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Abstract 

A numerically intensive program used in the study 
of quantum transport has been implemented on a Mas- 
Par MP-1. Parallel solution of the problem, which 
possesses parallelism to varying degrees througout the 
application, is described. 

1 Introduction 

The implementation of large application programs 
in a manner which efficiently utilizes a parallel com- 
puter, is a topic of considerable current interest. In 
the following, we discuss the implementation of a nu- 
merically intensive program on a MasPar MP-1 , which 
is an SIMD machine consisting of a square array of 
16,384 processing elements (PE). 

The application considered in this work arises in 
the investigation of electron devices, an area which has 
historically relied heavily on computer simulations for 
the choice of optimal design parameters. As electron 
devices become smaller , the numerical models used for 
their simulation grow in complexity, since fundamen- 
tal physical phenomena begin to influence device be- 
havior. In particular, the investigation of transport in 
nanostructured semiconductor devices is numerically 
very intensive. In the following section we describe 
aspects of quantum transport in such devices, and es- 
tablish the scope of the computational requirements. 
Methods adopted for effecting a parallel solution of 
the problem, are outlined in section 3. 

2 Computational Quantum Transport 

The theoretical treatment of coherent electron 
transport in semiconductor devices is usually carried 
out using the Landauer-Buttiker formalism [l], which 
allows the determination of measurable transport co- 
efficients, in terms of scattering probabilities obtain- 

able by solving the Schrodinger equation over planar 
geometries . 

The scattering problem can be rendered as a 
complex-valued linear system Az  = 6 ,  where the coef- 
ficient matrix A is obtained by carrying out a finite- 
difference discretization of the Schrodinger equation, 
and imposing boundary conditions which permit the 
entry and emission of waves at the various ports. The 
discretization is carried out so that each mesh-point 
coincides with an atomic lattice site of the underlying 
semiconductor. The matrix A is sparse, with a typical 
size of 512 x 512. In general for a given A solutions 
for multiple right-hand sides b will be needed, each b 
corresponding t o  different modes (indexed v), or ports 
(indexed p )  of incidence. Typically there will be sev- 
eral tens of modes incident from each of several ports. 
For systems maintained at non-zero temperatures, or 
operated a t  finite applied biases, linear system solu- 
tions are performed for a large number of different 
matrices A, each corresponding to a different electron 
energy e .  Computationally, this constitutes the most 
time consuming step. 

Now, the complete device consists of the scattering 
region considered above, as well as long leads of width 
W, and length L,, connected to the scattering region 
at the various ports p .  It is necessary to determine 
the local chemical potential p(c, y), the electrostatic 
potential r$(e,y) as well as the local current density 
.f(c,y) throughout these leads. The first step for the 
evaluation of these quantities is the reconstruction of 
the wavefunctions $v,p(c; e, y) throughout these leads, 
using the scattering amplitudes obtained from the lin- 
ear system solution. 

Numerical simulators developed on less powerful 
machines have been used for the investigation of trans- 
port under simplifying assumptions, which render the 
computed results only qualitatively comparable with 
experimental findings. More realistic simulations re- 
quire the treatment of finite temperature as well as 
large applied bias conditions, on devices with large 
device dimensions. The high execution rates, as well 

506 
0-8186-2772-7192 $3.00 8 1992 IEEE 



as the possibility of treating larger problem sizes on 
the MasPar MP-1 have permitted the exploration of 
realistic physical parameters. 

3 Parallel Solution 

Parallelization of this application can be separated 
into two different phases : ( i )  solution of the scatter- 
ing problem represented by Az  = b, ( i i )  evaluation 
of the physical quantities, +v,p(c; z, y), p(z ,  y), l (z ,  y) 
and 4(z, y), within the leads. Experimentally measur- 
able physical quantities can be determined with mini- 
mal computing once the above physical quantities are 
known. The program has been implemented in MPL, 
a version of the C language with parallel features suit- 
able for the MasPar MP-1. The program manipu- 
lates complex valued quantities, and its performance, 
as well as its memory requirements are accordingly 
affected. 

3.1 Scattering Problem 

For a rectangular scattering region of length L and 
width W the matrix A corresponding to  the scat- 
tering problem, consist of W x W submatrices, ar- 
ranged in an (L + 2) x ( L  + 2) block matrix. The 
128 x 128 P E  array is then divided into subarrays of 
[128/(L+2)] x [128/(L+2)] PES each, and the W x W 
blocks of the matrix A are assigned to each P E  sub- 
array. For sufficiently large problem sizes, each P E  
will be assigned several matrix elements. Since in- 
formation transfer within a P E  is more efficient than 
communication between PES, the algorithm performs 
better as the problem size increases, before becoming 
bottlenecked by memory constraints. Although, the A 
matrices are sparse and regular, in general they fail to 
converge within iterative solution schemes, which are 
well suited for the MasPar architecture. Therefore, a 
direct Gaussian elimination algorithm has been used 
for most of the linear system solutions. However, the 
time-dependent scattering problem is amenable to be 
solved using an iterative algorithm. The advantage of 
the iterative approach is that much larger problems 
can be mapped to the P E  array, since each equation 
of the linear system can be associated with a single 
PE. 

3.2 Physical Quantities 

The physical quantities of interest are evaluated 
within each of the current leads p, which are attached 
to the scatterer discussed above. The current leads 

are rectangular, with the p t h  lead having dimensions 
Wp x L,. Each grid point (z, y) within the pth lead 
is associated with a single PE,  and the electron state 
+’y,p(c;z,y) for every mode U is evaluated in parallel 
at each point. These functions are evaluated in terms 
of a linear combination of periodic functions defined 
on the mesh, an example of which is given below, 

where the scattering amplitude t,,p is obtained from 
the linear system solution described in the preceding 
sub-section. 

Once the quantities $ ~ ~ , ~ ( z ,  y) are evaluated for ev- 
ery v the local current density f ( z , y )  as well as the 
local chemical potential p(z ,  y) can be determined 
through highly parallel local operations, which re- 
quire, at most, information from nearest neighbor 
PES. The electrostatic potential 4(z, y) is determined 
by solving Poisson’s equation V24 = -p(z, y), where 
the charge density p is obtained as a weighted sum of 
I + v , p ( ~ ; ~ , y ) ( 2 ,  summed over U and c. The discretized 
version of Poisson’s equation is efficiently solved in 
parallel using an iterative Jacobi method, which too 
requires only nearest neighbor communication pat- 
terns. 

4 Conclusions 

A numerically intensive program for the simulation 
of quantum transport in small structures has been im- 
plemented on a MasPar MP-1. The high degree of 
parallelism inherent in numerically intensive sections 
of the problem has been exploited, and devices with re- 
alistic dimensions and operating conditions have been 
investigated. 
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