
JOURNAL OF ALGORITHMS 12, 516-529 (1991)

How to Play Bowling in Parallel on the Grid

JEHOSHUA BRUCK

IBM Almaden Research Center, 650 Harry Road, San Jose, California 9.5120-6099

AND

VWANI P. ROYCHOWDHURY *

Information Systems Laboratory, Stanford University, Califonta 94305

Received February 26, 1990; accepted May 30, 1990

Suppose that there are m players each situated at a node of a two-dimensional
grid. Every player would like to play bowling by rolling the ball towards one of the
boundaries of the grid. Clearly, the paths used by the players should be perpendic-
ular to the boundaries and nonintersecting. We would like to maximize the
number of players that are able to play, namely, to find an assignment, of
maximum cardinality, of paths to players. Hence, we are interested in solving the
following geometrical problem: given a set of m distinguished nodes in a two-
dimensional grid, determine a set of non-intersecting straight lines of maximum
cardinality such that every line starts at one of the distinguished nodes and
connects it to one of the boundaries of the grid. Our main result is an 0(m3)
algorithm for solving the problem which is the first known polynomial time
algorithm for this problem. Q 1991 Academic press, hc.

1. INTRODUCTION

In a recent paper [6] an efficient O(m2> algorithm has been presented
for the following related geometrical problem: Given a set of m nodes in a
two-dimensional grid, does there exist a set of m non-intersecting straight
lines, such that every given node is connected to one of the four bound-
aries of the grid by one of the lines in the set? The following problem,
however, was left as an open problem: Suppose that euery node cannot be
connected to the boundary of the grid by a set of nonintersecting line
segments; then what is the maximum number of such nodes that can be
connected to the boundary? In this paper we present an O(m3> algorithm
for solving this open problem.

*Supported in part by the SDIO/IST and managed by the Army Research Office under
Contract DAAL 03-87-K-0033.

516
0196-6774/91 $3.00
Copyright Q 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

HOW TO PLAY BOWLING IN PARALLEL 517

The motivation for this kind of problems (besides bowling.. .) arises in
the context of developing efficient algorithms for reconfiguring processor
arrays in the presence of faulty processors. The study of reconfigurable
arrays is especially important in the case of wafer scale integration (WSI)
technology where, for example, a large number of processors, configured
in the form of a grid, can be put on a single wafer. Due to yield problems,
some of the processors are invariably going to be faulty. In such a case,
instead of treating the whole wafer as defective, one can work around the
faulty processors and reconfigure the rest in the form of a grid by using
spare processors.

It was shown in [3] that for certain models of processor arrays, called the
single track models, a sufficient condition for replacing the faulty nodes by
spare ones is the existence of a set of nonintersecting straight lines that
connect each of the faulty processors to one of the spares along the
boundary of the array. Thus, the algorithm presented in [6] provides a
polynomial time algorithm for checking whether all the faulty processors in
a given array can be replaced by spare ones. In this context, the algorithm
presented in this paper can be applied to determine the maximum number
of faulty processors that can be replaced.

As a further comment, we might observe that while the problem solved
in [6] can be regarded as a sutisfiubility problem, the problem tackled in
this paper is a maximum-computing problem. There are several instances
(e.g., 2-SAT [l]), where determining satisfiability is in the class P, whereas
calculating the maximum is NP-complete. An example that is more geo-
metrical in nature is the Manhattan routing problem [2, 51. There are
several efficient algorithms [2] for determining whether given pairs of
nodes can be connected in the Manhattan routing scheme by non-inter-
secting wires; however, the corresponding problem of calculating the
maximum number of pairs of nodes that can be so connected is NP-com-
plete [5]. Thus from an algorithmic-complexity point of view, we consider
our polynomial time algorithm to be very interesting.

The rest of this paper is organized as follows: Section 1.1 contains a
precise definition of the geometrical problem. Section 2 contains results
for some special cases, which are then used in Section 3 to develop a
polynomial time algorithm for Problem 1 stated below. Finally Section 4
contains some concluding remarks.

1.1. The Geometrical Problem

Our geometrical problem can be stated as follows:

Problem 1, Let V be the set of grid points in an p x n two-dimensional
grid, and let M c V. Determine a set of straight lines of maximum curdinul-

518 BRUCK AND ROYCHOWDHURY

ity such that

1. Each straight line in the set originates at some node i E M and
connects it to one of the four boundaries of the grid.

2. Each node i E M is assigned at most one straight line in the set.

3. The straight lines are non-intersecting.

Let m = [MI; we can now make the following observations:

1. If there is a row (column) in the grid that contains none of the
nodes in M, then it is clear from the definition of our problem that the
row (column) has no role. Hence, without loss of generality, we can delete
such rows (columns) from the description of our problem and assume that
1 Ip, n 5 m.

2. If a straight line originating at any node i E M passes through
another node j E M, then it would be considered as intersecting with any
line originating at j and would be disallowed.

3. Each vertex i E M can be assigned to at most one of four possible
line segments, where each segment is along one of the four grid lines
intersecting at i. Hence, instead of talking in terms of assigning line
segments we can talk in terms of assigning directions; e.g., assigning a
segment that connects a vertex i to the left side of the grid can be
interpreted as assigning the direction Left to the node U. In the rest of
this paper we shall interchangeably use the two equivalent descriptions.

DEFINITION 1. An assignment for Problem 1 is a mapping of every
node in the set M to the set of four possible directions D =
{Left, Right, Up, Down) or to the null set implying that the node under
consideration is not assigned any line segment. An assignment is a valid
assignment if the corresponding line segments do not intersect.

Thus Problem 1 involves calculating a valid assignment of maximum
cardinality.

2. SOLVING SPECIAL CASES

In this section we consider special cases of our problem; in particular,
we are going to restrict the possible directions that a node i E M can be
assigned to two or three (as opposed to four in Problem 1). We shall then
use the results as building blocks to solve the general problem. The two
special cases are as follows:

Case 1. The line segments assigned to the nodes in M can be along
only two directions, and the permitted directions are at right angles, e.g.,
{Left, Down} (see Fig. la>.

HOW TO PLAY BOWLING IN PARALLEL 519

a b

FIG. 1. Special Cases 1 and 2; permissible directions are shown by solid lines along
the corresponding side.

Case 2. The line segments assigned to the nodes in M can be along
only three directions, e.g., {Left, Right, Down) (see Fig. lb).

Note that a possible assignment of a direction to a node in A4 can be
blocked by another node. For every node i E M we shall define Si as the
set of possible directions (after taking into consideration any blocking by
other nodes in M) that can be assigned to it.

The key idea for solving Case 1 is to reduce it to a problem of
determining a maximum independent set in a bipartite graph.

The reduction: In Case 1, for every i E M, Si c {Li, Q}, where Li, Di
correspond to the direction Left, Down, respectively. Our problem is to
find a subset of lJ i E M I S. of maximum size, such that (i) every i E M is
assigned at most one line segment and (ii) the line segments are non-inter-
secting. It is possible to formulate the above problem as a problem of
finding a maximum independent set in a bipartite graph G(V U U, E) that
is defined as follows: (1) For every Si, if the direction Li E Si then define
a node ui E V, similarly if Di E Si then define a node ui E 17. That is, the
set I/ has one node for every possible assignment of direction Left, and U
has one node for every possible assignment of direction Down. (2) There
exists an edge ek = (ul, uj> E E if and only if either (a) line segments
corresponding to vI and uj correspond to the same node i E M, or (b) the
line segments corresponding to nodes v, and uj intersect.

LEMMA 1. The maximum can be computed for Case 1 by determining a
maximum independent set in the bipartite graph G = (V U U, El, as defined
above.

Proof. The proof follows directly from the construction. In particular,
if we examine any independent set of G and consider the assignments that
the nodes in the set correspond to, then the set of assignments satisfies the

520 BRUCK AND ROYCHOWDHURY

following two required properties: (a) every i E M is assigned at most one
line segment (because there is an edge in G if two nodes correspond to
assignments to the same node in Ml; and (b) the line segments corre-
sponding to different nodes do not intersect (because if two line segments
intersect then there is an edge connecting the corresponding nodes in G).
Since Problem 1 requires one to determine a set of maximum cardinality
that satisfies the above two properties, it can be solved by determining a
maximum independent set in G. q

The maximum independent set problem is in general NP-complete [ll.
Fortunately, however, there is a polynomial time algorithm for the prob-
lem when the graph is bipartite [2, 41. Hence, for Case 1 we obtain

LEMMA 2. There is an O(m’.’ log m) algorithm for computing the maxi-
mum in Case 1.

Proof Solving the maximum independent set problem in a bipartite
graph that corresponds to intersections between line segments takes
O(m’.5 log m) [21. 0

2.1. A Solution for Case 2

Can one also use the above approach to solve Case 2? One can
construct a corresponding graph G for Case 2; i.e., one can define a node
for every possible line segment and then define an edge between two
nodes in G if the corresponding line segments intersect or if the corre-
sponding line segments belong to the same node in M. The graph G,
however, need not necessarily be bipartite and one can easily demonstrate
so by constructing odd cycles in it. It suffices to mention here that cycles of
odd lengths appear in G because in Case 2 it is possible to have line
segments that are parallel but start at the same node in M, one to the
Right and one to the Left. Since G is no longer bipartite, a polynomial
time algorithm for determining a maximum independent set in G is no
longer apparent.

The general idea behind solving for the maximum in Case 2 is to
partition the grid into subproblems, each of which corresponds to Case 1,
and then combine the results to get a solution. Before we proceed further
we shall introduce certain concepts and terminologies that will be used
extensively in the rest of this paper.

Consider any node i E M and the four quadrants defined by the node
(as illustrated in Fig. 2). Let us further put the restriction that nodes
belonging to M in any quadrant can only be assigned segments that do not
cross the inside boundaries of the quadrant; e.g., in quadrant 1, the
permissible directions are Left and Down, and in quadrant 3, the permis-
sible directions are Up and Right. Each of the quadrants then correspond

HOW TO PLAY BOWLING IN PARALLEL 521

FIG. 2. The quadrants defined by a node in the grid.

to special Case 1, and the maximum number of nodes belonging to M that
can be assigned compatible directions can be determined using the algo-
rithm described above.

DEFINITION 2. For every i E M, we define qil, qi2, qi3, qi4 as the maxi-
mum obtained by solving Problem 1 for the respective quadrants, as
defined above.

LEMMA 3. The set of values {qij), 1 I i I m and 1 I j I 4, can be
computed in time O(m2.’ log m).

Proof. In order to calculate qil, . . . , qi4 for every i E M, one has to
solve Problem 1 for four instances of Case 1. Hence by Lemma 1, the
complexity for calculating all the qij’s is O(m2.5 log m>. q

We shall assume for the rest of this paper that the set of values (qij},
1 s i I m and 1 I j I 4, has been precomputed.

Before we state the result for Case 2, it will be useful to consider the
following situation: Let i E M, and let us assume that i can be assigned
the direction Down. Let us also define ai as the maximum number of
nodes (in M) that can be assigned compatible line segments in the part of
the grid below (and including) the row containing node i, assuming that
node i is assigned Down. Then it follows trivially that a, = qil + qi2 - 1
(- 1 appears because the assignment of i is counted in both qiI and qi2).
If i E A4 is blocked by some node in the same column but below it then
we shall define a, = 0.

522 BRUCK AND ROYCHOWDHURY

LEMMA 4. If we assume that the set of values {qij}, 1 I i I m and
1 I j 5 4, h given, then there Is an O(m) time algorithm for computing the
maximum in Case 2. Hence, there is an O(m2.5 log m) algorithm for
determining the maximum in Case 2.

Proof. Consider the rows containing three or more nodes of M. Let us
define ri as the maximum number of line segments we can assign assuming
that (i) in all the rows above row i none of the nodes in M is assigned
direction Down, and (ii) in row i we assign one of the inner nodes the
direction Down. In the case where a row has two or fewer nodes of M,
define ri to be the maximum number of horizontal (direction Down is not
allowed) line segments we can assign in all the rows above and including
the row i. Clearly, the solution to Case 2 is obtained by taking the maximum
ri over all the rows. Next we outline a procedure to calculate the ri’s.

In the first step, compute the set {aili E M) from the qij'S as discussed
above. The rest of the algorithm can be described as follows:

Sequentially examine the rows of the grid starting with the topmost row.
Each such row may contain one, two, or more than two nodes belonging to
M. The result of this scan is the set of ri that we defined above; the
maximum of the ri’s gives the desired answer. We also have a global
variable that we call t that we update each time we visit a row.

1. If the row under consideration contains one or two nodes from M,
then assign those nodes the directions Left to the leftmost node and Right
to the rightmost node (for a single node assign one of Left, Right). Add 2
to t, if the row contains two nodes from M, otherwise add 1. Let ri = t.

2. If the row under consideration contains three or more nodes from
M then let ri = t + ii, where & is the maximum of the a’s that corre-
spond to the nodes in row i that are blocked from both the left and the
right sides (inner nodes). Add 2 to t.

It is possible to perform the above steps in O(m) time (by using bucket
sort). Hence, the complexity of solving Case 2 of our problem is dominated
by the complexity of computing (4,) (which is O(m2.5 log m)). It is also
possible to recover the assignments of directions to the nodes that leads to
the maximum. 0

In fact one can show that in the same time complexity (O(rn’.’ log m)),
one can compute much more than the maximum for a single instance of
Case 2. Given a grid, define a vertical partitioning (horizontal partitioning)
i, as a restriction that none of the line segments can cross the column
(row) i. Thus a vertical (horizontal) partitioning divides the grid into two
instances of Case 2. The following lemma states the time complexity for
determining the maximum for all possible vertical or horizontal partition-
ing of the grid.

HOW TO PLAY BOWLING IN PARALLEL 523

LEMMA 5. The maximum for all the vertical and horizontal partitionings
can be computed in time O(m2.5 log m).

Proof First all the qij’s are computed in time O(rn’.’ log ml. Now
given the qij’s, the maximum for any particular vertical or horizontal
partitioning involves calculating the maximum for two instances of Case 2.
By the previous lemma, it can be done in time O(m). There are 2m
vertical and horizontal partitionings; hence, the time required after com-
puting the qij’s is O(m2). Hence, the total time complexity is O(m2.5 log m)
(dominated by the computations of qij’s). q

We shall assume for the next section that the maximum for all horizon-
tal and vertical partitionings have been calculated.

3. A POLYNOMIAL TIME ALGORITHM FOR PROBLEM 1

In this section we shall outline an O(m3) time algorithm for solving
Problem 1 in the general case when all the four sides are permitted.
However, the discussion can be made modular if we first consider three
special configurations as shown in Figs. 3a, b, and c; we shall refer to these
configurations as Type A, Type B, and Type C, respectively. In what
follows we define the configurations and describe the algorithms associ-
ated with them.

3.1. Algorithms for the Special Configurations

First consider the configuration Type A (as illustrated in Fig. 3a): it has
two nodes i, j E M that are assigned the direction Right; moreover, it is
assumed that any node of M in the region Al can only be assigned the
direction Right. It is easily observed that given any pair of nodes there are
at most four such configurations (one for each of the directions).

We are interested in computing the maximum in the region Al of the
configuration of Type A, when we refer to maximum later, we shall mean
the maximum in the specified region Al. The maximum can be computed
easily in linear time (O(m)) as follows: determine the rows in the region
Al that has one or more nodes of M. Since the nodes can only be assigned
the direction Right, the maximum is obtained by counting the total
number of such rows.

DEFINITION 3. Define b& i, j E M, 1 < k I 4, as the maximum for the
kth Type A configuration of the (i, j) pair. If the kth Type A configuration
of the (i, j) pair does not exist (because of blocking), then set 6,; = 0.

524 BRUCK AND ROYCHOWDHURY

I
I
I Al

ix

I-

i
m - - m - ,

Bl : j
-_---

-I-
B2

a b

i

I X
Cl

I
1
I

j j

lower lower
c2 c2

C

FIG. 3. Different types of configurations considered in Section 3.

LEMMA 6. The set of values {b$, i, j E M and 1 I k I 4, can be
calculated in time O(m3).

Proof. From the above discussions we know that a particular b$ can be
computed in time O(m). Since there are O(m2) such b;‘s, the total time
complexity is O(m3>. Cl

From now on, we shall assume that the set of values {b,!$ i, j E M and
1 -< k I 4, has been precomputed.

Next consider the configuration Type B: it has a node i E M going
Down and a node j E M going to the Right. Moreover, the only permissi-
ble direction in the region Bl is Down and the permissible directions in

HOW TO PLAY BOWLING IN PARALLEL 525

FIG. 4. An assignment within a configuration of Type B.

the region B2 are Down and Right. It is again easily observed that given
any pair i, j E M, there are at most four possible Type B configurations.

The key to solve for the maximum in Type B (only in the regions Bl and
B2) is to judiciously use the precomputed values of qij’s and b$‘s. In
particular, consider any node k in the region B2 that is going to the right
(as shown in Fig. 4); it divides the region (to the right of node k) in two.
However, the maximum in region 1 is given by bij and the maximum in
the region 2 is given by qk2. Since both of these values are precomputed,
we can define a new quantity d, = bLj + qk2; thus d, is the maximum (in
the region to the right of the node k), and it can be defined to be 0 if the
node k cannot be assigned the direction Right.

LEMMA 7. Given the set of values {qij} and {b$, the maximum in any
Type B configuration can be computed in time O(m).

Roof. Calculate d, (as defined above) for every k in the region B2.
This requires time O(m); next perform the following:

Set a global variable t = 0. Sequentially examine the columns starting
with the leftmost column (in the combined region Bl, B2). Each such
column may contain one, or more than one, node belonging to M. The
result of this scan is a set of numbers each corresponding to a column. Let
ri be the number that corresponds to column i.

526 BRUCK AND ROYCHOWDHURY

1. If the column under consideration contains only one node (belong-
ing to M) then assign it the direction Down and add 1 to t.

2. If the column under consideration has more than one node (in the
region B2) then let ri = t + di, where di is the maximum of the d’s that
correspond to the nodes in row i that are blocked from below. Add 1 to t.

Note that the ri’s, for column i with more than one node, are basically the
maximum number of line segments we can assign, assuming that (i) in all
the columns to the left of i we did not use the direction Right, and (ii) in
column i we assign one of the inner nodes the direction Right. Clearly, the
maximum is obtained by taking the maximum ri over all the columns. q

DEFINITION 4. Define c;., i, j E M, 1 I k I 4, as the maximum for the
kth Type B configuration of the (i, j) pair. If the kth Type B configuration
of the (i, j) pair does not exist (because of blocking), then set ct = 0.

LEMMA 8.
in time O(m3).

The set of values (c$, i, j E M, 1 _< k _< 4, can be calculated

Proof. One requires at most 0(m3) time for precomputing qij’s and
b$‘s. Moreover, given the precomputed values, we know (from the previ-
ous lemma) that a particular ~~7, can be computed in time O(m). Since
there are U(m2) such c$‘s, the total added time complexity is 0(m3).
Hence, the total time complexity is 0(m3). 0

Next consider the configuration Type C (as illustrated in Fig. 3~): it has
a node i E M going to the Left and a node j E M going to the Right.
Moreover, as shown in the figure, the whole grid is partitioned in two
non-interacting parts, and without loss of generality, Iet us consider the
bottom part. It has two regions: (a) Cl, where the permissible directions
are Down and Left; and (b) C2, where the permissible directions are
Down, Left, and Right. It is again easily observed that given any pair
i, j E M, there are at most two possible Type C configurations (assuming
that we are interested in only horizontal partitions). Next, we shall discuss
how to calculate the maximum in the lower part of a Type C configuration
(the region that consists of Cl and C2); the same can be repeated for the
upper part.

The idea for calculating the maximum in a Type C configuration is very
similar to that for Case 2 (discussed in the previous section). Consider a
node 1 E M in the region C2 that is assigned the direction Down. Then as
defined before, a, gives the maximum number of nodes (in M) that can be
assigned compatible line segments in the part of the grid below node i. If,
however, one has a node I E M in the region Cl that is going down(see
Fig. 5) then the left region is an instance of Case 1; however, the right
region is a configuration of Type B. We can thus define a quantity

527 HOW TO PLAY BOWLING IN PARALLEL

Upper Upper

i i
X \, ---;

,:
j

FIG. 5. An assignment within a configuration of Type C.

fi = qli + ct for every node 1 E M in the region Cl; if I is blocked from
below, then set f, = 0. Next, we can present the following algorithm for
calculating the maximum for configuration of Type C.

LEMMA 9. Given the set of values (qii) and {c&}, the maximum in any
Type C configuration can be computed in time O(m).

Proof Consider only the lower part. Calculate fk (as defined above)
for every 1 E M in the region Cl. This requires at most time O(m); next
perform the following:

Set a global variable t = 0. Sequentially examine the rows starting with
the topmost row (in the region Cl). Each such row may contain one, or
more than one, node belonging to M. The result of this scan is a set of
numbers each corresponding to a column. Let ri be the number that
corresponds to row i.

1. If the row under consideration contains only one node (belonging
to Ml then assign it the direction Left and add 1 to t.

2. If the column under consideration has more than one node (in the
region B2) then let ri = t + fl, where f-l is the maximum of the f's that
correspond to the nodes in row i that are blocked from Left. Add 1 to t.

3. Stop when the whole region Cl is examined; from now on, the
region C, is the same as a special Case 3 and one can avoid repetition of
computations that were done before. In particular, we showed in Lemma 5

528 BRUCK AND ROYCHOWDHURY

how to precompute the maximum for all possible instances of Case 3. Set
r1ast = t + the precomputed value.

Note that the ri’s, for column i with more than one node, are basically the
maximum number of line segments we can assign assuming that (i) in all
the rows above i we did not use the direction Down; and (ii> in row i we
assign one of the inner nodes the direction Down. Clearly, the maximum is
obtained by taking the maximum ri over all the rows and also rlast. One
can do the same procedure for the upper part of the configuration. 0

LEMMA 10. The maximum for all possible instances of Type C configura-
tions can be computed in time O(m3).

Proof There are 0(m2) possible instances of Type C configurations.
From the previous lemma we know that given the set of values {qijj and
{c$, the maximum in any (Type C)configuration can be computed in time
O(m). However, the set of values (qij} and {ct.} can be precomputed in
time O(m3); hence, the total complexity is again O(m3).

3.2. The General Algorithm

The general algorithm will just make use of the precomputed values.

LEMMA 11. Any assignment of line segments to the nodes in M satisfies
one of the following two conditions:

1. There is an instance of (Type C) configuration, or

2. there exists a vertical partitioning of the grid such that no line
segment cuts across the partition.

Proof. The proof follows quite obviously from the observation that if
there is a vertical partitioning then a configuration of Type C cannot exist,
and vice versa. Moreover, note that if there are pairs of nodes that are
assigned horizontal line segments inopposite directions that overlap along
some column(s), then one can always find a pair with minimum separation
such that the assumptions in the configuration of Type C are always
satisfied. 0

THEOREM 1. There tk an O(m3) algorithm for solving Problem 1.

Proof The maximum for all possible vertical partitionings can be
computed in time O(m2.‘” log m) (see Lemma 5). Moreover, the maxi-
mum for all possible configurations of Type C can be computed in time
O(m3> (see Lemma 10). Hence by the previous lemma, Problem 1 can be
solved by choosing the maximum over all vertical partitionings and over all
configurations of Type C. The whole procedure takes time O(m3). 0

HOW TO PLAY BOWLING IN PARALLEL 529

4. CONCLUDING REMARKS

The main result in the paper is an O(m3> algorithm for solving the
following problem: given a set of ~lt distinguished nodes in a two-dimen-
sional grid, determine a set of non-intersecting straight lines of maximum
cardinality such that every line starts at one of the distinguished nodes and
connects it to one of the boundaries of the grid. The motivation for this
problem comes from the area of VLSI reconfiguration. There are two key
ideas in our algorithm: (i) precomputing certain subproblems (by the
reduction to the maximum independent set in a bipartite graph problem)
that are useful for finding the final solution; (ii> partitioning the grid and
solving the subproblems (using the precomputed data) and then combining
the results.

The obvious open problem is: can we do better than O(m3>? Another
open problem is can we do better than O(m2.5 log m) when only three
sides are permitted (Case 2 in Section 2)?

We note here that recently the result of [6] was improved from O(m’>
to O(m log m) [7].

REFERENCES

1. M. R. GAREY AND D. S. JOHNSON, “Computers and Intractability-A Guide to the
Theory of NP-Completeness,” Freeman, New York, 1979.

2. H. IMAI AND T. ASANO, Efficient algorithms for geometric graph search problems, SLAMJ.
Cmnput. 15, No. 2 (19861, 478-494.

3. S. Y. KUNG, S. N. JEAN, AND C. W. CHANG, Fault-tolerant array processors using
single-track switches, IEEE Trans. Cornput, 38, No. 4 (1989), 501-514.

4. C. H. PAPADIMITRIOU AND K. STEIGLITZ, “Combinatorial Optimization: Algorithms and
Complexity,” Prentice-Hall, Englewood Cliffs, NJ, 1982.

5. R. RAGHAVAN, J. COHOON, AND S. SAHNI, “Manhattan and Rectilinear Wiring,” Techni-
cal Report 81-5, Computer Science Dept., University of Minnesota, Minneapolis, 1981.

6. V. P. ROYCHOWDHURY AND J. BRUCK, On finding non-intersecting paths in grids and its
application in reconfiguring VLSI/W% arrays, in “First Annual Symposium on Discrete
Algorithms, San Francisco, CA, January 1990.”

7. Y. BIRK AND J. B. LOTSPIECH, A fast algorithm for connecting grid points to the boundary
with nonintersecting straight lines, in “Second Annual Symposium on Discrete Algo-
rithms, San Francisco, CA, January 1991.”

