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Abstract. In this paper we present new algorithms for reconfiguring arrays of identical Processing Elements (PEs) 
in the presence of faults. In particular, we consider a well-studied reconfiguration model which consists of a rec- 
tangular array of PEs with spare columns of PEs on one side. In the presence of faulty PEs, reconfiguration is 
achieved by constructing a logical array using only the healthy non-spare and spare PEs. Note that one can always 
successfully reconfigure the array as long as the number of faulty PEs is no more than the number of spare PEs. 
The general objective, however, is to derive a logical array such that the geometric distances between logical neighbors 
(i.e., PEs that are connected in the reconfigured array) are kept small. This criterion is motivated by the fact that 
shorter interconnects reduce the communication delays among the PEs, and also lead to less routing hardware. 
The problem of determining a reconfiguration that minimizes the length of the longest interconnect is hard and 
several researchers have presented sub-optimal algorithms that seem to have satisfactory performance. In this paper 
we develop a new efficient algorithm that can reconfigure any array with arbitrary patterns of faulty PEs. Further- 
more we show that our algorithm performs better than most of the other algorithms developed for similar models. 

1. Introduction 

Fault tolerance has been extensively studied in the re- 
cent literature as a way of improving reliability and pro- 
duction yield in VLSI devices. Fault tolerant techniques 
have already been implemented in many applications 
i.e., memory cells [1] etc., and have improved their per- 
formance considerably. Fault tolerance issues have also 
been addressed for array processor architectures (see 
e.g., [2]-[10]) because of 

1. their wide application in signal processing, matrix 
multiplication, inversion, etc., 

2. their low manufacturing cost, and 
3. the difficulty of entirely fault-free implementation 

of large area circuits. 

Fault tolerance can be incorporated at different levels 
of the design-hierarchy, e.g., (1) the cell level, which 
addresses questions on the detection of faults in the 
smallest replaceable element of the array; self-checking 
processors have been proposed for this level of fault 
detection as well as system level techniques; (2) the 
routing level, which considers failures in the routing 
hardware of the array; and (3) the array level, which 

*This work was supported in part by the SDIO/IST U.S. Army 
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addresses questions about how to replace the fault cells 
with spares that are placed in the array in a predeter- 
mined fashion in order to keep the need for additional 
routing hardware as small as possible. 

A considerable amount of research has been carried 
out to incorporate fault tolerance at the array level [5], 
[6], and a number of different reconfigurable models 
for rectangular arrays of identical PEs have been pro- 
posed. For example, Sami and Steffanelli [8] have 
presented a multiplexer-based redundant interconnec- 
tion scheme that results in a significant improvement 
of the array yield. Other reconfiguration models that 
use multiple-track routing channels and programmable 
switches have been studied extensively in [4], [7], [9], 
[101. 

In this paper we consider the model studied in [2], 
[8]: it consists of an n • k rectangular array with m 
columns of spare PEs on one side. The routing hard- 
ware used for reconfiguration could vary: in [8] a 
multiplexer based interconnection scheme is used 
whereas in [2] the routing is implemented by tracks and 
switches in a similar way to the routing hardware of 
the models presented in [3], [4], [7], [9]. 

In the presence of faulty PEs, reconfiguration is 
achieved by constructing a logical array using only the 
healthy non-spare and spare PEs. Note that one can 
always successfully reconfignre the array as long as the 
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number of faulty PEs is no more than the number of 
spare PEs; an arbitrary construction of the logical array, 
however, might result in large interconnect lengths. The 
general objective for reconfiguration in such models is 
to minimize the geometric distances between logical 
neighbors (i.e., PEs that are connected in the recon- 
figured array). This criterion is motivated by the fact 
that shorter interconnects reduce the communication 
delays among the PEs, and also might lead to less 
routing hardware. The manner in which the size of the 
additional routing hardware depends on the intercon- 
nect lengths has been studied for the multiplexer based 
scheme in [8] and also for the tracks-switches based 
scheme in [2]. 

The problem of determining a reconfiguration that 
minimizes the length of the longest interconnect is hard 
and several researchers [2], [8] have presented sub- 
optimal algorithms that seem to have satisfactory per- 
formance. It is not clear, however, that the algorithms 
presented in the literature make full use of the capability 
of the above model, e.g., the algorithms presented in 
[8] fail to reconfigure even when the faulty PE distribu- 
tions are very simple (see Section 4 for examples). In 
this paper we develop a new efficient algorithm that is 
simple and at the same time can reconfigure any array, 
with arbitrary fault distribution, using only small in- 
terconnect lengths. We can also demonstrate that our 
algorithm performs better than other algorithms that 
use the same model. In particular, we prove that our 
algorithm performs better than the one presented in [8]: 
It can reconfigure (1) all the faulty patterns in [8], us- 
ing the same or smaller interconnect lengths, and (2) 
much more general faulty patterns, again using the same 
interconnect lengths permitted in [8]. As a comparison 
to the algorithm in [2], we show that our algorithm can 
reconfigure certain faulty patterns while maintaining 
the length of links between the PEs constant, whereas 
the algorithm presented in [2] needs length of links that 
grow proportionally to the size of the array. 

The key idea that allows our algorithm to perform 
better than others that use the same model is the local 
treatment of the faulty patterns. The local treatment of 
the faulty pattern is achieved by segmenting the given 
array into subarrays of special structure that are easy 
to reconfigure. These special faulty patterns are then 
reconfigured in a way that keeps the interconnection 
length requirements small; this leads to a reconfignra- 
tion of the whole array with small interconnect lengths. 

An overview of the rest of the paper is as follows. 
In Section 2 we present a reconfiguration algorithm for 
the case of only one column of spare PEs along one 

side of the array. The algorithms are based on one sim- 
ple algorithm that shows how to reconfigure an N • 
(N + 1) array into an (N + 1) x N array and vice versa. 
In Section 3 we shall generalize the algorithm of Sec- 
tion 2 to the case where there are more than one spare 
columns of PEs. Section 4 presents some discussion 
on the evaluation of our algorithm and compares it to 
other reconfiguration algorithms that use the same or 
similar types of models. Section 5 presents some con- 
cluding remarks. Finally, in the Appendix we discuss 
time complexity issues, of the algorithms developed in 
this paper. 

2. Reconfiguration Algorithms 

In this section we present a new algorithm for recon- 
figuring processor arrays according to the model 
already described in the Introduction. For the sake of 
simplicity in illustrating the algorithms, we shall first 
consider the case where there is only one column of 
spare PEs in one side of the array. The reconfigura- 
tion for the case where there are multiple spare col- 
umns is similar and will be outlined in the next section. 

In the first part of this section we shall introduce 
a novel way of reconfiguring an N x (N + 1) array 
into an (N + 1) x N array. This is a simple reconfigura- 
tion procedure that will be later used to develop recon- 
figuration algorithms for certain special cases of faulty 
patterns. Reconfiguration algorithms for the general 
case of arbitrary faulty patterns will then be constructed 
by utilizing the algorithms for the special cases. Before 
proceeding to the analysis of the reconfiguration pro- 
cedure, let us define the following: 

Definition 1. Physical array (column, row) is the given 
N • (N + 1) array (column, row). 

Definition 2. Logical array (column, row) is the array 
(column, row) which we derive after the reconfigura- 
tion procedure. 

2.1. Basic Reconfiguration Algorithm: Reconfiguring an 
N x (N + 1) Array into an (N + 1) x NArray 

Herein, we develop a procedure for reconfiguring an 
array that has one more column than rows into an ar- 
ray that has one more row than columns. The idea 
behind our algorithm is to increase the length of each 
of the first N columns of the array by using the PEs 
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of the (N + 1) th column. The way of doing such a 
reconfiguration can be described as follows: we con- 
struct the first logical column of the logical (recon- 
figured) array using two PEs from the first physical row 
of the physical array and one PE from each of the 
following physical rows. In general we construct the 
i th logical column of the logical (reconfigured) array 
using two PEs from the i th physical row and one PE 
from the rest of the physical rows as shown in figure 
l(a). We formally describe this mapping of the entries 
of the logical array into the entries of the physical ar- 
ray in a code form as follows: 

Consider entry (i, j) of the physical array, where 1 
< i < Nand 1 _<j _< N +  1. Map the ( i ' , j ' )  entry 
of the logical array to the entries of the physical array 
in the following way: 

(i, j )  if i '  = j '  

(i - 1 , j )  i f / ' - j ' >  2 

(i', j ' )  ~ (i, j -/- 1) i f j '  - i '  _> 1 

(i - 1, j + 1) i f / '  = j ' +  1 

The procedure for mapping a (N + 1) • N physical 
array into an N • (N + 1) logical one is similar. We 
simply use the procedure above, interchanging the rows 
with the columns and vice versa. 

2.2. Reconfiguration Algorithms for  Special Cases 

We now describe efficient reconfiguration algorithms 
for the following Special Cases (we shall use these 
reconfiguration algorithms later for the general case): 

Special Case 1. AnN • (N + 1) physical array, with 
N faulty PEs, each in a different 
physical column, into an N • N 
logical array of healthy PEs. 

Special Case 2. An N • N physical array that has 
only one faulty processor in each 
row, into an ( N -  1) • Nlogical ar- 
ray of healthy PEs. 

Special Case 3. An K • (N + 1) physical array into 
a logical array that has N logical col- 
umns, out of which, L predetermined 
ones, namely c i i = 1 . . . .  , L are of 

length (K + ki) i = 1, . . . ,  L, and 
the rest (N - L) columns are of 
length K, where ~/L= 1 ki = K. 

Before proceeding to the description of the 
algorithm for Special Case 1, we shall define the 
following: 

Definition 3. An i-fault physical (logical) column (row) 
i = 0, 1, 2 is a physical (logical) column (row) that 
has i faulty PEs. 

Special Case 1. 

In this reconfiguration algorithm we shall reconfigure 
an N x (N + 1) array with N faulty PEs, at most one 
in each column, into an N x N healthy one. The recon- 
figuration procedure can be outlined as follows: 

1. We first apply the Basic Reconfiguration Algorithm 
described in Section 2.1 as if there were no faulty 
PEs in the array (see figure l(c)). The resulting 
logical array has logical columns with 0, 1 or 2 
faulty PEs. This is because every logical column 
has PEs from only two physical columns, as is ap- 
parent from the Basic Reconfiguration Algorithm. 
However, in this Special Case every physical col- 
umn has at most one faulty PE; therefore, the max- 
imum number of faulty PEs that any logical column 
can have is two. 

2. Now, the desired reconfigured array should have 
N PEs in each column. Hence, the 2-fault logical 
columns (in the logical array obtained after the 
above step) that have (N - 1) healthy PEs, need 
to borrow one PE each from the 0-fault columns 
that have (N + 1) healthy PEs. The 1-fault columns 
have N healthy PEs and need not change the number 
of their PEs. 

It is easy to see that for every 2-fault logical col- 
umn that needs an extra PE, there is a correspon- 
ding 0-fault logical column that has an available PE 
to give. For each such pair of logical columns we 
can define a borrowing process such that a 2-fault 
logical column borrows the extra PE of the cor- 
responding 0-fault logical column. This borrowing 
process between the 2-fault coltunns and the 0-fault 
columns takes place along the N tu physical row of 
the array as shown in figure 1 (d). Lemma 6 in Sec- 
tion 4.1 shows that these borrowing processes do 
not interfere with each other, i.e., no more than one 
such borrowing process can occur in the sample col- 
umns of the N th physical row. 



332 Varvarigou, Roychowdhury and Kailath 

(a) 

(b) 

1-fault logical .2-fault logical 
column / column 

[] 

[ 'i . . . . . . . . . . . . . . .  _ _ _ 

(c) 

[] 

corresponding 0-fault 
logical column 

/ 

(d) 

] 

J 
] 

] 

] 
- - I  

~borrowng process 
along the N physical row. 

Fig. 1. Reconfiguration for Special Cases. 

The reconfiguration procedure presented above can be 
formally described in a coded form as follows: 

1. Construct an (N + 1) x N logical array out of  the 
N x (AT + 1) physical (given) one according to the 
basic reconfiguration algorithm of Section 2.1. 

2. For the logical cohtmnsj '  with one faulty processor 
in the entry (k' j ' ) ,  do the following renaming: 

(i', j ' )  -~ ( (i', j ' )  

(i '  - 1, j ' )  

i f  i '  < k '  

if  i '  > k '  

3. For the 2-fault logical columns j '  with faults in en- 
trees: (k ' j ' )  and ( l ' j ' ) ,  (l > k), do the following 
renaming: 

( i ' , j ' )  i f / '  < k '  
( i ' , j ' )  ~ (i' - 1, j ' )  i f k '  < i '  < l '  

(i '  - 2, j ' )  i f / '  < i '  

4. For the 2-fault columns j ' ,  if  l '  is the corresponding 
0-fault column, do the following renaming: 

~ ( N , k '  + 1) i f j '  < k '  < 1' 
(N, k')  

L ( N +  1, l ' )  i l k '  > 1 ' -  1 
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Special Case 2. 

We now present our algorithm for reconfiguring an N 
• N array with N faulty PEs, each in a different 
physical row, into an (N - 1) • N logical healthy ar- 
ray. The reconfiguration procedure for this Special Case 
can be outlined as follows: 

1. Consider the N x N array shown in figure 2(a). Add 
one auxiliary fault-free row on the top of the physical 
array as shown in figure 2(a). The resulting array 
is an (N + 1) • N array that has N aulty PEs, one 
in each row. 

2. Apply the reconfiguration algorithm for Special 
Case 1 presented above (interchanging the role of  
the columns and rows) to get a N x N healthy array 
(see figure 2(b)). 

3. Disregard the first row of the reconfigured array. 
This results in a (N - 1) • Nhealthy array achiev- 
ing the goal of  this reconfiguration procedure (see 
figure 2(b)). 

Special  Case i 

We now describe our algorithm for reconfiguring an 
K • (N + 1) array into an array of N columns such 
that (1) L special columns, namely cl . . . . .  eL, are of 
length (K  + ki), i = 1, . . . ,  L,  with ~=1 ki = K, and 
(2) the rest of  the (N - L) columns are of  length K 

each. We shall refer to the columns c 1 . . . .  , CL as the 
special columns of the array and the corresponding ki 
will be defined as the degree of the special  column c i. 
For example, the 3 • 6 array of  figure l(b) is recon- 
figured into an array that has its first and third columns 
extended by two and one PEs respectively. The special 
columns of the array are: c I = 1 and c2 = 3, and the 
corresponding degrees are: k 1 = 2 and k 2 = 1. (We 
realize that the usual definition of the array implies that 
all the columns have the same number of entries. For 
the sake of simplicity, we shall refer to the block struc- 
tures that have some of  their columns extended as ar- 
rays as well.) 

The idea for this reconfiguration procedure is similar 
to that for reconfiguration of  an N • (N + 1) physical 
array into an (N + 1) • Nlogical one presented in Sec- 
tion 2.1. We simply use the K PEs of the (N + 1) th 
physical column of the array to increase the length of 
the predetermined columns el, . . . ,  c r. The meth- 
odology for this kind of reconfiguration can be de- 
scribed as follows: 

1. For logical column Cl use two PEs from the first 
kl physical rows and one PE from every other 
physical row. For logical column c i use two PEs 
from the ~]-1 kl + 1 . . . . .  ~=1 kl physical rows and 
one PE from every other physical row. 

2. For any other logical column except ci's, use one 
PE from each physical row. 

~ iliary row 

, ,  

D D N N N  

(a) 

Fig. 2. Reconfiguration for Special Case 2. 

(b) 
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The algorithm is illustrated in the 3 x 6 array of figure 
l(b). For logical column one (which is a special col- 
unto with degree two), we use two PEs from physical 
rows one and two and one PE from every other physical 
row. Since logical column two is not a special column, 
we only use one PE from every physical row. Logical 
column three is a special column with corresponding 
degree one and thus we use two PEs from physical row 
three and one PE from each of the rest of the physical 
rows. For the rest of the logical columns (which are 
not special columns), we use one PE from each physical 
row. 

2.3. Reconfiguration for the General Case of an 
N • (K + 1) Physical Array with N Faulty PEs 
into a N • K Healthy Logical One 

In this section, we shall introduce an algorithm for 
reconfiguring arrays with general faulty patterns. 

Definition 4. A faulty stack is defined to be a set of 
faulty PEs (in the physical array) that are in the same 
column and in consecutive rows. The size of a faulty 
stack is defined to be its cardinality. 

Definition 5. Overlapping parts of two stacks are defined 
to be the parts of the stacks that are in the same rows. 
The size of the overlapping is defined to be the length 
of the overlapping parts. 

Figure 3(a) illustrates an example of two overlapping 
stacks; each stack is of size 4 and they overlap com- 
pletely. The pattern of multiple overlapping faulty stacks 
of PEs is a very difficult case of faulty patterns to han- 
dle. For example, as shown in Section 4, the algorithm 
in [8] fails whenever there are stacks that overlap by 
more than 1 PEs. It is easy to see why overlapping 
stacks is a hard pattern to reconfigure: every row of 
the array has only one spare PE available for the 
replacement of possible faulty PEs along the row. So, 
in the case of multiple overlapping stacks, only one of 
the stacks can be reconfigured using the spare PEs that 
are available in the same physical rows where the stacks 
overlap. The rest of the overlapping stacks must be 
reconfigured by spare PEs that are in rows above or 
below the rows where the overlapping occurs. The big- 
ger the overlapping size and the larger number of 
overlapping stacks, the more difficult it is to move spare 
PEs from rows where they are available to the rows 
where the faulty PEs appear. Our algorithm is designed 

i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

[S]O Ol-q O D D D D 
DI-]  D D D l - lDI-q D 

":0 0 0 0 0 0 0 0 0 

..0__0.._o____0_.0__0._0__0..0_. 

A', 

', [] [] [] [] Of 

 olN [] [] oiN [] [] 
(a) 

l .............................................. 

i ._. _-_- :.- .-~ 

i 

(b) 

Fig. 3. Example: Reconfiguration for overlapping stacks. 

to handle efficiently these hard cases of overlapping 
stacks locally so as to minimize the requirement of 
length of links between the PEs as much as possible. 

Example. We will first describe the basic concepts of 
the reconfiguration procedures by introducing an ex- 
ample: Consider the array of figure 3(a) where an 
overlap of size 4 is taking place between two stacks of 
faulty PEs. The reconfiguration procedure can be sum- 
marized in two steps: 

1. Consider for the moment only the rows where the 
overlapping is taking place; this is indicated by 
subarray A in the figure. There are two columns of 
faulty PEs in subarray A, but there is only one col- 
umn of spare PEs available in the subarray. So, only 
one of the two columns of the faulty PEs can be 
reconfigured using the spare PEs available in A. To 
reconfigure the other column of faulty PEs we use 
the healthy PEs in A to create one more logical col- 
umn at the expense, of course (since the total number 
of available PEs remains the same), of the length 
of some of the resulting columns. In other words, 
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we manage to create an extra column in A by steal- 
ing PEs from the already existing columns of A. By 
doing so we manage to move the need o f  PEs from 
the interior o f  subarray A to its boundaries, and thus 
closer to the rows where there are available PEs. 
The way we create this extra column is as follows: 
we define a 4 x 4 segment d in subarray A by con- 
sidering 3 fault free columns around one of the two 
overlapping parts of stacks as shown in figure 3(a); 
in general, we consider such segments for all but 
one of the overlapping parts of the stacks. Using the 
reconfiguration algorithm for Special Case 2 we can 
reconfigure the 4 x 4 segment that has one fault 
column (and only one faulty PE in each of its rows), 
into a 3 x 4 healthy segment. For the reconfigura- 
tion of the remaining faulty stack we are going to 
use the spare PEs that are available in the rows where 
the overlapping occurs. As shown in figure 3(b), an 
extra logical column has been created in subarray 
A at the expense of the length of logical columns 
2, 3, 4 and 5. These columns are now of length 3 
instead of 4; that is the same as the length of the 
rest of the columns of subarray A. 

2. Consider now the fault-free rows of the array in- 
dicated as subarray B in figure 3(a). This fault-free 
block has an extra column of available PEs. We use 
these spare PEs to increase the length of some of 
its logical columns. More precisely, we will use the 
extra column of PEs in subarray B to increase the 
length of the logical columns that have become 
shorter in subarray A in the previous step. By doing 
this we manage to move the availability of PEs from 
the interior of the fault-free block to its boundary 
and thus bring the available PEs closer to the rows 
where they are needed. The way we do this is as 
follows: using the reconfiguration algorithm for 
Special Case 3 we reconfigure the fault-free block 
B, considering as special columns ci's the logical 
columns that have become shorter in subarray A. 
After the reconfiguration, the special columns of 
subarray B increase in length to compensate for the 
loss of length that they suffered in subarray A (see 
figure 3(b)). 

Thus, the premise behind this reconfiguration 
algorithm is the local treatment of the blocks that have 
overlapping stacks and the local treatment of the fault- 
free blocks. We segment the array into subarrays that 
we can deal with according to the Special Cases pre- 
sented earlier. We increase the number of columns 

when necessary at the cost of their length and we in- 
crease the length of the columns when necessary at the 
cost of their number. 

The general way of reconfiguring the subarrays that 
have multiple overlapping stacks of faulty PEs in terms 
of the number of their columns can be described as 
follows: 

2.3.L Multiple Stack Reconfiguration Procedure. Con- 
sider a subarray of size s x (N + 1) with n faulty 
overlapping stacks of size s each. The objective is to 
create (n - 1) additional logical columns in the sub- 
array, of course at the expense of the length of some 
of them. This is done as follows: 

1. Define (n - 1) non-overlapping segments d k k = 
1, . . . ,  (n - 1), of size s x s, each of which con- 
tains one faulty stack; for example, segment d u in 
subarray ssal, and segment d21 in subarray ssa2 as 
shown in figure 4(a). I f  such segments cannot be 
defmed, divide the subarray into subarrays of smaller 
s and apply the multiple stack reconfiguration pro- 
cedure for each of them. 

2. Reconfigure these s x s segments into (s - 1) x 
s fault-free logical segments, according to Special 
Case 2 (see figure 4(b)). 

2.3.2. The General Reconfiguration Procedure. 

Step 1. Partition the array into the following kind of 
subarrays that have (N + 1) columns (see figure 4(a)): 

1. Fault-free subarrays ffsai, i = 1 . . . . .  k of size f 
• (N + 1) each (see for example ffsal and ffsa z of 
figure 4(a)). 

2. Subarrays that have only one faulty PE in each row, 
ofsai, i = 1 . . . . .  l of size o i x (N + 1) each (see 
for example ofsal of figure 4(a)). 

3. Subarrays ssai of size si • (N + 1) that have n i ( > 
1) stacks each of size s i (see for example subarrays 
ssal and ssa2 in figure 4(a); in ssal, there are two 
stacks of size 2, and in ssa 2 there are again two 
stacks but of  size 1). 

Step 2. For each subarray with faulty stacks ssai apply 
the Multiple Stack Reconfiguration Procedure (see 
figure 4(a)(b)). 

Step 3. Do the following: 

1. Consider now the columns of each reconfigured seg- 
ment, defined in Step 2, from left to right and the 
segments from left to right and from top to bottom. 
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Fig. 4. Reconfiguration for the General Case. 

Map each one of the columns of every segment to 
a faulty-free row considering the latter ones from 
top to bottom. For example, the first column of dll 
maps to physical fault-free row 1. The second col- 
urnn of dn is mapped to the physical fault-free row 
2. The column of segment d21 is mapped to the 
physical fault-free row 8. 

2. Consider now every fault-free subarray ffsai. Let 
the columns cj of ffa i which are mapped to the rows 
of ffai be the special columns of ffai. The degree kj, 
corresponding to each special column cj, equals the 
number of fault-free rows of the fault-free subarray 
ffsai that are mapped to column cj. For example, as 
shown in figure 4(b), ffsal has special columns 
cl = 2 and c2 = 3 with corresponding degrees 
k I = 1 and k2 = 1; ffsa2 has ca = 5 with cor- 
responding degree k 1 = 1. 

3. Reconfigure each subarray ffsai according to 
Special Case 3 (see figure 4(b)). 

The reconfiguration presented above can handle any 
faulty pattern if the number of the faulty PEs is no 
greater than the number of spare PEs, and achieves 

reconfiguration probability of 100 %. In the case where 
the number of the faulty PEs is less than the number 
of spare PEs, we treat the healthy spare PEs of several 
fault-free rows as faulty and apply the general recon- 
figuration algorithm presented above. The above results 
can be summarized in the following theorem: 

TnEOP, ZM 1. The reconfiguration algorithm presented 
above reconfigures any N • (K + 1) array with N faulty 
PEs into a N • K healthy array of PEs. 

Proof On the proof of the theorem we shall make the 
following comments: 

�9 The given array is segmented in Step 1 of the general 
reconfiguration algorithm into subarrays that: (1) are 
fault-free (2) have multiple faulty stacks (3) have only 
one column of faulty PEs. 

�9 The subarrays that have only one column of faulty 
PEs get reconfigured by disregarding the column of 
faulty PEs. This faulty column is replaced by the col- 
umn of spare PEs available in every subarray. 

�9 In Step 2 of the general reconfiguration algorithm, 
we handle subarrays that have more than one (ni > 
1) faulty columns. We define segments around (n i - 
1) of the faulty columns of subarray ssai and recon- 
figure them according to Special Case 2. Each seg- 
ment gets reconfigured in terms of the number of the 
logical columns that it should have. The n~ faulty 
column of the subarray gets replaced by the spare 
column of PEs available in the subarray. So the whole 
subarray ssai gets reconfigured in terms of the 
number of its columns. Of course some of those col- 
unms become shorter in length than others. Step 3 
compensates for this loss of length as discussed 
below: 

�9 In the third step of the general reconfiguration 
algorithm, every column of the segments defined in 
Step 2 that need an additional PE to compensate for 
the length lost in Step 2 is mapped to a fault-free col- 
umn; it is easy to see that the total number of those 
columns equals the total number of the fault-free 
rows. The logical columns that need additional PEs 
become the special columns of the fault-free segments 
with corresponding degree equal to the total number 
of additional PEs needed. Thus, we reconfigure the 
fault-free subarrays according to Special Case 3, in- 
creasing the length of the special columns by a 
number of PEs equal to their degree and reducing 
at the same time the total number of logical columns 
of the fault-free subarray by one. 
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3. Generalization for Arrays with More Than One 
Spare Columns 

In this section, we shall outline the generalization of 
the reconfiguration algorithm presented in the previous 
section for arrays that have more than one spare col- 
umn. The general idea for the reconfiguration remains 
the same when the number of spare columns is M > 
1. It is still a local treatment of the faulty patterns that 
has segmentation of the array into different kinds of 
subarrays as its basic step. The basic differences com- 
pared to the algorithm presented in Section 2 can be 
summarized as follows: 

* Instead of the segmentation of Step 1 of the general 
reconfiguration algorithm of Section 2, the array is 
now segmented into the following kind of subarrays: 
subarrays that (1) have less than M faulty PEs in their 
rows, (2) have exactly M faulty PEs in their rows and 
(3) have more than M overlapping stacks of faulty 
PEs. 

�9 The subarrays that have exactly M PEs in their rows 
get reconfigured just by disregarding the M faulty PEs 
of each row and substituting them with the M spare 
PEs available in each row. 

�9 The subarrays that have more than M overlapping 
faulty stacks get reconfigured according to Step 2 of 
the general reconfiguration procedure presented in 
Section 2. Hence, we again reconfigure the subarray 
in terms of the number of its coltmms using the recon- 
figuration algorithm for special case 2 as we did when 
we had only one column of spare PEs. The only dif- 
ference is that we need now only define segments 
around (n i - M )  (instead of (n i - 1) in the case of 
the only one spare column) of the faulty stacks. This 
is because we need only create (ni - M )  new logical 
columns since there are M available columns of spare 
PEs to replace M of the faulty stacks of the subarray. 

�9 The subarrays that have less than M faulty PEs in 
their columns stand for the fault-free subarrays of the 
general reconfiguration algorithm. Each one of their 
rows r i has m i faulty PEs, where 0 < m i < M ,  and 
thus has M - mi available PEs. So, in the third step 
of the general reconfiguration procedure, a total of 
( M  - mi) columns (instead of just one as it was for 
the case of the only one column of spare PEs) of the 
segments defined in Step 2 are mapped to row r i. 

�9 The reconfiguration algorithm for the third Special 
Case is now simply generalized to an algorithm that 
is applied to arrays that have rows with less than M 
faulty PEs instead of fault-free arrays. Each logical 
column can now get up to M - m i PEs from 
physical row i that has m i < M faulty PEs. 

4. Evaluation of the Algorithm 

As already stated in Theorem 1, if the interconnect 
lengths between the logical neighbors of the reconfigured 
array are unrestricted, then our algorithm has a 100 % 
reconfiguration probability for any general faulty pat- 
tern. The general objective for reconfiguration in models 
such as the one under consideration, however, is to 
derive a logical array such that the geometric distances 
between logical neighbors are kept small even for dif- 

f i c u l t  faulty patterns. In this section we are going to 
evaluate the performance of our algorithm in terms of 
the interconnect lengths that it requires to reconfigure 
faulty patterns of certain difficulty. More precisely, in 
the first part of this section we are going to restrict the 
interconnect lengths allowed to be ~ or less, i.e., every 
PE is restricted to have all its logical neighbors among 
the 20 PEs that are shown in figure 5(a). The permit- 
ted set of logical neighbors for every PE will be defined 
as its neighborhood.  We will prove that the basic recon- 
figuration algorithm and the reconfiguration algorithms 
for the special cases presented in Section 2 maintain 
the neighborhood constraints set above. We will also 
prove that several general faulty patterns can be recon- 
figured without increasing the neighborhood as depicted 
in figure 5(a). In Section 4.2, we use the results of Sec- 
tion 4.1 to show that our algorithm performs provably 
better than those in [8], i.e., can reconfigure many more 
faulty patterns than possible by the algorithm in [8]. 
We also show that for certain faulty patterns, our 
algorithm requires only constant interconnect lengths 
whereas, the algorithm in [2] requires lengths propor- 
tional to the size of the array. 

4.1. Reconf igura t ion  Under  N e i g h b o r h o o d  Constraints  

De f in i t ion  6. For each entry (i, j )  of the given array, 
we define as neighborhood (or legal neighborhood) of 
(i, j )  the set of PEs: Ni, j  = {(k, l ) / ( k ,  l )  = (i, j )  + 

(m, n), (m, n) ~ T} where T is a set of Tuplus. 

In this section, we consider Ni, j as shown in figure 
5(a). In other words: Ni, j = { ( k ,  l ) / ( i  - k) 2 + ( j  - 
0 2 -< 5}. If the reconfiguration results in an intercon- 
nect scheme where all PEs are only connected with PEs 
that are in their neighborhoods (legal neighborhood) 
then the reconfiguration maintains the n e i g h b o r h o o d  
constraints .  

THEOREM 2. The reconfiguration for Special Case 3 
maintains the neighborhood constraints when the 
degree ki of every special column c i of the array is less 
than or equal to one. 
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Fig. 5. Definitions. 

Proof The proof comes directly from figure l(b). It 
is easy to check that for each entry ( i ' j ' )  of the logical 
array that is mapped in physical entry (i, j )  its logical 
neighbors: (i' + 1, j ' ) ,  (i' - 1, j ' ) ,  (i', j '  - 1), 
(i', j '  + 1) are mapped in (i, j) 's  legal neighborhood. 

THEOREM 3. The basic reconfiguration algorithm of a 
(N + 1) • N logical array from a N • (N + 1) physical 

array maintains the neighborhood constraints men- 
tioned above. 

Proof The basic reconfiguration procedure is a 
restricted case of special case 3 when all the columns 
of the array are chosen to be special columns with cor- 
responding degree one. So the proof follows immedi- 
ately from Theorem 2. 

We now prove that reconfiguration of Special Case 
I maintains the neighborhood constraints. We shall first 
make the following definitions: 

Definition 7. St is the subset of the PEs (i, j )  of the 
physical array for which (i - j )  _> 0 is true, (see figure 
5(b)). The PEs of the array that are in Sl from now on 
will be referred to as St PEs. 

Definition 8. Su is the subset of the PEs (i, j )  of the 
physical array for which (i - j )  > 0 is true (see figure 
5(b)). The PEs of the array that are in Su from now 
on will be referred to as Su PEs. 

Definition 9. For each 2-fault logical column i the cor- 
responding 0-fault logical column is defined as the 
0-fault logical column j,  j > i for which the following 
is true: all logical columns k, i < k < j are 1-fault 
logical columns (see figure l(c)). 

We now present some lemmas that we will use later 
to prove that the reconfiguration algorithm for Special 
Case 1 maintains the neighborhood constraints. 

COROLLARY 1. The number of 2-fault logical columns 
equals the number of the 0-fault logical columns. 

LEMMA 1. The $1 PEs of the i th logical column are part 
of the i th physical column whereas the Su ones are part 
of the (i + 1) th physical column. 

Proof Immediately from the basic reconfiguration 
algorithm. For example in figure 5(b) the Sl PEs of 
the 3 rd logical column belong to the 3 rd physical col- 
umn whereas the Su PEs belong to the 4 th physical 
column. 

LEMMA 2. Each logical column has at most two faulty 
PEs. If a logical column has two faulty PEs, then one 
of them is in St and one in Su. 
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Proof The first part follows immediately from the basic 
reconfiguration algorithmn by observing that each 
logical column i occupies parts of only two physical 
columns; the part of the physical column i which is in 
St, and the part of the physical column (i + 1) which 
is in S~ (by Lemma 1). It is thus obvious that i cannot 
have both faulty PEs in St(Su) since there is only one 
faulty PE in each of the physical columns i and (i + 1). 

LEMraA 3. Suppose that the only faulty PE of logical 
column i is in St. Then one of the following is true: 

1. The (i + 1) logical column has only one faulty PE 
which is also in St. 

2. The (i + 1) logical column has two faulty PEs (one 
in S~ and one in St). 

Proof: Since the only faulty PE of the logical column 
i is in St, (in the i th physical column), the faulty PE 
of the (i + 1) th physical column should be in St. So 
the logical column (i + 1) has one faulty PE in St. 
Therefore, if logical column (i + 1) is 1-fault logical 
column, then 1 is true; otherwise (by Lemma 2) 2 is 
true. 

LEMMA 4. Suppose that logical column i has one faulty 
PE in S~. Then one of the following is true: 

1. The logical column (i + 1) has only one faulty PE 
in the S~ part of physical column (i + 2). 

2. The logical column (i + 1) is 0-fault logical column. 

Proof Since there is a fault in the Su of physical col- 
umn (i + 1), there is no faulty PE in St in the same 
physical column. So, if physical column (i + 2) has 
a faulty P E n  Su, then 1 is true; otherwise 2 is true. 

LEMMA 5. Suppose that logical column i is fault free. 
Then one of the following is true: 

1. The (i + 1) logical column has only one faulty PE 
in St. 

2. The (i + 1) logical column is a 2-fault logical column. 

Proof. Since i is a 0-fault logical column, the Su part 
of (i + 1) physical column is fault-free. Thus there is 
a fault in the St part of the (i + 1) th logical column. 
So, if the (i + 2) th physical column has no fault in Su, 
then 2 is true; otherwise 1 is true. 

LEMMA 6. Each 2-fault logical column i has a cor- 
responding 0-fault logical columnj. Moreover, all the 
1-fault logical columns k with i < k < j have their 
faulty PEs in Su. 

Proof Since i is a 2-fault logical column then (by 
Lemma 1) it has a faulty PE in Su. Then by Lemma 
4 the (i + 1) logical column is (a) either fault-free, in 
which case we are done (b) or has one faulty in Su, 
in which case the lemma has been proved for logical 
column (i + 1). Logical column (i + 1) now has one 
faulty PE in Su and so Lemma 4 can be applied again 
to prove that logical column (i + 2) is either fault-free 
or has only one fault in its Su part. One can easily 
show by induction that all the logical columns between 
the i th and thej  th ones are 1-fault logical columns with 
faulty PEs in their S l parts. 

The above lemma implies that there are one or fewer 
borrowing processes (like the ones described in Special 
Case 1) between the 2-fault logical columns and the 
0-fault logical columns going on along the same col- 
umns of physical row N (since there are only 1-fault 
logical columns between every 2-fault logical column 
and its corresponding 0-fault logical column). 
Moreover, there are no faulty PEs along the physical 
rows where the borrowing process is taking place. We 
now use the lemmas developed above to outline the 
proof that the reconfiguration of Special Case 1 main- 
tains the neighborhood constraints. 

THEOREM 4. The algorithm for the Special Case 1, that 
reconfigures a N • (N + 1) physical array with N faulty 
PEs that are in different physical columns, into a N • 
N logical array, maintains the neighborhood constraints. 

Proof We have only to prove that the neighborhood 
constraints are maintained along the logical columns 
and the rows of the reconfigured array. 

�9 The fact that the neighborhood constraints are main- 
tained along the columns of the logical array follows 
immediately from Theorem 2. The first step of the 
reeonfiguration algorithm for Special Case 2 is just 
the basic reconfiguration algorithm. One can easily 
see in figure l(c)(d) that when a fault appears in the 
straight part of a logical column like the one appear- 
ing in the third logical column, then the interconnect 
length increases from 1 to x/2 which is still within per- 
missible limits. If a fault appears in the bent part of 
the logical column like the one appearing in the sec- 
ond logical column of the array of the same figure, 
then the interconnect length decreases from vr2 to 1. 
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�9 The proof that the neighborhood constraints are main- 
tamined along the rows of the reconfigured array where 
there is no borrowing process taking place is illus- 
trated in figure l(c) and (d). The worst case as far 
as connections between PEs of the same logical row 
are concerned appears when two adjacent logical col- 
umns have faulty PEs before and after their bent 
parts. For example, see adjacent logical columns three 
and four of figure l(c). One can easily check that the 
neighborhood constraints are maintained between the 
neighboring PEs of the two logical columns. One can 
also check that the neighborhood constraints are main- 
tamined in all the other cases when the two adjacent 
columns both have their faulty PEs before or after 
their bent part (see for example adjacent logical col- 
umns 4 and 5 in figure l(c)), or when one of the two 
adjacent columns is fault-free and the other has its 
faulty PE before or after its bent part (see for exam- 
ple logical columns 5 and 6 of figure l(c)). 

�9 The neighborhood constraints are also maintained 
along the rows of the array where the borrowing proc- 
ess is taking place. Note that by Lemma 6, there is 
no fault in St between the 2-fault column and the 
fault-free column, and no more than one borrowing 
process occurs along the same columns of physical 
row N. So the example of figure l(d) proves that in 
general, the neighborhood constraints are maintained 
along the rows of the array where the borrowing proc- 
ess is taking place, since any general borrowing proc- 
ess is no different than the one presented in figure 
l(d). 

THEOREM 5. The reconfiguration procedure for Special 
Case 2 maintains the neighborhood constraints. 

Proof The proof that the reconfiguration algorithm of 
Special Case 3 maintains the neighborhood constraints 
follows immediately from Theorem 4 above, since 
Special Case 2 is reconfigured using the reconfigura- 
tion algorithm of Special Case 2. 

So far we have proved that the reconfiguration for 
Special Cases 1 and 2 and the Basic Reconfiguration 
Algorithm maintain the neighborhood constraints. We 
have also proved that Special Case 3 can get recon- 
figured in the legal neighborhood if the degree of the 
special columns does not exceed one. The following 
theorem proves that the General Reconfiguration algor- 
ithm results in arrays that do not violate the neighbor- 
hood constraints if Step 3 of the general reconfigura- 
tion algorithm does not result into special columns with 
degree more than one. 

THEOREM 6. Our algorithm can reconfigure any faulty 
pattern within the legal neighborhood if step 3 of the 
general reconfiguration algorithm does not result into 
special columns with degree more than one. 

Proof The proof of this theorem follows from theorem 
2 and 4 presented above as follows: 

�9 The fact that the neighborhood constraints are main- 
tamined in the fault-free subarrays of the array defined 
in Step l of the General Reconfiguration Algorithm 
follows immediately from Theorem 2. 

�9 It is easy to check in figure 4(b) that the neighborhood 
constraints are maintained in the subarrays that have 
only one faulty PE in every row. 

�9 The subarrays that have more than one column of 
faulty PEs are divided into segments that are recon- 
figured according to Special Case 1. The reconfigura- 
tion of those segments maintain the neighborhood 
constraints as stated in Theorem 4. The neighborhood 
constraints are also maintained between adjacent such 
segments o1" between such segments and fault-free ad- 
jacent columns (arguments similar to those presented 
in the proof of Theorem 4 hold for this case as well, 
since the boundary columns of the adjacent segments 
can be seen as adjacent columns in the same 
segment). 

�9 The neighborhood constraints are also maintained 
between adjacent subarrays, as can be easily seen in 
figure 4(b). 

4.2. Comparing the General Reconfiguration Algorithm 
to Other Reconfiguration Algorithms 

The algorithm presented in [2] uses a similar model 
to the one we have discussed in this paper. It is a general 
algorithm that can handle various faulty patterns with 
good interconnect requirement performance. Never- 
theless it sometimes requires interconnect lengths that 
are proportional to the size of the array whereas our 
algorithm reconfigures the same patterns keeping the 
required interconnect length constant. Such an exam- 
ple is presented in figure 7(a). The series of PEs in- 
dicated as S in the figure can grow proportionally to 
the size of the array and so can the length of the inter- 
connect link indicated as L in the same figure. Figure 
7(b) shows the reconfiguration of the same faulty pat- 
tern according to our algorithm. It is easy to check that 
the interconnect length required remains constant as 
the size of the array grows. 
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Fig. 7. (a) Reconfiguration according to the algorithm presented in 
[2]. (b) Reconfiguration according to our algorithm. 

Another set of algorithms that uses the same kind 
of model as that which we have used is presented in 
[8]. The underlying model in [8] has only one column 

of spare PEs. The maximum length of interconnect 
links that is allowed is ~ and so the legal neighborhood 
used is the one that we studied in the Section 4.1. The 
algorithms presented in [8] are very simple, implement- 
able in a distributed fashion, and achieve quite satisfac- 
tory reconfiguration yield. However, those reconfigum- 
tion algorithms are very fragile; they fail to reconfigure 
the array even when the faulty PE distributions are very 
simple. The following are only two simple instances 
(one can generate several other instances) where they 
fail: (1) if the bottom row and the top row does not have 
any faulty processors, and (2) if there is an overlap of 
faulty stacks even of size two. 

The algorithms that we develop can reconfigure all 
instances of faulty arrays as the algorithms reported in 
[8]. Moreover, we can also reconfigure arrays with 
several other faulty distributions, without increasing the 
neighborhood constraints. In particular, our algorithm 
can reconfigure most of the overlapping stack patterns, 
keeping the size of the neighborhood as in [8] (see for 
example the reconfiguration of the case of multiple 
stacks in figure 6) and has no constraints about the first 
and the last rows of the array being fault-free. We now 
show that all the faulty patterns that are reconfigurable 
using the algorithm in [8], meaning the faulty patterns 
with overlapping stacks of size at most one can be 
reconfigured by our algorithm without increasing the 
interconnect length requirements. 

When there are no overlapping stacks in the faulty 
array, then according to Theorem 4, the array is recon- 
figurable within the legal neighborhood. We now prove 
that when there are overlapping stacks of size at most 
one, we can reconfigure the array within the legal 
neighborhood. This completes the proof that our 
algorithm can reconfigure all the faulty patterns as can 
the algorithms in [8] with no increase of the legal 
neighborhood. 

THEOREM 7. The general reconfiguration algorithm can 
handle overlapping stacks of size at most one while 
maintaining the reconfiguration constraints. 

Proof Figure 8 presents the worst case of overlapping 
of size one between stacks; the overlap occurs in adja- 
cent columns of the array, and as such is supposed to 
be the worst case as far as interconnection between PEs 
in adjacent rows is concerned. Neither can the inter- 
connection between PEs in the same logical column 
get harder. It is easy to check in figure 8 that the 
neighborhood constraints are maintained. 
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5. Conclusion 

In this paper we have presented new algorithms for 
reconfiguring processor arrays in the presence of faulty 
PEs. We used a model of a rectangular array with spare 
columns on one side and have focused on the minimiza- 
tion of the resulting lengths of the links between the 
PEs in the reconfigured array. Our algorithm is based 
on a local treatment of the faulty patterns and on an 
equal treatment of the spare and the non-spare PEs. 
We not only achieve a reconfiguration yield of 100%, 
but we can also reconfigure all the faulty patterns that 
other algorithms can reconfigure, and even more com- 
plicated ones, while keeping the required length of in- 
terconnection links the same or even less. Finally, we 
may note that the basic principles of our algorithm can 
be used to reconfigure processor arrays that have both 
columns and rows of spare PEs. Moreover, the 
algorithms presented for the special cases can be ap- 
plied to change the shape of a rectangular army of given 
dimensions into a rectangular array of arbitrary dimen- 
sions, keeping the necessary interconnections as small 
as possible. 

Appendix 

A. Complexity Issues 

A.1. Complexity of the Reconfiguration Algorithms for 
the Special Cases 

All the reconfiguration algorithms for the following 
special cases are of linear time complexity (O(N) where 
N is the size of the array). 

�9 Basic Reconfiguration Procedure (Section 2.1). 
�9 Special Case i (Section 2.2); step I of the algorithm 

(in page 6) is of O(N) complexity, each iteration of 
steps 2, 3, and 4 is of O(1) complexity and the total 
number of iterations is N. 

�9 Special Case 2 (Section 2.2); step 1 of the algorithm 
(in page 6) is of O(1) complexity, step 2 is of O(N) 
complexity, and step 3 is of O(1) complexity. 

�9 Special Case 3 (Section 2.2); both steps 1 and 2 are 
of linear complexity. 

A.2. Complexity of the Multiple Stack Reconfiguration 
Procedure 

We are now going to describe in detail a possible im- 
plementation of the multiple stack reconfiguration 
algorithm which is of complexity O(N s) (N is the 
number of columns of the subarray and s is the number 
of rows). More precisely we are going to give an O(N 
s) algorithm for implementing step 1 of the reconfigura- 
tion procedure described in Section 2.3 First we 
describe subroutine SEGMENT which defines (if pos- 
sible) (n - 1) non-overlapping segments of size s • 
s around (n - 1) out of the n faulty columns c 1 . . . . .  
cn of the x • (N + 1) subarray. 

SEGMENT: 
For subarray ssaj with faulty columns cl, . . . ,  cn do: 

1. Initialize all the columns of the subarray to 
UNMARKED 

2. Fori = 1 t o n d o  
Consider faulty column el. Assign (if possible) un- 
marked columns (ci - l, . . . ,  q, . . . ,  ci + s + l) to 
segment dji for the biggest possible l. 
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�9 If  NOT possible and FLAG=true then: 
FLAG=false 
/*column ci is going to be the one for which we 
are not going to define a s • s segment*/ 

�9 If  NOT possible and FLAG=false then: 
Signal FAILURE 

/*there is already a column for which we did not 
define a segment and we cannot define a segment 
for c i either */ 

�9 If  possible then M A R K  columns (c i - l, . . . ,  ci, 

�9 . . ,  ci + s - l) and continue. 

Now the procedure that implements step 1 of the 
Multiple Stack Reconfiguration Algorithm can be 
described as follows: 

Step O: i=0 

Step 1: Divide the subarray into two subarrays, one 
containing the first s - i rows and the other 
the bottom i ones. 

Step 2: Apply procedure S E G M E N T  to the top 
subarray. 

�9 If  S E G M E N T  fails then: 
i *-- (i + 1) and goto step 1 

�9 I f  S E G M E N T  succeeds then: divide the bot- 
tom subarray into subarrays of size (s - i) 
each (the last one might be of smaller size 
if i/(s - i) is not an integer) and apply SEG- 

M E N T  to each of them (note that S E G M E N T  
cannot fail in this case) 

It is obvious that S E G M E N T  procedure takes O(N) 
time and is called at most s times. So step 1 of the 
Multiple Stack Reconfiguration algorithm is of O ( N s )  

complexity. Step 2 of the algorithm is of O(N) com- 
plexity so the total complexity is O ( N  s). 

A.3. Complexity o f  the General Reconfiguration 
Algori thm 

The General Reconfiguration Algorithm presented in 
section 2.3.2 is of complexity O(N2). The complexity 
of each step is: 

Step 1: The partitioning of the array into fault-free, one 
fault per row, and multiple stack subarrays in step 1 
of the algorithm can be done in O(N) time. A simple 
implementation of such a partition can be described as 
follows: 

1. i = 1  
2. If  row i is compatible with the subarray under con- 

sideration (meaning if the subarray under considera- 
tion being extended by row i remains of the same 
type) then extend the subarray by row i. 

3. If  row i is not compatible with the subarray under 
consideration, then start a new 

�9 fault-free subarray if the row is fault-free 
�9 one faul t  p e r  row subarray if the row has only one 

faulty PE. 
�9 multiple stack subarray if  the row has more than 

one faulty PE. 

It is obvious that the procedure above is of O(N) 
complexity. 

Step 2: As it follows from the previous section, the com- 
plexity of this step is 

0 N s = O(N 2) 
i=1 

Step 3: All the three substeps of Step 3 are of linear 
complexity. 

So the total complexity of the general Reconfigura- 
tion algorithm is O(N2). 
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