein-like shrinkage esti-
mators, i.e., should be asymptotically minimax and admissible with respect to

the Least Squares estimators (or nearly so).

A

3. 6 should have improved good confidence regions for f(,8).

A

and f(«,0) should be \/n-consistent and asymptotically efficient.

=
>

A

5. 0 and f(x,8) should preserve the numerical stability of the ridge procedures.

N

6. 8 and f(e, 3 should be in an explicit closed formulation that is easy for both

numerical implementation and theoretical analysis of unintuitive risk properties.

The goal of this thesis is to utilize the above list in constructing improved algorithm
for the generalized additive model in (1.2), which has been widely used in application
fields such as machine learning, pattern recognition, neural computation, signal and
image processing, data and knowledge engineering, econometrics, applied statistics,

and other areas of information processing.

1.3 Contributions

State-of-the-art

The feedforward neural network model was related to nonparametric statistical
inference in a tutorial by Geman, Bienenstock and Doursat [33], and was catalogued
as a state-of-the-art statistical method for high-dimensional data analysis. The bias-
variance dilemma was also explained for this model and other commonly used non-
parametric models such as kernels and nearest neighbor methods. It was also right-
fully pointed out that the asymptotic consistency of ML (LS) estimation shared by
all nonparametric methods does not provide clue on how to balance bias and variance
for training samples of finite size. A justified conclusion drawn from experiments
with complex data is that the identification of carefully designed biases are the more

fundamental and difficult research tasks. In most applications, the bias is designed
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by hand for each particular problem while giving up generality, therefore there is no
guarantee that the improved prediction performance will sustain when data situation
changes.

Nonparametric statistics in general has matured in the last two decades. It is
not surprising that many ‘generalist’ techniques and tools developed for kernels and
splines methods have been increasingly used to address the issue of risk reduction
in neural network models. A ‘generalist” approach is to index the model with hy-
perparameters such as the number of hidden units & or the ridge coefficient k in
(1.22), then adjust it to a proper value according to the sample to deliver a good
bias-variance trade-off, without other ad hoc assumptions on the data or the model.
The most commonly used method in this venue is cross-validation [34], which can be
seen as a simple version of Monte Carlo assessment of estimation performance. Let
DY = {(®1, Y1), s (®e—1, Yim1)s (X141, Yit1)s o (€0, ¥ )} be the ‘leave-one-out’ data
set excluding the tth data point (@ y:). Then for each fixed value of k, n neural
network models are trained based on n ‘leave-one-out’ data sets Um&%«@ =1,...n,
and a total prediction error measured on the left-out data points under this particular

choice of hyperparameter k

is calculated. The cross-validated hyperparameter £* minimizes C'V, (k) so that the
resulting estimator of the parameters is @@ﬁbzv. The main problem with this
approach is its high computational cost and relatively weak analytic and numerical
vindication that it indeed reaches an optimal bias-variance trade-off.

In searching for a ‘standard’ single-run algorithm of training a neural network re-
gression model, the Bayesian paradigm (or regularization method in the terminology
of approximation theory) is naturally sought, due to the possibility of closed formula-

tion. The following Bayesian approaches have been exploited for training ‘generalist’

neural network models.

1. The single-prior Bayes method assumes a prior density for the parameter vector
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0 as in

2
9
k

with £ > 0 fixed. Quasi-Newton or conjugate gradient algorithm of neural net-

m(0) ~ N,(0,-=1,) , (1.25)

work with fixed £ as an option has been coded and included in well-established
statistics packages such as SAS and S-PLUS [35, 36, 37]. However, there is no
additional mechanism provided in the softwares to balance the bias and vari-

ance, so that the user must resort to cross-validation or a single guess of a

suitable k.

2. The empirical Bayes method was investigated by MacKay and Neal [38, 39]
among several others, though it was not stated explicitly to be empirical Bayesian.
MacKay’s work is basically to devise the type-II ML choice of k in the adaptive
ridge fashion for neural network model, which is also pointed out by Ripley [36].
Neal (and MacKay later as well) seeks an exact calculation under the same ap-
proach by using Markov Chain Monte Carlo (MCMC) techniques, with a much
higher computational cost than the cross-validation for even very small exam-
ples. There was no risk analysis performed on this approach to see to what
extent the adaptive k helps or hurts the bias-variance trade-off and how much

performance gain is indeed utilized by iterating k.

3. The hierarchical Bayes method was introduced to train a neural network regres-
sion model by Miiller and Neal [40, 39]. By using the standard conjugate prior
hierarchy in (2.39) and completing numerical integration through MCMC, the
results on small examples are mainly used for the purpose of showcasing the
potential multimodality of posteriors of the parameters, rather than a feasible
standard training algorithm. Again there is no risk analysis available to show

the possible benefit obtained from this approach for the bias-variance trade-off.

Overall, although the several Bayesian approaches were introduced for the purpose of
balancing the model bias and variance, theoretical and numerical verifications have

yet to be carried out with the following open questions in mind.
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1. Is there a rigorous framework for risk reduction for neural network regression
model as for the canonical case of multivariate normal mean vector and linear

regression model?

2. How can one derive the existing estimators from various approaches such as
Bayesian and regularization methods by this framework, instead of in an ad

hoc fashion?

3. How can one evaluate various alternative estimators in the light of their ‘true’
prediction performance, instead of only running a few small example simula-

tions?

4. Is it possible to go beyond the existing methods and devise a standard single-run

algorithm for the ‘generalist’ neural network regression model?

5. Will the neural network regression model with carefully designed model bias
indeed show better prediction performance than the best conventional nonpara-

metric method? [The answer is yes at least for the ozone data (see Figure 1.5)]

Tools and techniques

As a necessity for all nonlinear regression models in general [41, 42], large-sample
asymptotics based on linear approximation of the response surface are used in our
risk analysis. An asymptotic squared-bias and variance decomposition can be then
derived to motivate and evaluate new general-purpose algorithms that possess good
risk behaviors. An estimator is likely to be reasonably good if it can be shown
that its asymptotic bias and variance are under control. At the same time, further
verification is needed for any claim in the large-sample sense. This is usually done
by evaluating the measure of curvature at the estimated parameter point and taking
into account of other small-sample effects, which is one of the open topics in neural
network regression. The ultimate goal is to develop a predictable and verifiable risk

analysis and evaluation procedure for nonlinear regression at large. Our results will
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show that this approach to risk reduction in neural network regression model is rather
effective. The conditions for the validity of the approximations used here appear to
be similar to the conditions under which the nonlinear regression model was handled
in general [41] and the methodologies was originally developed. Our presentation
shall focus more on the practical side of various approaches, and leave more precise

mathematical treatments for future work.

In the past, for the numerical evaluation of prediction performance of a neural
network training algorithm, a test data set is usually used to calculate the total
prediction risk, and is usually compared with the LS estimator to show that an
improvement is achieved. This can be rather misleading for two reasons: the test
set like the training set is usually too small for the purpose at hand; a lower risk
than the LS estimator does not mean a rightful bias-variance trade-off is established.
Only a rather accurate estimation of both bias and variance of the trained models on
the data set can properly justify if a better bias-variance balance is indeed obtained
and no more risk reduction can be utilized under the current scenario. We resort to
the well-developed bootstrap method [43] from statistics to evaluate the model bias
and variance of various training algorithms. Since the number of runs in bootstrap
method is not upper bounded by the sample size as in the case of cross-validation and
can be set arbitrarily large, we can ensure the accuracy of the evaluation by making
the standard error of an estimation of bias, variance or the total prediction error 10
factors lower than the estimation itself. The number of bootstrap runs is set to 1000

in our experiments with satisfactory results.
Contributions

There is two major aspects in our work on developing new estimation procedures

that possess the set of desirable risk properties that we have emphasized.

First, for the application fields, the statistical analysis based on risk properties
over parameter space is introduced for the first time to the neural network regression

model. Although several Bayes methods have been adopted to address the issues
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latently related to risk behavior of neural network training algorithms, it is generally
unaware of the potential drawbacks that come with these methods and the possible
solutions to overcome their weakness while keeping their strength. We developed a
framework for asymptotic risk analysis based on linear approximation formulation of
the response surface. We first clarify how existing Bayesian methods for the neu-
ral network training are derived. Then we employ the framework to evaluate them

analytically and numerically with highlights on the following major drawbacks:

1. For the single-prior Bayes method, any predetermined value of the hyperpa-
rameter in prior can lead to an unbounded resulting risk, that is due to the

potentially unbounded model bias.

2. For the empirical Bayes method based on the type-1I ML method, the adaptive
hyperparameter tends to converge to a value which is too high so that with
high probability the parameters are shrunk too much. This contributes to a
undesirable high model bias, and also lowers the coverage probability of its

corresponding confidence intervals.

Overall, the deficiencies in the above two approaches come with the potential misspec-
ification of the prior density (be it adaptive or not) and lack of Bayesian robustness
when the light-tailed prior is used. To overcome the weakness of previously employed
Bayesian methods in neural network training, we use hierarchical Bayesian methodol-
ogy to develop a new robust Bayesian estimator for neural network regression model.
The concept of Bayesian robustness is introduced to these application fields for the
first time through our work. We show that this concept and associated methodol-
ogy can be extended to nonlinear regression models such as neural network rather
well. And we suggest a scenario under which a Newton-Raphson iterative optimiza-
tion procedure is derived and coded to show how this new estimator improves on the
capacities of existing algorithms. The resulting estimator is in the form

@ﬂ._'H = @ﬂ + A.Mﬂw..%ﬂﬂ + \wq.N.@le

A A

([, + (1= 7y Yo (FLF) P2, — 7 K8, (1.26)
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A~

where k. plays the same role of residual variance as in the single-prior Bayes and
empirical Bayes methods (cf. eqn. (1.25)), #,, is a new function emerged from a
more complicated prior hierarchy and will play a crucial role in robustifying the
Bayesian procedure and balancing bias and variance (cf. eqns. (3.3) and (3.16)).

It demonstrates an improved overall prediction performance in the sense that (cf.

Figures 3.1, 3.2 and 3.3):

1. When the guessed hyperparameter is wrong (too high or too low), the new
estimator delivers a lower prediction error than that of the single-prior Bayes

method, showing the effect of the Bayesian robustness it possesses.

2. If the guessed hyperparameter is too low, the new estimator bears more char-
acter of the empirical Bayes method with a higher model bias but lower model

variance and a lower prediction risk.

3. If the guessed hyperparameter is too high, the new estimator shows more char-
acter of a Least Squares estimator with a lower model bias but higher model
variance and a lower prediction risk that levels off at the level of an empirical
Bayes estimator and never goes unbounded like in the case of the single-prior

Bayes method.

4. When the guessed hyperparameter is about right, the new estimator delivers
virtually the same good performance as the single-prior Bayes method, and
avoids a higher prediction risk as expected for the empirical Bayes method by

not overshrinking the parameters.

Furthermore, as a default, ‘standard’ and single-run algorithm, the new estimator
shows consistent performance gain over a wide variety of data settings illustrated by
synthetic data sets.

Second, for the fields of analytic and applied statistics, our work ratchets up the
performance gain delivered by the neural network nonparametric regression model

and the theoretical understanding of the underlying mechanism which makes this
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model more appealing and acceptable as a new kit in statistical toolbox. The appli-
cability of many well-developed methodologies from statistics has yet been verified
in the application fields such as neural computation. Often the statistical method-
ologies are adopted into applications without care of the conditions under which the
method can be used, and without theoretically sound justification that the weakness
of a specific method would not become a major shortcoming in model performance.
By adopting various techniques from statistics and related fields, we first clarify some
major flaws of existing methods used in neural network training, then propose a much
refined approach inspired by mathematical statistical study of the rather basic case in
canonical form. Our approach finally results in an algorithm for neural network train-
ing that has various desirable statistical characteristics such as Bayesian robustness,
numerical stability from ridge procedure, asymptotic minimaxity, improved predic-
tion confidence intervals. Moreover, the algorithm is in an explicit closed formulation
that is easy to program and does not require significant extra computational cost

than the ordinary Least Squares estimation.

Querview of thesis

The thesis is organized as follows. After an extensive survey over major statisti-
cal regression models and methodologies from the global error measure perspective
in Chapter 1, we prepare theoretical setups for general nonlinear regression analysis
necessary to our presentation in Section 2.1. The single-prior Bayes method is shown
as a Bayesian implementation of the ridge procedure with a potentially unbounded
risk in Section 2.2.1. The empirical Bayes method is shown to be an adaptive ver-
sion of the ridge procedure with a high probability of overshrinking the parameters
in Section 2.2.2. All the above are corroborated with simulation results on real and
synthetic data sets. The hierarchical Bayesian methodology is introduced in Sec-
tion 2.2.3. Using this methodology, we develop the new robust Bayes estimator in
Chapter 3, and propose a plausible default version and implement it numerically to

show its overall improved prediction performance. In the final chapter, we reflect
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on various aspects of the approach characterized by balanced consideration in risk

behavior of a potential estimator, and the open questions remained in this field.



2. Approaches Based On Global Error Properties

2.1 Preparations
2.1.1 Likelihood function, Newton-Raphson method and one-step ap-
proximation

Typically, for the generalized additive model in (1.2), a usual LS estimate of
the parameter vector represented in (1.16) and (1.17) has multiple roots. The most
commonly used approach is to use iterative optimization methods such as Newton-
Raphson to obtain an approximate solution of (1.17).

Under the assumption of i.i.d. normal residuals, the ordinary LS estimator is
the same as the maximum likelihood (ML) estimator. The normal-theory regression

model in (1.15) implies that
Yy~ ESANA%*VQQWNSV ”

where 8%, the true value of 8, belongs to @ C R?. We shall use the notation fi(8) =

f(®:;8), nx1 vectors y = (y1,Y2,....yn) and £(8) = (f1(8), f2(0), ..., £»(8))’, and an
n X g matrix F(0) = Vf(0) = mm%v _ :mimvi with n > ¢, rank(F'(8)) = ¢, and

ab;
rank(F(8) F(0)) = q. The likelihood function of a regression model can be written

in a conditional density form

e lu—f0) ] (2.1

with || y — £(8) |I*P= .7 (s — f(x+0))?, and the log-likelihood function as

—n/2

p(yle;0,02) = (2m02) ™" exp T

n 1
1(6,0%) = logp(yl: 0,0%) = ~Slog(2mo?) - — |y~ FO)IF . (2

An ML estimate of the parameters is the one that maximizes the (log-)likelihood

function by solving the likelihood equation

(0.0%) = (0.7 = 0. (23)

35
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(8,02) = 0. Note that in a small neighborhood of a root 8™ of (2.3), the

an mqw

linear Taylor expansion of f(8) is

1(6) = fi(0) +M@b =),

f(6)~ f(67)+ F(67)(6 -67). (2.4)

Hence, the log-likelihood function becomes

1
507

1
507

18,02) ~ —log(2na?) = — ||y — f(87) = F(67)(0 - 6") |

= —Jlog(2mol) — o || e~ F(8 —6") || (2.5)

where € = (&1,...,6,) =y — f(07) and F = F(0"). The likelihood equation (2.3) is

solved approximately when 8 and o2 are substituted by
6~0 + (FF)'Fle, (2.6)
and

. 1 .
si= g F@) I, (2.7)

where QM is usually replaced by its unbiased version, QM == |y — %Qv 2.

In practice, the unknown root 8™ must be replaced by an @W@woxwamﬁm one itself,
that leads to the Newton-Raphson iterative procedure. If 8 is the approximate so-
lution, then a linear Taylor expansion of the left side of (2.3) about 8 leads to the
approximation

0=10(8)=10(8)+1"(8)(6 - 8),
and this gives us
I'6)

6=0— ——
N:A%v

b AM.%V

which is equivalent to (2.6) with 8" replaced by 6 and N\va = IMWAQINASY N:va =
L

2F F. The resulting sequence of estimates ﬁmzw and 1its substitution estimates
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Twm@zﬁv (as 1 increases) can be made consistent, asymptotically normal and asymp-
totically efficient under certain regularity conditions as presented in [44, 1, 41, 45].
Throughout the rest of the thesis, we are mainly concerned with the risk behaviors of
the one-step approximation of various estimators of 8 in (1.2) and using them as indi-
cations for developing new estimators in the Newton-Raphson fashion with desirable

global error properties.

2.1.2 The usual Least Squares estimation and statistical inference

N

When n is large, the usual LS estimate € is in a small neighborhood of 8™ as in

(2.6), and

V(0 — 87) ~ N, (0, ~oX(F'F)) (2.9

n

where the approximation holds to o,(n™/2) (i.e., ¥§ > 0,lim,_. Pr(y/n||0 — 6%]] <

d) = 1). Consequently, the substitution estimate
fO)~ f(0)+ F(0 —0")~ f(0")+ F(F'F)'F'e = f(6*) 4+ Ppe , (2.10)

or written as %Qv ~ N,.(f(87),02PF), that leads to

N

y—f@)~y— f(0)—F(@ —0")~e— Ppe=(I,— Ppe, (2.11)

with Pp = F(F'F)~'F' and (I,, — Pr) symmetric and idempotent (i.e., Py = Pp
and hence (I, —Pp)? = I,—2Pp+P% = I,— Pp). The loss function of a predictive

action by the corresponding LS estimator is given by

L(9) = (n—q)s* =] y - £(8) |~ ||(L. - Prle||’ ='(I. - Pple, (2.12)

where the approximation holds to 0,(1), s> = 62 is the unbiased estimate of o2 to

the order of 1/n and asymptotically independent of 6, and (n —q)s?/o? ~ €I, —
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Pr)e/c? ~ x;_,. The prediction risk of the usual LS estimator is
P8) = E|ly—f(67)+f(67)—f6) ]|
= E| <P +E| f(6") - £(0) |’
= zqw + mav
~ no’+ E||Ppell?
= no’+olte(F(F'F)'F)
= (n+q)o’. (2.13)
In practice, the above asymptotic results need to be further validated by two

statistical measures: confidence region and relative curvature. Since as n — oo,

L6 = LOWg , __ePre n—q_(B-0YFFO-0) . .,

~

L(8)/(n —q) e'(I, — Prle ¢ qs
a commonly used approzimate 100(1 — «)% confidence region for 8 is

A Al A A

(0: (0—0YF F(0—0)<qs*F> _}, (2.15)

q,n—q

where F' = ﬁav and F¢ _ is the upper « critical value of the F, ,_, distribution.

q,n—q

Another confidence region with practical importance is the prediction confidence in-
terval (a.k.a. error bars) for y; at ® = @, Vi = 1,...,n. Since y; — ¢ is asymptotically
N(0,02[1+ f,(F'F)~ f,]) and s? is asymptotically independent of v, — 9, it is asymp-

totically true that
Yi — Ui
sV1+ fUFF)7 f,

hence an approximate 100(1 — )% confidence interval for y; is

~tog

Al A

e £t s[4+ FAF Y2 (2.16)

n—q
where t,,_, is the t-distribution with n — ¢ degrees of freedom, and f, is the ¢-th
g-dimensional row vector of F' (t =1,...,n).

The confidence interval of (2.16) can be further validated by examining higher-

order Taylor approximation in the neighborhood of 6:

A

f(0)—f(8) ~ F(O6—-8)+-(0—-6)H(6-8)

~ 1 N
— o+ 0'HS . (2.17)
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rs*

where H = :wwwwwbvrnw = [(f..)] is a q x q array of n-dimensional vectors f

Evidently, the validity of the linear approximation starting from (2.6) depends on
the relative magnitude of the quadratic term 8'H§ with respect to the linear term
F§. Based on the work of Bates and Watts [46] and the concepts from differential
geometry, the response surface (a.k.a. expectation surface), Q@ = {£(6),0 € O}, can
be seen as a ¢-dimensional surface in the n-dimensional sample space. The column
space of F in the linear approximation in (2.10) is the tangent plane to the response
surface at the point 6. By taking the linear approximation in (2.10), one assumes
that the response surface can be replaced locally and uniform-coordinately by the
tangent plane. To verify this, the quadratic term (i.e., the curvature) in (2.17) needs

to be small, compared with the linear term. Bates and Watts first decompose H into

two components orthogonal to each other, by using the projection matrix Pp:

A A ~ A ~

H = [(Ppf,)]+[((I.-Pp)f,,)
= H +H (2.18)

and then define two measures of curvature: the tangential parameter-effects curvature

o ||8H 8|
KP=1"— "1
EE

Y

for it depends on the particular parameterization used in f(8); and the normal in-

trinsic curvature N
_||6'H 4]
| Fo][?

for it only reflects the property of the response surface. Notice that the approximate

~N
K 4 )

100(1 — )% confidence region for 8

A Al A A

(0 —6)F F(6—0)<qs*F~

q,n—q

is an ellipsoid centered at 8, with a s, [qFy,_, radius (i.e., 1/(s\/qF7, ) the curva-

ture of the ellipsoid). The curvature measures can be made scale-free by standardizing

all the quantities involved with the standard radius p = s,/q so that the standardized

tangential curvature k} = KIp, the standardized normal curvature k¥ = K p, and
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the standardized curvature of the ellipsoid 1/,/F?, . Bates and Watts [46] sug-
T

ax 18 close to zero and

gested that the linear approximation would be tenable if k
N < 1/2, /Iy, _,. Forinstance, at the level a = 0.05, the above inequality allows

only a less than 14% departure from the tangent plane approximation.

2.2 Bayesian Approaches: Average Risk Optimality

2.2.1 Single-Prior Bayes and Ordinary Ridge Regression

2

2, we first consider the prior distribution of 8

Given o

Q.w

n(6) ~ Ny(0,25D)  with k> 0. (2.19)

With the likelihood function in (2.1), the posterior distribution of 8 given the data is

in the form
p(0|Dy) o< p(yla; 0)m(8) . (2.20)

A Bayesian estimate of @ is then obtained by maximizing a posteriori (MAP), i.e.,

solving the new likelihood equation

0(k) = mwmawxyomﬁﬁm_bzv
207 y— f(x; 207 constants

= argmin(|ly — f(a;0)|" + &||0]]°] , (2.21)

= arg B%i

which is equivalent to add a penalty term to the loss function with £ in the place of
the smoothing parameter A in (1.12). Then the Bayes estimator of 8 can be written

in the Newton-Raphson form
O(k)~ 6" + (F'F + kI,)"'[F'e — k07, (2.22)
i.e., the normal approximation of the posterior density of @Q& given the data is

p(O(K)|Dy) ~ Ny([I, — k(F'F + kI,)7'16", V (k)
~ N,((F'F+kI,)"'F'FO",V(k))
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where V (k) = 02(F'F + kI,)"\F'F(F'F + kI,)"' + kX(F'F + kI,)"'6*(§"Y(F'F +
kI,)~'. The estimator @Q& shrinks the ML estimator @ toward the priori zero mean,

and follows a similar fashion of Hoerl and Kennard’s ordinary ridge estimator for

linear regression model in (1.22) and (1.23).

The risk behavior of @Q& shares the similar characteristic of an ordinary ridge

procedure as well. From (2.4) with § = @Qay we have

F(O(k)) - £(67)

X
g
D>
=
|
5 ~)
N

N

EO(k)) + F(Eb(k) — 6"

Il
!
—
D>
—
I
~—
|

N

= F(6(k)—EbO(k))—kF(F'F+kI)0". (2.23)

Hence, the prediction risk of the Bayes estimator @Q& can be written in the form of

typical bias-variance decomposition for mean-squared prediction error (MSPE) as

with bias*®, var*

El(8(k)]=E | y - F(8(k) |
E|e|*+E| £(67) — £(6(k)) |I"

N N

no? + B [(B(k) — 67 F'F(O(k) — 7)) + 0,(1)

no? + { B [(8(k) — E&(k))F'F(B(k) — BO(k))] +

K" (F'F + kL) F'F(F'F + k1,)70"} + 0,(1)

no? +oltr (F(F'F + kI,) " F'F(F'F +kI,)"'F') +

20 (F'F + kI,)"'\F'F(F'F + kI,)"'0" 4 0,(1)

no? 4+ var*[0(k)] + bias™[0(k)] + 0,(1)

no’ + R (0(k)) + 0,(1)

no’ + R(O(k)) , (2.24)

N

and R*(0(k)) the model squared bias, variance and risk in the

asymptotic sense (n — 00). Let A be the diagonal matrix of eigenvalues of F'F and
G be the orthogonal transformation such that F'F = (G™'YAG™", (G™YG™' =1,
A = diag(Xi), dpar = A1 > Xg > o> A, = Apin > 0, and v = G7'0*. Then the
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asymptotic risk is given by

q q
A b¥: oy
R*(0(k)) = o? kP — 2.25
(8(k)) 9M§+%+ M?t% (2.25)
The properties of the asymptotic variance and squared bias terms from the asymptotic

risk are instantly followed (cf. Figure 1.6):

1. For the variance term:

(a) var*[0(0)] = goZ;
(b) lim var*[@(k)] = 0;

k—oc0

(c) %?@H*EQAVC —202 MU o n_l\a < 0, so <§i®ﬁai is a continuous,

monotone decreasing ?bo?@b for £ > 0.

2. For the squared bias term:

(a) bias*2[0(0)] = 0;
(b) lim bias**[(k)] = (67)'6%;

k—oc0

(¢)  lim bias*?[@(k)] — oo

11677 =00

d 5 ~
ias” =2 > 0, so bias 1s a continuous,
d Tk bias*[@ )] k y + \a bias™[8(k)] i i

monotone increasing ?bo?@b for £ > 0.

3. There always exists a k > 0 such that m*%%vv < m*%v Since var* Eﬁoz = qo?,
bias*2[(0)] = 0, var*[(k)] and bias*?[8(k)] are monotonically decreasing and
increasing for k > 0 respectively, we only have to show that 3k > 0 such that

LR*(O(k)) <0, ie.,

CROR) = v OR)]) + (bias O8]
q q
A2 YEN
= quw ! + 2k MU <0
2 e P
Hence, the condition is given by
2)2
fo< Jelmin_ (2.26)
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The properties of m*%%vv show that it will go through a minimum (cf. Figures 1.5
and 2.2). Since Mwwmo bias*?[(k)] = 6*'0*, this minimum will move toward k = 0
as the squared length of the unknown regression coefficients increases. Although
for fixed x,’s and 8 there is a neighborhood of zero for k within which @Q& has
smaller asymptotic risk, no fixed k > 0 can dominate the ML (LS) estimator 8 for all
possible @;’s and €. It is also impossible to determine an optimal choice of k before a
Newton-Raphson iteration is implemented. Furthermore, the confidence intervals are
only improved when the right choice of £ is made, that can be seen in the following
formulation
[g0(k) + kF (F'F + k1,) 70 (k)]

Al oA Al A ALl A ~

22 5[l 4+ FAF F 4+ kD) FFFF+kI)f,

n—q

Al A

(ke F (B F kL) 0(k))2? (2.27)

where all the *’s are evaluated at @Q& For example, the 95% confidence intervals of
a single-prior Bayes neural network model with A = 9 and k& = 0.01 covers 98.18% of
data points, that is higher than 97.27% from the LS method. Nevertheless, it is also
numerically stabilized with the matrix singularity reduced by the hyperparameter
(see Figure 2.1).

A reasonable approach in practice is to train a model by the data set in hand
under different choices of k and to evaluate the prediction performance of the trained
models through either cross-validation or bootstrap resampling methods, then to set-
tle for a trained model with the lowest prediction error (as shown in Figure 1.5). The
advantages of this simplistic approach is that it keeps the numerical stability of the
ridge procedure and reaches a relatively good bias-variance trade-off with moderate
computational cost. However, there are also a few drawbacks: it does not possess
Bayesian robustness generically, the accuracy of the ‘optimal’ &k is often compromised
by consideration of computational cost, and there is no closed formulation for the ap-
proach as a whole that makes it difficult to both analytic verification of its optimality

and numerical implementation as a default ‘standard’ algorithm.
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Fig. 2.1. The confidence intervals defined in (2.16) and (2.27) are plotted with the
observed data points (y;’s) centered around the fitted response values (7;’s), against doy
(one of nine predictors). The 68% confidence region is located between the two thick lines

and the 95% confidence region is between the thin lines. The upper plot is from LS
method, and the lower plot is the result of the single-prior Bayes method. Evidently, the

latter is stabilized numerically through the ridge procedure.
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2.2.2 Empirical Bayes

A natural generalization of single-prior Bayes estimation is to treat the ridge
parameter k as unknown along with o2 as well, so that one deals with a class of prior
density with varying mean vector and variance-covariance matrix instead of fixed ones.
The focus is once again on one’s treatment of the prior density function. In general,
one can assume the prior distribution of 8, 7(8), to be modeled either by parametric
densities with unknown hyperparameters (e.g., a normal density with unknown & and

o2 is used in (2.19) or by nonparametrics. There are two basic strategies to solve the

new uncertainty in prior.

Firstly, one can pick the most probable prior by estimating the hyperparameters
based on the marginal distribution of the data. Suppose that the likelihood function
p(yle; 0,02) be the same as in (2.1) and a prior density of 8, 7(8|k; o?) in (2.19) with

k unknown, then the marginal density of the data is
m(yle; ) = \@@_ﬁm“qwi&@qw% :

The marginal distribution m(y|a; 7) can be considered as a likelihood function for the
prior 7(8|k;0?) indexed by the unknown k and o2, m(y|x; 7 (k1)) > m(y|e; 7(k2))
indicates that the data provides more support for the choice of £ than ky. A type-11

maximum likelihood prior (ML-II prior) is the one that satisfies

7 :m(y|e; ) = arg mewxg@_awi .
Pl

A ML estimate of the hyperparameter k (the same for o) can then be obtained by

solving the new likelihood equation

0
—m(yle; (k) =0.

O iyl (k)

Once the empirical prior is chosen, the rest of analysis can be carried out in a typical
Bayesian fashion.

Secondly, the uncertainty in prior can be carried over into the posterior distribu-

tion of the parameters given data, and the hyperparameters in the prior are treated as
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part of model parameterization and optimized together with other model parameters.

Assume a more general prior of 8 in the form
N0, 02K ) (2.28)

where K = diag(k;) (i.e., each parameter in the model is assigned a different hyperpa-
rameter of variance). In the Newton-Raphson formulation, this leads to the following

iteration

0.0 =0, +(FF +K)'(Fe —K.9,), (2.29)
where F. = ﬁ%qv“ E, =Y — %%L and K. = %@@Qwiv. The posterior distribution
of the Bayesian estimator @qi at the (7 4 1)-th step of iteration given the data can

be seen as

A

0.0 ~N,(F.F. +K)'F.F.0°V,) (2.30)
where

V., = GAFLF 4 KR F, 4+ K+
(F F, +K,)'K,0°(0VK.(F.F. + K,)™" .

Ao Al a a1 a1, a1
With a similar canonical reduction such that ﬁ\qﬁq = (G, VAG, (G )G, =
> N A —1n aA—1 >

I., A, = diag(Ai), &, = G, 0, and A,, = G, 07, the asymptotic risk of 6,4,

T

is sought to be minimized to obtain the ‘optimal’ choice of Nw.q = %@mﬁwiv for the
coming (7 + 1)-th iteration.

15232, 4 AR )2
O =
_ MW 202 (s + \m:.v@wm: - _,
i=1 (Ari + kri)?t )
which yields that
-2 (2.31)
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with &2 replaced by either a fixed estimate 62 from a trained LS model or an iterative
version 62 = zﬂﬂ__@ — £(8,)||>. This approach is equivalent to the adaptive ridge
procedure for linear regression (cf. [47, 48, 49]) and is advocated by MacKay [38] and
Neal [39] for neural network regression model in (1.2).

It is easy to show that the above two empirical Bayesian approaches deliver the
essentially same adaptive version of ridge procedure if a normal prior is assumed.
However, it also can be shown analytically and corroborated numerically that this
kind of simultaneous adaptive iteration of both the parameters and hyperparameters
tends to shrink the parameters too much toward the prior mean (usually set to zero),
because k,; is often too large. This can result in poor prediction performance with
the bias-variance compromise heavily tilted toward a very low model variance but
a way too high bias component (see Figure 2.2). The coverage probability of its
corresponding confidence intervals is also lowered (see Figure 2.3).

Adopting the technique introduced in [50] with the above-mentioned canonical

reduction and the adaptive choice of K from (2.31), the adaptive procedure in (2.29)
and (2.30) is approximately equivalent to

. . A2 a o A IO
U,y i=[A, +62T |'"A T, o=[I,+62A, T 7'y, (2.32)
where “:=" means that the right side is the mean vector of the posterior distribution

~ A1l At A A —1

of the left side given the data, A, = G, F_F,.(G. ), and the g-vectors 4, and #_,

are represented as diagonal matrices

49 0 - 0
oo e ol
0 0 Yy
and - _
A1
G 6], 0 0
A1
. 0 G._ g 0
b &,




_ 48 -

Trade-off between Bias and Variance [NN-1]
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Trade-off between Bias and Variance [NN-3]
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Trade-off between Bias and Variance [NN-12]

@ Variance
W Bias-squared

0 1.00E-06  1.00E-05 1.00E-03  1.00E-02  1.00E-01 1 EB

1.00E-04
Decay Parameter (k)

Fig. 2.2. The empirical Bayesian approach (EB) is compared with the single-prior Bayes
methods used in neural network regression models with various number of hidden units
(h=1,3,6,9,12) on ozone data, in terms of prediction performance (MSPE) and its
bias-variance decomposition. Notice that the MSPEs of the models trained by empirical
Bayesian method discussed in Section 2.2.2 have a high bias-squared components, which
prevent them from reaching ‘optimal’ bias-variance trade-off in all occasions, even though
EB method usually delivers an improved performance over MLi (LS) method. The high
model bias seems originated from the over-shrunk parameter estimates (see Figures 2.5).
[Note: Bootstrap estimates of model bias and variance are used with 1000 resamples for each case.
The bias-squared components also include the contribution from the model residuals, so that they

can be rather high when the models are not adequate as for the cases of h = 1,3.]



- 49 -

o o
=
fee}
o © o ©0?
0 & o o
o Q o o o
) ] @ o Q00 o
o e U o @ C L 00
@0 o o o O g
hmu o8 @ % @ O o
00 o P E 800 00 92 o5 o @
0o & e} Op (o} o
09p o fe) o @ o
o 00 o o o°° @mmw Oo © %9 0Q o8y 00O
2 o oo O 0o 000® & 0@ o o) 3> o
- o Oo o O o o P o
§ 2 o®°o 0’ 0 °f % o 8,0 ° @ @ 29
= o O@u feXe) OQ o) o o O @OO [e] ° [e] Q
‘o) o [} o
3 & 9q 0 o o o % ® o° s Re) 0%o0 ©
c [e) O o [e) (0] o) o [oNe)
3 S oo 2 00° o o ©
2 QO fo) Q Q Q o o
S 27 o % 0 © O s o ©
O o o
%) o ) o
o
5 © o ° [e)
o = _Q o o O o)
< ©o
o
o o
o
ld o
2]
' T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Day of the Year

Fig. 2.3. The confidence intervals defined in (2.27) are plotted with the observed data
points (y;’s) centered around the fitted response values (g,’s), and k replaced by k which is
the value when the iteration procedure is ended. Compared with Figure 2.1, the smooth
contours indicate the adaptive choice of k is too large. The coverage probability of 95%

confidence region is 97.57%, down from 98.18% of the single-prior Bayes method with
k=0.01.

Let A, = \wq\%w then (2.32) becomes

ET?

ANl A—2 N

Since both matrices [I,+ A_I'_ ] and I'; are diagonal and commute,

A —2 A —1 A=l A —2_ A~ —1 A =1 A =2
HJﬂn_vH = H_Jﬂo ﬁ.N.Q |_| \Pﬂ H_Jﬂ iﬂﬂo ﬁ.N.Q |_| \Pﬂ H_Jﬂ _
= I, +A T
A =1

Multiplying both sides by A ., gives

A1 ~A—2 A—1 ~A—2 n—la—2,

\Pﬂn_'HHJﬂ._'H = \Pﬂn_'HHJﬂo ﬁ.N.@ |_| \P H_Jﬂ _ Awwwv

T

Assume that the iterative procedure in (2.33) converges in the sense that lim,_ Hﬂw =

A k2
77", Then it is evident that all other quantities involved are convergent as well,
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Fig. 2.4. The upper panel provides a look at the iterative changes of three quantities
(hyperparameter k, parameter magnitude ||8]|> and ASR) in a Newton-Raphson procedure
when the empirical Bayesian approach is used in a neural network (h = 9) on ozone data.

The iteratively updated hyperparameter k’s are way higher (in the neighborhood of 1)
than the ‘optimal’ choice (in the neighborhood of 0.01) as indicated by the simulations on
the single-prior Bayesian method. The relations among estimated parameter magnitude,

hyperparameter k and prediction risk are illustrated in the lower panel by 100 neural

network models trained by empirical Bayes method with 9 hidden units on ozone data.
All three quantities take their values at the end of Newton-Raphson iteration. Evidently,
when hyperparameter increases, the parameter length decreases as the result of more
shrinkage, and the prediction risk increases due to the higher model bias.
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Fig. 2.5. The relation between shrinkage and risk is shown in terms of prediction
performance (MSPE) and corresponding estimated parameter magnitude. The empirical
Bayesian algorithm examined in Section 2.2.2 is used to train neural network models on

synthetic data with a ‘true’ parameter magnitude at 100. The signal-to-noise ratio
decreases from the left to the right at 100, 1, and 0.01. The horizontal lines in each plot

are the mean values of prediction risks. The vertical line indicates the location of the

‘true’ parameter magnitude. The EB algorithm tends to take more liberties with
shrinkage as the SNR decreases. When it does that, the prediction risk of the resulting

model tends to return to the level of the LS estimator.

and denoted as o*?, F*, G*, A*, A* and I} respectively. Let B* = A*T* % and

5= AT} 7%, the equilibrium equation from (2.33) is
B* = Bj[I,+ B*, (2.34)
ie.
B;B*” + (2B, -~ 1)B*+ B =0.

Since all matrices in (2.34) are diagonal, the equilibrium equation is a system of ¢

equations of the form
bsb™ + (205 — 1)b* + b5 =0, (2.35)

where b5 and b* stand for any one of the diagonal elements b5, and b7 (¢ = 1,...,9)

respectively. Solving (2.35) for b*, one has

(1 —263) + /(1 — 4b3)
205

b= (2.36)
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Fig. 2.6. The empirical Bayesian approach (EB) (‘A’) is compared with the LS estimator
(‘o’) and the single-prior Bayes estimators with & = 0.0001 (‘+’), £ = 0.01 (‘x’) and k =1
(“0”) on synthetic data set I in Appendix A, in terms of prediction performance (MSPE)
and corresponding estimated parameter magnitude based on 100 runs per case. Each row
represents a different ‘true’ parameter magnitude at the values of 0.01, 1 and 100 for a
neural network model with d = 3 and A = 3. Each column represents a different
signal-to-noise ratio (SNR) at the levels of 100, 1, 0.01 respectively. The 9 plots as a panel
are used to show the relations between the prediction risk and the parameter magnitude
for the 9 different data settings defined by the ‘true’ parameter magnitude and SNR. See
Figure 2.7 for the corresponding boxplots of prediction risks.

For b5 > 1/4, the iterative procedure in (2.34) diverges since the radicand (1 — 4bf)
is negative. 4 = 0 (i.e., #; has been shrunk to zero) for all 7 with bf; > 1/4, because
br = O Though there might exist other 4*’s remaining at no-zero values when

the iteration converges for the case of 0 < b5 < 1/4, the chance of divergence is

*2
e

overwhelmingly high. Since

Pr(~7 =0) = Pr(by, > 1/4) = Pr(1/bg; < 4)

K3
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Fig. 2.7. The corresponding boxplots of prediction risks from Figure 2.6 (without the LS
estimator).

and
1 A 3@. v :

* *2
0z o

Y

one can define a null hypothesis Hy : v = [G*'6*]; = 0, that reflects the prior
believe of the parameters in (2.28). Referring to (2.14), under H,,

1
P ﬁfﬁIQIH .
0z

So the probability of v* being shrunk to zero becomes
H,UHAQ\W = O_mOV = WHANHHSIQIH < m@ 5

which increases with (n — g — 1) (the difference between the sample size and the

number of parameters). For instance, Pr(y7 = 0|Hy) = 0.953318 for a 9-hidden-unit
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Fig. 2.8. A similar simulation on synthetic data set 11 with d =9 and h = 9, where each
row represents a different ‘true’ parameter magnitude at the values of 0.1, 10 and 1000
respectively. The EB method does better when SNR is low and the ‘true’ parameter
magnitude is high, while the single-prior Bayes method with a right choice of the
hyperparameter has a better performance with the opposite data situations.
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neural network model of the ozone data (where n = 330,g = h(d+ 1)+ (h 4+ 1) =
99 4+1)+ (9+1) =100,(n —q— 1) =229, F| 3357°7'° ~ 4).

The EB algorithm discussed here can be improved by either formulation using
higher-order asymptotic approximation or exact integral calculation by Markov Chain
Monte Carlo (MCMC) techniques. But both improvements come with higher compu-
tational cost, especially the latter. For example, a MCMC implementation of a very
small example with 2 response variables and 2 predictors needs about 20 hours of
computation time [39], while a run of single-prior Bayes or EB estimation lasts only
seconds. Furthermode, the EB method is not generically Bayesian robust, since the
prior has tails that are of the same form as the likelihood function and hence they
will work only when the likelihood function is concentrated in the central portion of
the prior. Although the ML-II empirical Bayesian approach strove to be a default
algorithm for the model in (1.2), some intrinsic flaws in approximating and evaluating

the prior assumption prevent it from reaching the optimality it aimed for.

2.2.3 Hierarchical Bayes

Rather than specifying the prior as a single function, the hyperparameters of the
prior distribution used in hierarchical Bayes methods are further modeled by other

hyperprior distributions. For instance of the model in (1.2),

h
Y HMQSAHMQS;‘@ s t=1,...,n, (2.37)
k=1

the standard conjugate normal hierarchy assigns the following set of priors and hy-

perpriors to the parameters 8 = (a, 3)":

T(Belps. 08) ~ N(pg,05) k=1,..,h.
m(aglp,, Xo) ~ Ni(p,,Xo) , k=1,...,h.
m(ug) ~ N(ay,az) , m(o5') ~ Gamma(as, as) (2.38)
m(p,) ~ Ny(by, By) , m(25?%) ~ Wishart(bs, By)

m(o7%) ~ Gamma(ey,cy)
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where all the a’s, b’s and ¢’s are assumed known. If £ denotes all the hyperparameters,
&= (up,0p, 1y, Xa,0:), the hierarchy can be summarized in three levels:
D,|0 ~ p(D,|8) , likelihood
O ~ w(8l§), prior (2.39)
E ~ w(€), hyperprior .

The Bayesian inference is then based on the marginal posterior distribution of the

parameter vector

w610, = [ w(6.€1D.)ie (2.40)
where the posterior distribution of all parameters

p(Dn]0,8)7(8,§)
I'p(D,16,8)m(0,€)d0dE

with p(D,]0,§) @ﬁoﬁwqw i (yr— f(x4;0))?) the likelihood function and 7 (8, &) =

m(0,€|D,) = (2.41)

7(0)|&)m (&) the prior. The final outcome of the inference is based on the predictive

distribution

%A@3+H_U3“83+Hv — \%A@3+H_Hz+f%“mvﬁ.mﬁgm_Uzv&%&m 9 AM%MV

where p(y|e; 6, &) designates the conditional distribution of response variable y given
x and the parameters, which is N (f(x;0),52) in a normal-theory setting. The
resulting estimates of the parameter vector and the response surface are typically
the posterior mean and associated confidence regions (estimated from the posterior
variance-covariance) obtained from (2.40) and (2.42). For example, the hierarchical

Bayes estimator of 8 is
6 =EO|D,) = \mim_@%

— \\ 07(0,€|D,,)d0dE

_ \\?ﬂ 0|D,,&)d0n (&|D,,)dE
= ETEPI[E@D,. )] (2.43)
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which is the expectation of a single-prior Bayes estimator over the hyperprior density
7(&|Dy), and can be considered as a limit of simpler estimators. As we shall see
in Chapter 3, (2.43) is usually not in a closed form, but numerical calculation is
relatively simple. Another advantage of this approach is that it is usually Bayesian
robust with desirable classical frequentist risk properties, since one can obtain prior
distributions with flatter tails through certain hyperpriors (cf. Chapter 3). Therefore,
it is often the case that the hierarchical Bayesian methodology serves as an effective
way to construct estimators appealing to both Bayesians and frequentists. For the
model in (2.37), however, only a MCMC implementation is tried on some very small
examples [40] with very high computational cost, and there is no easy-to-use default

algorithm developed so far.
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3. Approach Based On Robust Bayesian Steinization

3.1 A Robust Bayes and Asymptotically Minimax Estimator

When mathematical statisticians develop an estimator, the Bayes robustness over
the class of prior being used might not be the apparent objective, but rather the
minimaxity of the estimator serves as the organizing theme [51]. However, the hi-
erarchical Bayesian methodology often plays an operational role in constructing rea-
sonable estimators with classical frequentist risk properties such as minimaxity or
near minimaxity. Adopting a research line presented in [52, 53, 54, 24] addressing
the minimax estimation of a multivariate normal mean, we develop a robust Bayes
and asymptotically minimax estimator in Newton-Raphson form and its resulting

confidence intervals for the regression model in (1.2).

3.1.1 The hierarchy

Consider the following hierarchy:

n

1

D,|0 ~ @Gz_sOS%T%M%QQQE , likelihood ~ (3.1)
m(06) ~ Ny(p,B(£)) , prior (3.2)
(&) ~ WML\N on (0,1) , hyperprior . (3.3)

The likelihood level can be replaced by the maximum likelihood estimator itself
p(80]0) ~ N,(8,X), the estimator that shall be improved upon ,  (3.4)

which is asymptotically an unbiased estimator with a variance-covariance matrix
Y =0XFF)", (3.5)

In Newton-Raphson formulation, the iterative ML estimate is in the form

N

0,.1=0,+(F.F,)'Fle,, (3.6)

59
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where F. = ﬁ%qv“ €, = Yy — %%L Therefore, for the calculation of ®q+3 F_s
and hence X, = %wqﬁw\q@qvl are known. In the asymptotic sense (n — 00), espe-

cially when 8. is close to converge, the iterative ML estimate can be approximately

summarized as N, (0,X) with a constant variance-covariance matrix X.

3.1.2 The prior

In the prior level, let

B(§)=p(Z+A)-X,

_ g+l

P and A is the variance-covariance matrix reflecting the accuracy of one’s

where p
prior belief in g. The free parameters, g and A, in the prior, are devised for two
purposes. First, this makes the new estimator ready to incorporate very simple prior
inputs that are summarized in the first and second moments. Second, this allows the

practitioners to easily locate certain parameter region over which the risk behavior is

to be improved. For instance, g and A specify an ellipsoid

{60:(0—p)A (6 —pn) <q—06},

which has probability of w for containing . For the sake of making impartial compar-
ison with other methodologies in Chapter 2, g = 0 will be assumed in this chapter,
while g is not difficult to be included in the subsequent calculations.

To robustify the prior hierarchy, a resulting prior around g with flat tail is desired.
By assuming the hierarchical prior defined in (3.3), the prior density of the parameter

vector 8 is
w(6) = [ nolem(e)ae
— \OHEQEQT\N exp{—0'B(£)710/2} 6712 J2d¢ . (3.7)

For large ||8]|?, 7(8) o {6'(X 4+ A)~'}~(¢*1/2 that indicates a flatter (polynomial)
tail, comparing with the exponentially decreasing tails of a normal density as in the
case of the likelihood function. It also can be shown that 7(8) has finite mass, and

is proper when Apax(A7'E) < (¢4 1)/2.
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3.1.3 The abstract version

With the prior in (3.7), the abstract form of the new estimator is the posterior
mean of 7(0|D,), i.e
[0 exp{—(60— 0)X"" (80— 0)/2}7(6)d
Jexpl— (00 — 0)% (60— 6)/2}7(0)d

The derivation of the abstract version in this subsection follows the results in [54, 24],

6 = : (3.8)

and is included for the sake of completeness. Since 7(8) is finite in any compacta of
zero and bounded outside the compacta, it is allowed to interchange the order of the

integration in (3.8), and its numerator becomes
\m exp{—(do — 8)'Z 7 (60 — 0)/2}7(8)d

\ [ Besl-1(60 - 07=" (3, 6) + 6'B(¢)6)2}ds
<[det B(€)]7V2671/2 24 (3.9

By completing squares and integrating out over 8, the numerator is equal to

\ \ 0 exp{—[0 — (37 + B(&)™) '8 (57! + B()™)
(37 4 B(6)"1)715718,]/2)d6
< exp{—[0,5 780 — 8,77 + B(6) )T 6] 2}
«[det B(&)] ™26 2
=[BT

0

< expl— (815160 — S1EN (ST + B(6)) 1N 180)/2)
X[det(E71 + B(€)™)] 72 [det B()| V2V 2de (3.10)
Since
ET+BEO™)T = TS+ BT
= M|WMAM+\3LM“ (3.11)
and

(7 4 B(e))B(6) =S B() + I, = p¢ 'S (2 + A) (3.12)
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the numerator is simplified to

I . LE
J =2 4 exn (=561
ot(5-1 izl Eiast g €
<et(=7 (2 + AN ) (313)

where [|00]|* = §,(X + A)~'d¢, and similarly the denominator is in the form

\ exp{— 25160l det(= 1 (E + AL G
0 2°p 2°p P

Denote ¢ = £/p,

noy = o T ep{=Co/2)dC

oy ¢'F exp{—Cv/2}d¢

S e R o e C R e Lo R S )

= )

v

and

hlo) = = [ ¢ expl=(¢ — oy2)ag)

-1

N TER)/2)

=0
~ L — . (3.16)
v 2 s
Hlﬁﬂv (9+7)

then the abstract version of the new estimator is

N

b =1, — v, (18| S(S + A)7115 . (3.17)

which is in the form of the well-known minimax James-Stein estimator [25].

If ||80||> — 0 as we guessed in the prior A,(0, A), then r,(||do||*) — 1, and the
new estimator behaves like Bayesian estimators in Chapter 2. When ||do|]* — oo,
r,(|[80]]*) — (¢ + 1)/]|d0]|* so that the new estimator is close to the original ML

estimator. Hence it is a rather good approximation that r,(]|do]|*) &~ min{l, (g +

1)/[180[1%}-
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[t has been shown for the canonical case in [24] that under the generalized quadratic
loss L(8,8) = (8 —68YQ(6 — 8), if ¢ > 5 and (¢ + 5) e {ZQB(T + A)7!} <
2tr{XQX(X + A)"'}, then mag 0) < R(d0,0) = tr(QX), V0. The condition is hold
if 2QXE(X + A)~! is a multiple of the identity matrix. Under the first order approxi-
mation of the quadratic loss ||y — £(0)|]>, @ ~ F'F so that QX (X + A)~! is close
to the identity matrix if A is relatively insignificant to 3. For the neural network
regression model and the Bayesian methods under our consideration, a diagonal A
is usually assumed, and ¥ = ¢2(F'F)~'. One can verify that if one canonicalizes
F'F, YQX(X + A)™! is approximately a multiple of the identity. In general, these
properties enable the new estimator to elude the potential unboundedness of the ridge
procedure shown in Figure 1.6 and Section 2.2.1, while keeping other desirable aspects

of a Bayesian method (see further simulation results in Section 3.2).

3.1.4 The Newton-Raphson iterative version

We utilize the abstract version of the new estimator in (3.17) with the one-step

approximation in (2.8). By noticing (3.11), (3.12) and
T roR(T+A) TS ={ES T g [A+ (L —r)E] T,
the abstract version can be rearranged as

9 = (S ryI(T+A) DI,
= (I A+ (1—r)E] 7} B8,

1 1— !

= {74 ﬁ A+ SOL D Y
ﬁ@o ﬁ@o

_ Elﬁkmlfﬁkmml;

H|ﬁ@© H|ﬁ@©
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where 40 = 1,(||d0||?). Since the one-step version of the ML estimator &g is
do=0+ (F'F)'Fe , (3.18)

and if the variance-covariance matrix A = QWNA.L with K = diag(k;) and ry, =
r,(||80||?) is approximated by r, = r,(]|0]|*) with ||0]]* = 6'(X + A)~'6, then the

one-step approximation for the new estimator 6 is

6 = (FFF+K)'[FF+(1-r)K]|0+ (FF)Fel
= 0+ (FF+K) " I,+(1—r)K(FF)Fe—-r,K0}. (3.19)

It can be easily seen that

—(F'F + K)

is approximately the derivative matrix of the vector
{I,+(1 —r )K(F'F)'|Fe—r,K8}

with respect to 8, so that equation (3.19) is a Newton-Raphson procedure. It is
of an immediate interest to figure out the corresponding objective function of this

optimization procedure. The new objective function is approximately in the form
ly — F(O)I + (1 —ry)(y — £(8))F'K(F'F)" F(y — £(8)) +r,6'K6 . (3.20)

The prior hierarchy from (3.3) alters the quadratic loss function in a more peculiar
way than a single smoothing (or penalty) term. The counterpart of the second term
in optimization theory and statistics needs to be investigated further.

Finally, based on the one-step approximation of the new estimator in (3.19), the

practical iterative procedure can be written as

N

%ﬂ._'H = @ﬂl_IA.MﬂM..Mﬂﬂl_l.NWcﬂle

A N

(I, + (1 = K (F F )" F.e —¢,.K.0.). (3.21)
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3.1.5 Confidence intervals

Following a similar procedure in Section 3.1.3, the posterior covariance matrix for

7(0|D,) in the abstract form is

C(do) = 3 —ry([|6o])B(E+A)7'S +

wSIPISE + A+ 4TS, (322
where
2(g + 1 doll?
100l = 2L T (I o, 8l = 1 = 13 18l

An approximate 100(1 — o)% prediction confidence interval for y; is

Al Al A ~

Yy £ N_m@m ﬁ - Qv + Q.ﬂ.%ﬁqmﬂq + NA.LL.MJ +

1/2

b {fll, — (F.F. + K,)'F P60y (3.23)

A

where all the s are evaluated at €. Though a similar performance gain as the
estimator is expected for the confidence intervals, a full scale investigation would
take up the space of another chapter. Therefore, we shall only outline a plan of

future study on this topic in the final chapter.

3.2 Numerical Experiments

The robust Bayes (RB) method opens the door to a wide variety of possible
implementations that shall carry the desirable characteristics from various estimators
under consideration. For the purpose of developing a default (or ‘standard’) single-run
training method for the neural network regression model, we propose the following
scenario.

Like all other numerical implementations of nonlinear model in general, the stan-
dard quasi-Newton or conjugate gradient methods are recommended as the basic
routine to ensure numerical stability. A reasonable way to evaluate the hyperparam-
eter k is to do a combination of random search as in the empirical Bayes (EB) and

fixation at a single value as in the single-prior Bayes (SPB). Firstly, a reasonable
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Fig. 3.1. The robust Bayesian approach (RB) is compared with the single-prior Bayes
(SPB) method used in neural network regression models with six hidden units on ozone
data, in terms of prediction performance (MSPE) and its bias-variance decomposition.
The RB method can be seen as being capable to perform multiple compromises with the
characteristics from several methods involved. When the guessed k£ is too small
(k = 0.00001,0.0001), RB has a lower MSPE by showing the character of EB with higher
bias but lower variance. When the guessed k is about right (k = 0.001,0.01,0.1), RB has
virtually the same MSPE as SPB, with the bias-variance trade-off bearing less character
of ML and more character of EB as k increases. When the guessed £ is too large
(k=1,10), RB again has a lower MSPE with a much lower bias (the character of ML)
and a total MSPE upper bounded by the MSPE of EB, so that the MSPE is not left
unbounded as k continues to increase.



- 67 -

Trade-off between Bias and Variance [NN-6]

0.35
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Fig. 3.2. The upper panel compares the robust Bayes (RB) method with the empirical
Bayes (EB) method, and the lower panel recites the comparison between EB and
single-prior Bayes (SPB) method. When £ is too large (k = 1,10 or higher), the MSPE
from RB levels off at the level of EB, while the MSPE from SPB continues to increase
unboundedly. When k is in a reasonable region (le — 4 < k < 1), RB delivers a better
performance than EB by carrying more character of SPB and ML.
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Prediction Errors [NN-6] "Mmm

h--.-—

1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Decay Parameter (k)

Fig. 3.3. The MSPEs from neural network regression model with six hidden units trained
by single-prior Bayes and robust Bayes methods are plotted against each other (see
Figure 3.1 for bias-variance decomposition).

single choice or at least a reasonable choice of an interval for k is possible if the data
are rescaled to ensure an efficient use of the capacity that the model can provide.
Ripley [36] has made a simple argument for this subject. Since the sigmoidal func-
tion used in neural network models saturates for domain valued around +3 and the
inputs @ are scaled to the range [0, 1], the standard deviation of the parameters are
expected around 5, which suggests a range from 0.001 to 0.1 for k. Secondly, the
random walk of k& allowed in EB has two different effects on the outcomes: it has
certain appeal when the guess of k is terribly wrong (be it too large or too small), but
e always overshrinks the parameters so further constraints are in order. A possible
solution is to use the adaptive k from EB while adding an guessed upper bound from

SPB on k so that k does not grow too high. With the additional constraint and

compromise imposed by r, form RB, our simulation shows that this scenario is able
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to improve overall prediction performance of the neural network regression model in

the following ways (see Figures 3.1, 3.3, 3.2, 3.4 and 3.5):

A~

1. When the guessed k (the single choice of the upper bound for the adaptive k

~RB
from EB) is wrong (too high or too low), the new estimator, & , has a lower

MSPE than that of SPBs. If the guessed k is too low, ®mm bears more character
of EB with a higher bias but lower variance and a lower MSPE. If the guessed &
is too high (the MSPE can go unbounded for SPB), 8™ shows more character
of a ML estimator with a lower bias but higher variance and a lower MSPE that
levels off at the level of an EB estimator.

2. When the guessed k is about right, ®mm delivers virtually the same MSPE as

the SPBs, and avoids a higher MSPE as expected for EB by not overshrinking

the parameters.

3. The convex coefficient r, plays a role in shrinking (which is good) the adaptive
k. A smaller k, could lead to a smaller ||6,||? and so a smaller For. A smaller 7,
lowers the penalty imposed by the ridge procedure (the third term in (3.20))
so that the line search procedure in the optimization algorithm one uses has
more freedom in choosing the next update of the parameter vector. The trend
in parameter magnitude of an RB run is a steady increase after the initial
disturbance, instead of steady decrease as in an EB run. This together with a
steadily decreasing error (the first term in (3.20)) leads to possibly even lower
\mqi for the next iteration step in optimization. This also results in a lower

model bias, since the penalty on the the parameter magnitude is lessened by r,

so that the resulting model bears more character of ML, method with low bias.

Besides the experiments on the ozone data, the simulations on the synthetic data

with a wide variety of data settings also show overall performance gains by RB (see

Figures 3.6 and 3.7).
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Fig. 3.4. The four panels provide a look at the iterative changes of five quantities (the
function r,, the adaptive hyperparameter k, parameter magnitude ||@]|?, the squared error
and the new objective function) in a Newton-Raphson procedure when the robust
Bayesian approach is used in a neural network (h = 6) on ozone data. The iteratively
updated hyperparameter k’s are pulled back by a decreasing r,, so that the parameters
are not shrunk as much as by the EB method.
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Fig. 3.5. The relations among estimated parameter magnitude, the value of function ry,
hyperparameter k and prediction risk are illustrated by 100 neural network models trained
by robust Bayes method with six hidden units on ozone data. All four quantities take
their values at the end of Newton-Raphson iteration. Evidently, when r, decreases, the
hyperparameter decreases as well, the parameter length then increases as the result of less
shrinkage, and the prediction risk decreases due to the lower model bias.
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Fig. 3.6. The robust Bayesian approach (RB) (‘®’) is compared with the empirical Bayes
(EB) estimator (‘o’) and the single-prior Bayes estimators with & = 0.0001 (‘+’), ¥ = 0.01
(‘x’)and k=1 (*¢’) on synthetic data set | in Appendix A with the same setting as in
Figure 2.6. It can be observed that the resulting models from RB show characteristics
from both SPB and EB, and can be seen as compromises between these two methods. In
most cases, RB delivers the best performances or nearly so, while there is no single
implementation from either SPB or EB showing such overall improvement with wide
variety of data situation. See Figure 3.7 for the corresponding boxplots of prediction risks.
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4. Extensions and Future Work

Implication of the new objective function

Neural network belongs to a class of modern regression model that possesses strong
approximation capacity and not-so-slow convergence rate even when the dimension-
ality of the data is moderately high. Like all other nonparametric models, however,
a potentially rather high model variability could undermine its overall performance.
We have shown that a carefully designed model bias must be introduced to lower the
model variance so that the total prediction risk is reduced. The new robust Bayesian
estimator (3.21) developed here implies a new corresponding constricted objective

function
ly — FO)I* + (1 —7r)(y — F(0))F'K(F'F)"'F(y — f(8)) +r,0'K8 . (4.1)

The third term in (3.20) is the familiar penalty term from the single-prior and empir-
ical Bayes methods. The second term is a weighted version of the second term in the
linear approximation of the loss function of a prediction action by a ML estimator in
(2.12). This term is also called gradient projection in optimization theory, because
F(y — f(8)) is the gradient vector of the quadratic loss function and (F'F)~! is the
inverted Hessian matrix. It is the projection of the gradient vector on the tangential
plane, and can be seen as a measure of nonlinearity around a point 8 where the linear
approximation of the loss function is carried out. Hence, an additional penalty is in-
troduced when the underlying nonlinearity is high at the neighborhood of 8 and the
linear approximation is inadequate. By combining this weighted projection convexly
with the third term, the new objective function takes one more natural measure of
smoothness into account. The above discussion is rather informal; we leave more

precise technical examination for future work.
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Improved confidence regions

There has been little or no attention paid on improving the confidence interval
estimation in neural network regression model. We have shown in Chapter 2 that
various Bayesian modifications in parameter estimation have a direct impact on their
corresponding confidence intervals, because the estimated parameter vector and the
estimated confidence intervals come from the first two moment summary of parameter
posteriors. It is of great interest to investigate the size and probability of coverage
of the ellipsoid defined by the estimated parameter vector (as the posterior mean)
and the posterior covariance matrix. And it is also rather interesting to examine
the conditions under which the new estimation procedure has not only an improved

parameter estimation but also more concentrated corresponding confidence regions.
Small sample asymptotics

So far the outcome of statistical inference on a regression model like the neural
network is summarized by the posterior mean and posterior covariance, which is
under the asymptotic assumption that the posterior density can be approximated by
a normal distribution when the sample size is large. However, this is usually not
the case in practice, and the posterior density typically is multimodal and skewed. A
small-sample asymptotic inference is in order, when some extra accuracy in prediction
is desired. It is unclear at the time being whether this shall benefit at all and how
much performance gain one could possibly obtain for a neural network regression
model. But a great deal of research in mathematical statistics indicates that this is
one of the directions worth consideration. For example, a small-sample asymptotic
treatment of logistic regression model (a single-layer feedforward neural network with

no hidden layer) by Strawderman, Casella and Wells [55] is shown to be beneficial.
Experimental design and model selection

Other steps in the data analysis process can also benefit from this unified statistical

framework based on global-error-property analysis. For example, the preprocessing
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step is not well formulated and optimized yet in neural network regression. A prepos-
terior and sequential analysis procedure can address the underlying experiment design
and sampling issues using a likelihood-based formulation and answer questions such
as: what is the sufficient amount of data needed for a prediction or classification of a
desired accuracy [24]. An analogous likelihood-based formulation can be utilized for
the postprocessing step (e.g., model assessment) as well [56, 57]. Once a likelihood-
based framework is formulated, the rest of the analysis can be the same as in the
data modeling step investigated in this thesis. Such a global-error-property analysis
provides concrete measures and evaluation criteria that allows one to evaluate the
relative advantages and disadvantages of different estimation procedures, sampling

schemes and post-processing methods.
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A. Data Sets

A.1 Ozone Data

The ozone data set analyzed in [58, 59, 60, 3] is composed of one response variable
ozone and nine predictors with 330 records in 1976. The name list of the variables is

as follows:

ozone: The daily maximum of the hourly-average atmospheric ozone concentrations

in Upland, California.
vh: 500 millibar pressure height at the Vanderberg air force base.
wind: Wind speed (mph) at Los Angeles airport (LAX).
humidity: humidity (%) at LAX.
temp: Temperature (°F) at the Sandberg air force base.
ibh: Temperature inversion base height (feet).
dpg: Pressure gradient (mm Hg) from LAX to Daggert, California.
ibt: Inversion base temperature (°F) at LAX.
vis: Visibility (miles) at LAX.
doy: Day of the year.

A.2 Synthetic Data

Following a typical setting of simulation proposed for examining ridge procedures
in linear regression [48, 31, 32, 30], two synthetic data sets are created. The data sets
are composed of one response variable Y and three (or nine) uniformly distributed

predictors X = (X1, ..., Xy)" € [0,1]¢, where data set I with d = 3 is designated to
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represent relatively small neural network model and data set II with d = 9 resembles
the situation of ozone data when a large network model is needed. For data set I (1I),
there are ¢ = 16 (100) parameters 8 = (a, 3) in a feedforward neural network model

with h =3 (9) hidden units (without skip layer)

A d
flz:0) = MU QEAMU ziop + o) + fo -
k=1 1

Three signal-to-noise ratio (SNR), f*(-)/c2, are used at the values of 100, 1 and 0.01,
so that the significance of the parameters varies from very high, about even, to very
low. Three different ‘true’ parameter magnitudes, 8’6, are also used at the values
of 0.01, 1 and 100 for data set I and 0.1, 10, 1000 for data set II, so that there
are 9 cases combined for each data set. 8 is created as a uniform random vector in
[—1/2,1/2]4, and then rescaled so that 88 = r* with r? = 0.01,1, 100 for data set I
and r? = 0.1,10,1000 for data set II. For each 8’8, 400 (2000) X’s are created for
data set I (II) and 400 (2000) Y’s are then calculated for each of the 3 levels of SNR

with a normal distributed noise added

y=f(z;0)+¢,

where ¢ ~ N (0,02) and o2 = f?(-)/SNR. For each of 9 cases of the combination of
0’0 and SNR, n =200 (1000) pairs of (X,Y’) are used as training set, and the rest
n = 200 (1000) as test set.
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Fig. A.1. The scatterplot of the ozone data.
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