
JOURNAL OF ALGORITHMS 12, 516-529 (1991) 

How to Play Bowling in Parallel on the Grid 

JEHOSHUA BRUCK 

IBM Almaden Research Center, 650 Harry Road, San Jose, California 9.5120-6099 

AND 

VWANI P. ROYCHOWDHURY * 

Information Systems Laboratory, Stanford University, Califonta 94305 

Received February 26, 1990; accepted May 30, 1990 

Suppose that there are m players each situated at a node of a two-dimensional 
grid. Every player would like to play bowling by rolling the ball towards one of the 
boundaries of the grid. Clearly, the paths used by the players should be perpendic- 
ular to the boundaries and nonintersecting. We would like to maximize the 
number of players that are able to play, namely, to find an assignment, of 
maximum cardinality, of paths to players. Hence, we are interested in solving the 
following geometrical problem: given a set of m distinguished nodes in a two- 
dimensional grid, determine a set of non-intersecting straight lines of maximum 
cardinality such that every line starts at one of the distinguished nodes and 
connects it to one of the boundaries of the grid. Our main result is an 0(m3) 
algorithm for solving the problem which is the first known polynomial time 
algorithm for this problem. Q 1991 Academic press, hc. 

1. INTRODUCTION 

In a recent paper [6] an efficient O(m2> algorithm has been presented 
for the following related geometrical problem: Given a set of m nodes in a 
two-dimensional grid, does there exist a set of m non-intersecting straight 
lines, such that every given node is connected to one of the four bound- 
aries of the grid by one of the lines in the set? The following problem, 
however, was left as an open problem: Suppose that euery node cannot be 
connected to the boundary of the grid by a set of nonintersecting line 
segments; then what is the maximum number of such nodes that can be 
connected to the boundary? In this paper we present an O(m3> algorithm 
for solving this open problem. 
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The motivation for this kind of problems (besides bowling.. . ) arises in 
the context of developing efficient algorithms for reconfiguring processor 
arrays in the presence of faulty processors. The study of reconfigurable 
arrays is especially important in the case of wafer scale integration (WSI) 
technology where, for example, a large number of processors, configured 
in the form of a grid, can be put on a single wafer. Due to yield problems, 
some of the processors are invariably going to be faulty. In such a case, 
instead of treating the whole wafer as defective, one can work around the 
faulty processors and reconfigure the rest in the form of a grid by using 
spare processors. 

It was shown in [3] that for certain models of processor arrays, called the 
single track models, a sufficient condition for replacing the faulty nodes by 
spare ones is the existence of a set of nonintersecting straight lines that 
connect each of the faulty processors to one of the spares along the 
boundary of the array. Thus, the algorithm presented in [6] provides a 
polynomial time algorithm for checking whether all the faulty processors in 
a given array can be replaced by spare ones. In this context, the algorithm 
presented in this paper can be applied to determine the maximum number 
of faulty processors that can be replaced. 

As a further comment, we might observe that while the problem solved 
in [6] can be regarded as a sutisfiubility problem, the problem tackled in 
this paper is a maximum-computing problem. There are several instances 
(e.g., 2-SAT [l]), where determining satisfiability is in the class P, whereas 
calculating the maximum is NP-complete. An example that is more geo- 
metrical in nature is the Manhattan routing problem [2, 51. There are 
several efficient algorithms [2] for determining whether given pairs of 
nodes can be connected in the Manhattan routing scheme by non-inter- 
secting wires; however, the corresponding problem of calculating the 
maximum number of pairs of nodes that can be so connected is NP-com- 
plete [5]. Thus from an algorithmic-complexity point of view, we consider 
our polynomial time algorithm to be very interesting. 

The rest of this paper is organized as follows: Section 1.1 contains a 
precise definition of the geometrical problem. Section 2 contains results 
for some special cases, which are then used in Section 3 to develop a 
polynomial time algorithm for Problem 1 stated below. Finally Section 4 
contains some concluding remarks. 

1.1. The Geometrical Problem 

Our geometrical problem can be stated as follows: 

Problem 1, Let V be the set of grid points in an p x n two-dimensional 
grid, and let M c V. Determine a set of straight lines of maximum curdinul- 
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ity such that 

1. Each straight line in the set originates at some node i E M and 
connects it to one of the four boundaries of the grid. 

2. Each node i E M is assigned at most one straight line in the set. 

3. The straight lines are non-intersecting. 

Let m = [MI; we can now make the following observations: 

1. If there is a row (column) in the grid that contains none of the 
nodes in M, then it is clear from the definition of our problem that the 
row (column) has no role. Hence, without loss of generality, we can delete 
such rows (columns) from the description of our problem and assume that 
1 Ip, n 5 m. 

2. If a straight line originating at any node i E M passes through 
another node j E M, then it would be considered as intersecting with any 
line originating at j and would be disallowed. 

3. Each vertex i E M can be assigned to at most one of four possible 
line segments, where each segment is along one of the four grid lines 
intersecting at i. Hence, instead of talking in terms of assigning line 
segments we can talk in terms of assigning directions; e.g., assigning a 
segment that connects a vertex i to the left side of the grid can be 
interpreted as assigning the direction Left to the node U. In the rest of 
this paper we shall interchangeably use the two equivalent descriptions. 

DEFINITION 1. An assignment for Problem 1 is a mapping of every 
node in the set M to the set of four possible directions D = 
{Left, Right, Up, Down) or to the null set implying that the node under 
consideration is not assigned any line segment. An assignment is a valid 
assignment if the corresponding line segments do not intersect. 

Thus Problem 1 involves calculating a valid assignment of maximum 
cardinality. 

2. SOLVING SPECIAL CASES 

In this section we consider special cases of our problem; in particular, 
we are going to restrict the possible directions that a node i E M can be 
assigned to two or three (as opposed to four in Problem 1). We shall then 
use the results as building blocks to solve the general problem. The two 
special cases are as follows: 

Case 1. The line segments assigned to the nodes in M can be along 
only two directions, and the permitted directions are at right angles, e.g., 
{Left, Down} (see Fig. la>. 
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a b 

FIG. 1. Special Cases 1 and 2; permissible directions are shown by solid lines along 
the corresponding side. 

Case 2. The line segments assigned to the nodes in M can be along 
only three directions, e.g., {Left, Right, Down) (see Fig. lb). 

Note that a possible assignment of a direction to a node in A4 can be 
blocked by another node. For every node i E M we shall define Si as the 
set of possible directions (after taking into consideration any blocking by 
other nodes in M) that can be assigned to it. 

The key idea for solving Case 1 is to reduce it to a problem of 
determining a maximum independent set in a bipartite graph. 

The reduction: In Case 1, for every i E M, Si c {Li, Q}, where Li, Di 
correspond to the direction Left, Down, respectively. Our problem is to 
find a subset of lJ i E M I S. of maximum size, such that (i) every i E M is 
assigned at most one line segment and (ii) the line segments are non-inter- 
secting. It is possible to formulate the above problem as a problem of 
finding a maximum independent set in a bipartite graph G(V U U, E) that 
is defined as follows: (1) For every Si, if the direction Li E Si then define 
a node ui E V, similarly if Di E Si then define a node ui E 17. That is, the 
set I/ has one node for every possible assignment of direction Left, and U 
has one node for every possible assignment of direction Down. (2) There 
exists an edge ek = (ul, uj> E E if and only if either (a) line segments 
corresponding to vI and uj correspond to the same node i E M, or (b) the 
line segments corresponding to nodes v, and uj intersect. 

LEMMA 1. The maximum can be computed for Case 1 by determining a 
maximum independent set in the bipartite graph G = (V U U, El, as defined 
above. 

Proof. The proof follows directly from the construction. In particular, 
if we examine any independent set of G and consider the assignments that 
the nodes in the set correspond to, then the set of assignments satisfies the 
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following two required properties: (a) every i E M is assigned at most one 
line segment (because there is an edge in G if two nodes correspond to 
assignments to the same node in Ml; and (b) the line segments corre- 
sponding to different nodes do not intersect (because if two line segments 
intersect then there is an edge connecting the corresponding nodes in G). 
Since Problem 1 requires one to determine a set of maximum cardinality 
that satisfies the above two properties, it can be solved by determining a 
maximum independent set in G. q 

The maximum independent set problem is in general NP-complete [ll. 
Fortunately, however, there is a polynomial time algorithm for the prob- 
lem when the graph is bipartite [2, 41. Hence, for Case 1 we obtain 

LEMMA 2. There is an O(m’.’ log m) algorithm for computing the maxi- 
mum in Case 1. 

Proof Solving the maximum independent set problem in a bipartite 
graph that corresponds to intersections between line segments takes 
O(m’.5 log m) [21. 0 

2.1. A Solution for Case 2 

Can one also use the above approach to solve Case 2? One can 
construct a corresponding graph G for Case 2; i.e., one can define a node 
for every possible line segment and then define an edge between two 
nodes in G if the corresponding line segments intersect or if the corre- 
sponding line segments belong to the same node in M. The graph G, 
however, need not necessarily be bipartite and one can easily demonstrate 
so by constructing odd cycles in it. It suffices to mention here that cycles of 
odd lengths appear in G because in Case 2 it is possible to have line 
segments that are parallel but start at the same node in M, one to the 
Right and one to the Left. Since G is no longer bipartite, a polynomial 
time algorithm for determining a maximum independent set in G is no 
longer apparent. 

The general idea behind solving for the maximum in Case 2 is to 
partition the grid into subproblems, each of which corresponds to Case 1, 
and then combine the results to get a solution. Before we proceed further 
we shall introduce certain concepts and terminologies that will be used 
extensively in the rest of this paper. 

Consider any node i E M and the four quadrants defined by the node 
(as illustrated in Fig. 2). Let us further put the restriction that nodes 
belonging to M in any quadrant can only be assigned segments that do not 
cross the inside boundaries of the quadrant; e.g., in quadrant 1, the 
permissible directions are Left and Down, and in quadrant 3, the permis- 
sible directions are Up and Right. Each of the quadrants then correspond 
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FIG. 2. The quadrants defined by a node in the grid. 

to special Case 1, and the maximum number of nodes belonging to M that 
can be assigned compatible directions can be determined using the algo- 
rithm described above. 

DEFINITION 2. For every i E M, we define qil, qi2, qi3, qi4 as the maxi- 
mum obtained by solving Problem 1 for the respective quadrants, as 
defined above. 

LEMMA 3. The set of values {qij), 1 I i I m and 1 I j I 4, can be 
computed in time O(m2.’ log m). 

Proof. In order to calculate qil, . . . , qi4 for every i E M, one has to 
solve Problem 1 for four instances of Case 1. Hence by Lemma 1, the 
complexity for calculating all the qij’s is O(m2.5 log m>. q 

We shall assume for the rest of this paper that the set of values (qij}, 
1 s i I m and 1 I j I 4, has been precomputed. 

Before we state the result for Case 2, it will be useful to consider the 
following situation: Let i E M, and let us assume that i can be assigned 
the direction Down. Let us also define ai as the maximum number of 
nodes (in M) that can be assigned compatible line segments in the part of 
the grid below (and including) the row containing node i, assuming that 
node i is assigned Down. Then it follows trivially that a, = qil + qi2 - 1 
(- 1 appears because the assignment of i is counted in both qiI and qi2). 
If i E A4 is blocked by some node in the same column but below it then 
we shall define a, = 0. 
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LEMMA 4. If we assume that the set of values {qij}, 1 I i I m and 
1 I j 5 4, h given, then there Is an O(m) time algorithm for computing the 
maximum in Case 2. Hence, there is an O(m2.5 log m) algorithm for 
determining the maximum in Case 2. 

Proof. Consider the rows containing three or more nodes of M. Let us 
define ri as the maximum number of line segments we can assign assuming 
that (i) in all the rows above row i none of the nodes in M is assigned 
direction Down, and (ii) in row i we assign one of the inner nodes the 
direction Down. In the case where a row has two or fewer nodes of M, 
define ri to be the maximum number of horizontal (direction Down is not 
allowed) line segments we can assign in all the rows above and including 
the row i. Clearly, the solution to Case 2 is obtained by taking the maximum 
ri over all the rows. Next we outline a procedure to calculate the ri’s. 

In the first step, compute the set {aili E M) from the qij'S as discussed 
above. The rest of the algorithm can be described as follows: 

Sequentially examine the rows of the grid starting with the topmost row. 
Each such row may contain one, two, or more than two nodes belonging to 
M. The result of this scan is the set of ri that we defined above; the 
maximum of the ri’s gives the desired answer. We also have a global 
variable that we call t that we update each time we visit a row. 

1. If the row under consideration contains one or two nodes from M, 
then assign those nodes the directions Left to the leftmost node and Right 
to the rightmost node (for a single node assign one of Left, Right). Add 2 
to t, if the row contains two nodes from M, otherwise add 1. Let ri = t. 

2. If the row under consideration contains three or more nodes from 
M then let ri = t + ii, where & is the maximum of the a’s that corre- 
spond to the nodes in row i that are blocked from both the left and the 
right sides (inner nodes). Add 2 to t. 

It is possible to perform the above steps in O(m) time (by using bucket 
sort). Hence, the complexity of solving Case 2 of our problem is dominated 
by the complexity of computing (4,) (which is O(m2.5 log m)). It is also 
possible to recover the assignments of directions to the nodes that leads to 
the maximum. 0 

In fact one can show that in the same time complexity (O(rn’.’ log m)), 
one can compute much more than the maximum for a single instance of 
Case 2. Given a grid, define a vertical partitioning (horizontal partitioning) 
i, as a restriction that none of the line segments can cross the column 
(row) i. Thus a vertical (horizontal) partitioning divides the grid into two 
instances of Case 2. The following lemma states the time complexity for 
determining the maximum for all possible vertical or horizontal partition- 
ing of the grid. 
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LEMMA 5. The maximum for all the vertical and horizontal partitionings 
can be computed in time O(m2.5 log m). 

Proof First all the qij’s are computed in time O(rn’.’ log ml. Now 
given the qij’s, the maximum for any particular vertical or horizontal 
partitioning involves calculating the maximum for two instances of Case 2. 
By the previous lemma, it can be done in time O(m). There are 2m 
vertical and horizontal partitionings; hence, the time required after com- 
puting the qij’s is O(m2). Hence, the total time complexity is O(m2.5 log m) 
(dominated by the computations of qij’s). q 

We shall assume for the next section that the maximum for all horizon- 
tal and vertical partitionings have been calculated. 

3. A POLYNOMIAL TIME ALGORITHM FOR PROBLEM 1 

In this section we shall outline an O(m3) time algorithm for solving 
Problem 1 in the general case when all the four sides are permitted. 
However, the discussion can be made modular if we first consider three 
special configurations as shown in Figs. 3a, b, and c; we shall refer to these 
configurations as Type A, Type B, and Type C, respectively. In what 
follows we define the configurations and describe the algorithms associ- 
ated with them. 

3.1. Algorithms for the Special Configurations 

First consider the configuration Type A (as illustrated in Fig. 3a): it has 
two nodes i, j E M that are assigned the direction Right; moreover, it is 
assumed that any node of M in the region Al can only be assigned the 
direction Right. It is easily observed that given any pair of nodes there are 
at most four such configurations (one for each of the directions). 

We are interested in computing the maximum in the region Al of the 
configuration of Type A, when we refer to maximum later, we shall mean 
the maximum in the specified region Al. The maximum can be computed 
easily in linear time (O(m)) as follows: determine the rows in the region 
Al that has one or more nodes of M. Since the nodes can only be assigned 
the direction Right, the maximum is obtained by counting the total 
number of such rows. 

DEFINITION 3. Define b& i, j E M, 1 < k I 4, as the maximum for the 
kth Type A configuration of the (i, j) pair. If the kth Type A configuration 
of the (i, j) pair does not exist (because of blocking), then set 6,; = 0. 
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FIG. 3. Different types of configurations considered in Section 3. 

LEMMA 6. The set of values {b$, i, j E M and 1 I k I 4, can be 
calculated in time O(m3). 

Proof. From the above discussions we know that a particular b$ can be 
computed in time O(m). Since there are O(m2) such b;‘s, the total time 
complexity is O(m3>. Cl 

From now on, we shall assume that the set of values {b,!$ i, j E M and 
1 -< k I 4, has been precomputed. 

Next consider the configuration Type B: it has a node i E M going 
Down and a node j E M going to the Right. Moreover, the only permissi- 
ble direction in the region Bl is Down and the permissible directions in 
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FIG. 4. An assignment within a configuration of Type B. 

the region B2 are Down and Right. It is again easily observed that given 
any pair i, j E M, there are at most four possible Type B configurations. 

The key to solve for the maximum in Type B (only in the regions Bl and 
B2) is to judiciously use the precomputed values of qij’s and b$‘s. In 
particular, consider any node k in the region B2 that is going to the right 
(as shown in Fig. 4); it divides the region (to the right of node k) in two. 
However, the maximum in region 1 is given by bij and the maximum in 
the region 2 is given by qk2. Since both of these values are precomputed, 
we can define a new quantity d, = bLj + qk2; thus d, is the maximum (in 
the region to the right of the node k), and it can be defined to be 0 if the 
node k cannot be assigned the direction Right. 

LEMMA 7. Given the set of values {qij} and {b$, the maximum in any 
Type B configuration can be computed in time O(m). 

Roof. Calculate d, (as defined above) for every k in the region B2. 
This requires time O(m); next perform the following: 

Set a global variable t = 0. Sequentially examine the columns starting 
with the leftmost column (in the combined region Bl, B2). Each such 
column may contain one, or more than one, node belonging to M. The 
result of this scan is a set of numbers each corresponding to a column. Let 
ri be the number that corresponds to column i. 
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1. If the column under consideration contains only one node (belong- 
ing to M) then assign it the direction Down and add 1 to t. 

2. If the column under consideration has more than one node (in the 
region B2) then let ri = t + di, where di is the maximum of the d’s that 
correspond to the nodes in row i that are blocked from below. Add 1 to t. 

Note that the ri’s, for column i with more than one node, are basically the 
maximum number of line segments we can assign, assuming that (i) in all 
the columns to the left of i we did not use the direction Right, and (ii) in 
column i we assign one of the inner nodes the direction Right. Clearly, the 
maximum is obtained by taking the maximum ri over all the columns. q 

DEFINITION 4. Define c;., i, j E M, 1 I k I 4, as the maximum for the 
kth Type B configuration of the (i, j) pair. If the kth Type B configuration 
of the (i, j) pair does not exist (because of blocking), then set ct = 0. 

LEMMA 8. 
in time O(m3). 

The set of values (c$, i, j E M, 1 _< k _< 4, can be calculated 

Proof. One requires at most 0(m3) time for precomputing qij’s and 
b$‘s. Moreover, given the precomputed values, we know (from the previ- 
ous lemma) that a particular ~~7, can be computed in time O(m). Since 
there are U(m2) such c$‘s, the total added time complexity is 0(m3). 
Hence, the total time complexity is 0(m3). 0 

Next consider the configuration Type C (as illustrated in Fig. 3~): it has 
a node i E M going to the Left and a node j E M going to the Right. 
Moreover, as shown in the figure, the whole grid is partitioned in two 
non-interacting parts, and without loss of generality, Iet us consider the 
bottom part. It has two regions: (a) Cl, where the permissible directions 
are Down and Left; and (b) C2, where the permissible directions are 
Down, Left, and Right. It is again easily observed that given any pair 
i, j E M, there are at most two possible Type C configurations (assuming 
that we are interested in only horizontal partitions). Next, we shall discuss 
how to calculate the maximum in the lower part of a Type C configuration 
(the region that consists of Cl and C2); the same can be repeated for the 
upper part. 

The idea for calculating the maximum in a Type C configuration is very 
similar to that for Case 2 (discussed in the previous section). Consider a 
node 1 E M in the region C2 that is assigned the direction Down. Then as 
defined before, a, gives the maximum number of nodes (in M) that can be 
assigned compatible line segments in the part of the grid below node i. If, 
however, one has a node I E M in the region Cl that is going down(see 
Fig. 5) then the left region is an instance of Case 1; however, the right 
region is a configuration of Type B. We can thus define a quantity 
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FIG. 5. An assignment within a configuration of Type C. 

fi = qli + ct for every node 1 E M in the region Cl; if I is blocked from 
below, then set f, = 0. Next, we can present the following algorithm for 
calculating the maximum for configuration of Type C. 

LEMMA 9. Given the set of values (qii) and {c&}, the maximum in any 
Type C configuration can be computed in time O(m). 

Proof Consider only the lower part. Calculate fk (as defined above) 
for every 1 E M in the region Cl. This requires at most time O(m); next 
perform the following: 

Set a global variable t = 0. Sequentially examine the rows starting with 
the topmost row (in the region Cl). Each such row may contain one, or 
more than one, node belonging to M. The result of this scan is a set of 
numbers each corresponding to a column. Let ri be the number that 
corresponds to row i. 

1. If the row under consideration contains only one node (belonging 
to Ml then assign it the direction Left and add 1 to t. 

2. If the column under consideration has more than one node (in the 
region B2) then let ri = t + fl, where f-l is the maximum of the f's that 
correspond to the nodes in row i that are blocked from Left. Add 1 to t. 

3. Stop when the whole region Cl is examined; from now on, the 
region C, is the same as a special Case 3 and one can avoid repetition of 
computations that were done before. In particular, we showed in Lemma 5 
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how to precompute the maximum for all possible instances of Case 3. Set 
r1ast = t + the precomputed value. 

Note that the ri’s, for column i with more than one node, are basically the 
maximum number of line segments we can assign assuming that (i) in all 
the rows above i we did not use the direction Down; and (ii> in row i we 
assign one of the inner nodes the direction Down. Clearly, the maximum is 
obtained by taking the maximum ri over all the rows and also rlast. One 
can do the same procedure for the upper part of the configuration. 0 

LEMMA 10. The maximum for all possible instances of Type C configura- 
tions can be computed in time O(m3). 

Proof There are 0(m2) possible instances of Type C configurations. 
From the previous lemma we know that given the set of values {qijj and 
{c$, the maximum in any (Type C)configuration can be computed in time 
O(m). However, the set of values (qij} and {ct.} can be precomputed in 
time O(m3); hence, the total complexity is again O(m3). 

3.2. The General Algorithm 

The general algorithm will just make use of the precomputed values. 

LEMMA 11. Any assignment of line segments to the nodes in M satisfies 
one of the following two conditions: 

1. There is an instance of (Type C) configuration, or 

2. there exists a vertical partitioning of the grid such that no line 
segment cuts across the partition. 

Proof. The proof follows quite obviously from the observation that if 
there is a vertical partitioning then a configuration of Type C cannot exist, 
and vice versa. Moreover, note that if there are pairs of nodes that are 
assigned horizontal line segments inopposite directions that overlap along 
some column(s), then one can always find a pair with minimum separation 
such that the assumptions in the configuration of Type C are always 
satisfied. 0 

THEOREM 1. There tk an O(m3) algorithm for solving Problem 1. 

Proof The maximum for all possible vertical partitionings can be 
computed in time O(m2.‘” log m) (see Lemma 5). Moreover, the maxi- 
mum for all possible configurations of Type C can be computed in time 
O(m3> (see Lemma 10). Hence by the previous lemma, Problem 1 can be 
solved by choosing the maximum over all vertical partitionings and over all 
configurations of Type C. The whole procedure takes time O(m3). 0 
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4. CONCLUDING REMARKS 

The main result in the paper is an O(m3> algorithm for solving the 
following problem: given a set of ~lt distinguished nodes in a two-dimen- 
sional grid, determine a set of non-intersecting straight lines of maximum 
cardinality such that every line starts at one of the distinguished nodes and 
connects it to one of the boundaries of the grid. The motivation for this 
problem comes from the area of VLSI reconfiguration. There are two key 
ideas in our algorithm: (i) precomputing certain subproblems (by the 
reduction to the maximum independent set in a bipartite graph problem) 
that are useful for finding the final solution; (ii> partitioning the grid and 
solving the subproblems (using the precomputed data) and then combining 
the results. 

The obvious open problem is: can we do better than O(m3>? Another 
open problem is can we do better than O(m2.5 log m) when only three 
sides are permitted (Case 2 in Section 2)? 

We note here that recently the result of [6] was improved from O(m’> 
to O(m log m) [7]. 
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