
Journal of VLSI Signal Processing, 3, 329-344 (1991)
�9 1991 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

New Algorithms for Reconfiguring VLSI/WSI Arrays

THEODORA A. VARVARIGOU, VWANI P. ROYCHOWDHURY AND THOMAS KAILATH*
Information Systems Laboratory, Stanford University, CA 94305

Received July 12, 1990; Revised April 15, 1991.

Abstract. In this paper we present new algorithms for reconfiguring arrays of identical Processing Elements (PEs)
in the presence of faults. In particular, we consider a well-studied reconfiguration model which consists of a rec-
tangular array of PEs with spare columns of PEs on one side. In the presence of faulty PEs, reconfiguration is
achieved by constructing a logical array using only the healthy non-spare and spare PEs. Note that one can always
successfully reconfigure the array as long as the number of faulty PEs is no more than the number of spare PEs.
The general objective, however, is to derive a logical array such that the geometric distances between logical neighbors
(i.e., PEs that are connected in the reconfigured array) are kept small. This criterion is motivated by the fact that
shorter interconnects reduce the communication delays among the PEs, and also lead to less routing hardware.
The problem of determining a reconfiguration that minimizes the length of the longest interconnect is hard and
several researchers have presented sub-optimal algorithms that seem to have satisfactory performance. In this paper
we develop a new efficient algorithm that can reconfigure any array with arbitrary patterns of faulty PEs. Further-
more we show that our algorithm performs better than most of the other algorithms developed for similar models.

1. Introduction

Fault tolerance has been extensively studied in the re-
cent literature as a way of improving reliability and pro-
duction yield in VLSI devices. Fault tolerant techniques
have already been implemented in many applications
i.e., memory cells [1] etc., and have improved their per-
formance considerably. Fault tolerance issues have also
been addressed for array processor architectures (see
e.g., [2]-[10]) because of

1. their wide application in signal processing, matrix
multiplication, inversion, etc.,

2. their low manufacturing cost, and
3. the difficulty of entirely fault-free implementation

of large area circuits.

Fault tolerance can be incorporated at different levels
of the design-hierarchy, e.g., (1) the cell level, which
addresses questions on the detection of faults in the
smallest replaceable element of the array; self-checking
processors have been proposed for this level of fault
detection as well as system level techniques; (2) the
routing level, which considers failures in the routing
hardware of the array; and (3) the array level, which

*This work was supported in part by the SDIO/IST U.S. Army
Research Office through Contract DAAL03-90-G-0108.

addresses questions about how to replace the fault cells
with spares that are placed in the array in a predeter-
mined fashion in order to keep the need for additional
routing hardware as small as possible.

A considerable amount of research has been carried
out to incorporate fault tolerance at the array level [5],
[6], and a number of different reconfigurable models
for rectangular arrays of identical PEs have been pro-
posed. For example, Sami and Steffanelli [8] have
presented a multiplexer-based redundant interconnec-
tion scheme that results in a significant improvement
of the array yield. Other reconfiguration models that
use multiple-track routing channels and programmable
switches have been studied extensively in [4], [7], [9],
[101.

In this paper we consider the model studied in [2],
[8]: it consists of an n • k rectangular array with m
columns of spare PEs on one side. The routing hard-
ware used for reconfiguration could vary: in [8] a
multiplexer based interconnection scheme is used
whereas in [2] the routing is implemented by tracks and
switches in a similar way to the routing hardware of
the models presented in [3], [4], [7], [9].

In the presence of faulty PEs, reconfiguration is
achieved by constructing a logical array using only the
healthy non-spare and spare PEs. Note that one can
always successfully reconfignre the array as long as the

330 Varvarigou, Roychowdhury and Kailath

number of faulty PEs is no more than the number of
spare PEs; an arbitrary construction of the logical array,
however, might result in large interconnect lengths. The
general objective for reconfiguration in such models is
to minimize the geometric distances between logical
neighbors (i.e., PEs that are connected in the recon-
figured array). This criterion is motivated by the fact
that shorter interconnects reduce the communication
delays among the PEs, and also might lead to less
routing hardware. The manner in which the size of the
additional routing hardware depends on the intercon-
nect lengths has been studied for the multiplexer based
scheme in [8] and also for the tracks-switches based
scheme in [2].

The problem of determining a reconfiguration that
minimizes the length of the longest interconnect is hard
and several researchers [2], [8] have presented sub-
optimal algorithms that seem to have satisfactory per-
formance. It is not clear, however, that the algorithms
presented in the literature make full use of the capability
of the above model, e.g., the algorithms presented in
[8] fail to reconfigure even when the faulty PE distribu-
tions are very simple (see Section 4 for examples). In
this paper we develop a new efficient algorithm that is
simple and at the same time can reconfigure any array,
with arbitrary fault distribution, using only small in-
terconnect lengths. We can also demonstrate that our
algorithm performs better than other algorithms that
use the same model. In particular, we prove that our
algorithm performs better than the one presented in [8]:
It can reconfigure (1) all the faulty patterns in [8], us-
ing the same or smaller interconnect lengths, and (2)
much more general faulty patterns, again using the same
interconnect lengths permitted in [8]. As a comparison
to the algorithm in [2], we show that our algorithm can
reconfigure certain faulty patterns while maintaining
the length of links between the PEs constant, whereas
the algorithm presented in [2] needs length of links that
grow proportionally to the size of the array.

The key idea that allows our algorithm to perform
better than others that use the same model is the local
treatment of the faulty patterns. The local treatment of
the faulty pattern is achieved by segmenting the given
array into subarrays of special structure that are easy
to reconfigure. These special faulty patterns are then
reconfigured in a way that keeps the interconnection
length requirements small; this leads to a reconfignra-
tion of the whole array with small interconnect lengths.

An overview of the rest of the paper is as follows.
In Section 2 we present a reconfiguration algorithm for
the case of only one column of spare PEs along one

side of the array. The algorithms are based on one sim-
ple algorithm that shows how to reconfigure an N •
(N + 1) array into an (N + 1) x N array and vice versa.
In Section 3 we shall generalize the algorithm of Sec-
tion 2 to the case where there are more than one spare
columns of PEs. Section 4 presents some discussion
on the evaluation of our algorithm and compares it to
other reconfiguration algorithms that use the same or
similar types of models. Section 5 presents some con-
cluding remarks. Finally, in the Appendix we discuss
time complexity issues, of the algorithms developed in
this paper.

2. Reconfiguration Algorithms

In this section we present a new algorithm for recon-
figuring processor arrays according to the model
already described in the Introduction. For the sake of
simplicity in illustrating the algorithms, we shall first
consider the case where there is only one column of
spare PEs in one side of the array. The reconfigura-
tion for the case where there are multiple spare col-
umns is similar and will be outlined in the next section.

In the first part of this section we shall introduce
a novel way of reconfiguring an N x (N + 1) array
into an (N + 1) x N array. This is a simple reconfigura-
tion procedure that will be later used to develop recon-
figuration algorithms for certain special cases of faulty
patterns. Reconfiguration algorithms for the general
case of arbitrary faulty patterns will then be constructed
by utilizing the algorithms for the special cases. Before
proceeding to the analysis of the reconfiguration pro-
cedure, let us define the following:

Definition 1. Physical array (column, row) is the given
N • (N + 1) array (column, row).

Definition 2. Logical array (column, row) is the array
(column, row) which we derive after the reconfigura-
tion procedure.

2.1. Basic Reconfiguration Algorithm: Reconfiguring an
N x (N + 1) Array into an (N + 1) x NArray

Herein, we develop a procedure for reconfiguring an
array that has one more column than rows into an ar-
ray that has one more row than columns. The idea
behind our algorithm is to increase the length of each
of the first N columns of the array by using the PEs

New Algorithms for Reconfiguring VLSI/WSI Arrays 331

of the (N + 1) th column. The way of doing such a
reconfiguration can be described as follows: we con-
struct the first logical column of the logical (recon-
figured) array using two PEs from the first physical row
of the physical array and one PE from each of the
following physical rows. In general we construct the
i th logical column of the logical (reconfigured) array
using two PEs from the i th physical row and one PE
from the rest of the physical rows as shown in figure
l(a). We formally describe this mapping of the entries
of the logical array into the entries of the physical ar-
ray in a code form as follows:

Consider entry (i, j) of the physical array, where 1
< i < Nand 1 _<j _< N + 1. Map the (i ' , j ') entry
of the logical array to the entries of the physical array
in the following way:

(i, j) if i ' = j '

(i - 1 , j) i f / ' - j ' > 2

(i', j ') ~ (i, j -/- 1) i f j ' - i ' _> 1

(i - 1, j + 1) i f / ' = j ' + 1

The procedure for mapping a (N + 1) • N physical
array into an N • (N + 1) logical one is similar. We
simply use the procedure above, interchanging the rows
with the columns and vice versa.

2.2. Reconfiguration Algorithms for Special Cases

We now describe efficient reconfiguration algorithms
for the following Special Cases (we shall use these
reconfiguration algorithms later for the general case):

Special Case 1. AnN • (N + 1) physical array, with
N faulty PEs, each in a different
physical column, into an N • N
logical array of healthy PEs.

Special Case 2. An N • N physical array that has
only one faulty processor in each
row, into an (N - 1) • Nlogical ar-
ray of healthy PEs.

Special Case 3. An K • (N + 1) physical array into
a logical array that has N logical col-
umns, out of which, L predetermined
ones, namely c i i = 1 , L are of

length (K + ki) i = 1, . . . , L, and
the rest (N - L) columns are of
length K, where ~/L= 1 ki = K.

Before proceeding to the description of the
algorithm for Special Case 1, we shall define the
following:

Definition 3. An i-fault physical (logical) column (row)
i = 0, 1, 2 is a physical (logical) column (row) that
has i faulty PEs.

Special Case 1.

In this reconfiguration algorithm we shall reconfigure
an N x (N + 1) array with N faulty PEs, at most one
in each column, into an N x N healthy one. The recon-
figuration procedure can be outlined as follows:

1. We first apply the Basic Reconfiguration Algorithm
described in Section 2.1 as if there were no faulty
PEs in the array (see figure l(c)). The resulting
logical array has logical columns with 0, 1 or 2
faulty PEs. This is because every logical column
has PEs from only two physical columns, as is ap-
parent from the Basic Reconfiguration Algorithm.
However, in this Special Case every physical col-
umn has at most one faulty PE; therefore, the max-
imum number of faulty PEs that any logical column
can have is two.

2. Now, the desired reconfigured array should have
N PEs in each column. Hence, the 2-fault logical
columns (in the logical array obtained after the
above step) that have (N - 1) healthy PEs, need
to borrow one PE each from the 0-fault columns
that have (N + 1) healthy PEs. The 1-fault columns
have N healthy PEs and need not change the number
of their PEs.

It is easy to see that for every 2-fault logical col-
umn that needs an extra PE, there is a correspon-
ding 0-fault logical column that has an available PE
to give. For each such pair of logical columns we
can define a borrowing process such that a 2-fault
logical column borrows the extra PE of the cor-
responding 0-fault logical column. This borrowing
process between the 2-fault coltunns and the 0-fault
columns takes place along the N tu physical row of
the array as shown in figure 1 (d). Lemma 6 in Sec-
tion 4.1 shows that these borrowing processes do
not interfere with each other, i.e., no more than one
such borrowing process can occur in the sample col-
umns of the N th physical row.

332 Varvarigou, Roychowdhury and Kailath

(a)

(b)

1-fault logical .2-fault logical
column / column

[]

['i _ _ _

(c)

[]

corresponding 0-fault
logical column

/

(d)

]

J
]

]

]
- - I

~borrowng process
along the N physical row.

Fig. 1. Reconfiguration for Special Cases.

The reconfiguration procedure presented above can be
formally described in a coded form as follows:

1. Construct an (N + 1) x N logical array out of the
N x (AT + 1) physical (given) one according to the
basic reconfiguration algorithm of Section 2.1.

2. For the logical cohtmnsj ' with one faulty processor
in the entry (k' j ') , do the following renaming:

(i', j ') -~ ((i', j ')

(i ' - 1, j ')

i f i ' < k '

if i ' > k '

3. For the 2-fault logical columns j ' with faults in en-
trees: (k ' j ') and (l ' j ') , (l > k), do the following
renaming:

(i ' , j ') i f / ' < k '
(i ' , j ') ~ (i' - 1, j ') i f k ' < i ' < l '

(i ' - 2, j ') i f / ' < i '

4. For the 2-fault columns j ' , if l ' is the corresponding
0-fault column, do the following renaming:

~ (N , k ' + 1) i f j ' < k ' < 1'
(N, k')

L (N + 1, l ') i l k ' > 1 ' - 1

New Algorithms for Reconfiguring VLSI/WSI Arrays 333

Special Case 2.

We now present our algorithm for reconfiguring an N
• N array with N faulty PEs, each in a different
physical row, into an (N - 1) • N logical healthy ar-
ray. The reconfiguration procedure for this Special Case
can be outlined as follows:

1. Consider the N x N array shown in figure 2(a). Add
one auxiliary fault-free row on the top of the physical
array as shown in figure 2(a). The resulting array
is an (N + 1) • N array that has N aulty PEs, one
in each row.

2. Apply the reconfiguration algorithm for Special
Case 1 presented above (interchanging the role of
the columns and rows) to get a N x N healthy array
(see figure 2(b)).

3. Disregard the first row of the reconfigured array.
This results in a (N - 1) • Nhealthy array achiev-
ing the goal of this reconfiguration procedure (see
figure 2(b)).

Special Case i

We now describe our algorithm for reconfiguring an
K • (N + 1) array into an array of N columns such
that (1) L special columns, namely cl eL, are of
length (K + ki), i = 1, . . . , L, with ~=1 ki = K, and
(2) the rest of the (N - L) columns are of length K

each. We shall refer to the columns c 1 , CL as the
special columns of the array and the corresponding ki
will be defined as the degree of the special column c i.
For example, the 3 • 6 array of figure l(b) is recon-
figured into an array that has its first and third columns
extended by two and one PEs respectively. The special
columns of the array are: c I = 1 and c2 = 3, and the
corresponding degrees are: k 1 = 2 and k 2 = 1. (We
realize that the usual definition of the array implies that
all the columns have the same number of entries. For
the sake of simplicity, we shall refer to the block struc-
tures that have some of their columns extended as ar-
rays as well.)

The idea for this reconfiguration procedure is similar
to that for reconfiguration of an N • (N + 1) physical
array into an (N + 1) • Nlogical one presented in Sec-
tion 2.1. We simply use the K PEs of the (N + 1) th
physical column of the array to increase the length of
the predetermined columns el, . . . , c r. The meth-
odology for this kind of reconfiguration can be de-
scribed as follows:

1. For logical column Cl use two PEs from the first
kl physical rows and one PE from every other
physical row. For logical column c i use two PEs
from the ~]-1 kl + 1 ~=1 kl physical rows and
one PE from every other physical row.

2. For any other logical column except ci's, use one
PE from each physical row.

~ iliary row

, ,

D D N N N

(a)

Fig. 2. Reconfiguration for Special Case 2.

(b)

334 Varvarigou, Roychowdhury and Kailath

The algorithm is illustrated in the 3 x 6 array of figure
l(b). For logical column one (which is a special col-
unto with degree two), we use two PEs from physical
rows one and two and one PE from every other physical
row. Since logical column two is not a special column,
we only use one PE from every physical row. Logical
column three is a special column with corresponding
degree one and thus we use two PEs from physical row
three and one PE from each of the rest of the physical
rows. For the rest of the logical columns (which are
not special columns), we use one PE from each physical
row.

2.3. Reconfiguration for the General Case of an
N • (K + 1) Physical Array with N Faulty PEs
into a N • K Healthy Logical One

In this section, we shall introduce an algorithm for
reconfiguring arrays with general faulty patterns.

Definition 4. A faulty stack is defined to be a set of
faulty PEs (in the physical array) that are in the same
column and in consecutive rows. The size of a faulty
stack is defined to be its cardinality.

Definition 5. Overlapping parts of two stacks are defined
to be the parts of the stacks that are in the same rows.
The size of the overlapping is defined to be the length
of the overlapping parts.

Figure 3(a) illustrates an example of two overlapping
stacks; each stack is of size 4 and they overlap com-
pletely. The pattern of multiple overlapping faulty stacks
of PEs is a very difficult case of faulty patterns to han-
dle. For example, as shown in Section 4, the algorithm
in [8] fails whenever there are stacks that overlap by
more than 1 PEs. It is easy to see why overlapping
stacks is a hard pattern to reconfigure: every row of
the array has only one spare PE available for the
replacement of possible faulty PEs along the row. So,
in the case of multiple overlapping stacks, only one of
the stacks can be reconfigured using the spare PEs that
are available in the same physical rows where the stacks
overlap. The rest of the overlapping stacks must be
reconfigured by spare PEs that are in rows above or
below the rows where the overlapping occurs. The big-
ger the overlapping size and the larger number of
overlapping stacks, the more difficult it is to move spare
PEs from rows where they are available to the rows
where the faulty PEs appear. Our algorithm is designed

i . ,

[S]O Ol-q O D D D D
DI-] D D D l - lDI-q D

":0 0 0 0 0 0 0 0 0

..0__0.._o____0_.0__0._0__0..0_.

A',

', [] [] [] [] Of

 olN [] [] oiN [] []
(a)

l ..

i ._. _-_- :.- .-~

i

(b)

Fig. 3. Example: Reconfiguration for overlapping stacks.

to handle efficiently these hard cases of overlapping
stacks locally so as to minimize the requirement of
length of links between the PEs as much as possible.

Example. We will first describe the basic concepts of
the reconfiguration procedures by introducing an ex-
ample: Consider the array of figure 3(a) where an
overlap of size 4 is taking place between two stacks of
faulty PEs. The reconfiguration procedure can be sum-
marized in two steps:

1. Consider for the moment only the rows where the
overlapping is taking place; this is indicated by
subarray A in the figure. There are two columns of
faulty PEs in subarray A, but there is only one col-
umn of spare PEs available in the subarray. So, only
one of the two columns of the faulty PEs can be
reconfigured using the spare PEs available in A. To
reconfigure the other column of faulty PEs we use
the healthy PEs in A to create one more logical col-
umn at the expense, of course (since the total number
of available PEs remains the same), of the length
of some of the resulting columns. In other words,

New Algorithms for Reconfiguring VLSI/WSI Arrays 335

we manage to create an extra column in A by steal-
ing PEs from the already existing columns of A. By
doing so we manage to move the need o f PEs from
the interior o f subarray A to its boundaries, and thus
closer to the rows where there are available PEs.
The way we create this extra column is as follows:
we define a 4 x 4 segment d in subarray A by con-
sidering 3 fault free columns around one of the two
overlapping parts of stacks as shown in figure 3(a);
in general, we consider such segments for all but
one of the overlapping parts of the stacks. Using the
reconfiguration algorithm for Special Case 2 we can
reconfigure the 4 x 4 segment that has one fault
column (and only one faulty PE in each of its rows),
into a 3 x 4 healthy segment. For the reconfigura-
tion of the remaining faulty stack we are going to
use the spare PEs that are available in the rows where
the overlapping occurs. As shown in figure 3(b), an
extra logical column has been created in subarray
A at the expense of the length of logical columns
2, 3, 4 and 5. These columns are now of length 3
instead of 4; that is the same as the length of the
rest of the columns of subarray A.

2. Consider now the fault-free rows of the array in-
dicated as subarray B in figure 3(a). This fault-free
block has an extra column of available PEs. We use
these spare PEs to increase the length of some of
its logical columns. More precisely, we will use the
extra column of PEs in subarray B to increase the
length of the logical columns that have become
shorter in subarray A in the previous step. By doing
this we manage to move the availability of PEs from
the interior of the fault-free block to its boundary
and thus bring the available PEs closer to the rows
where they are needed. The way we do this is as
follows: using the reconfiguration algorithm for
Special Case 3 we reconfigure the fault-free block
B, considering as special columns ci's the logical
columns that have become shorter in subarray A.
After the reconfiguration, the special columns of
subarray B increase in length to compensate for the
loss of length that they suffered in subarray A (see
figure 3(b)).

Thus, the premise behind this reconfiguration
algorithm is the local treatment of the blocks that have
overlapping stacks and the local treatment of the fault-
free blocks. We segment the array into subarrays that
we can deal with according to the Special Cases pre-
sented earlier. We increase the number of columns

when necessary at the cost of their length and we in-
crease the length of the columns when necessary at the
cost of their number.

The general way of reconfiguring the subarrays that
have multiple overlapping stacks of faulty PEs in terms
of the number of their columns can be described as
follows:

2.3.L Multiple Stack Reconfiguration Procedure. Con-
sider a subarray of size s x (N + 1) with n faulty
overlapping stacks of size s each. The objective is to
create (n - 1) additional logical columns in the sub-
array, of course at the expense of the length of some
of them. This is done as follows:

1. Define (n - 1) non-overlapping segments d k k =
1, . . . , (n - 1), of size s x s, each of which con-
tains one faulty stack; for example, segment d u in
subarray ssal, and segment d21 in subarray ssa2 as
shown in figure 4(a). I f such segments cannot be
defmed, divide the subarray into subarrays of smaller
s and apply the multiple stack reconfiguration pro-
cedure for each of them.

2. Reconfigure these s x s segments into (s - 1) x
s fault-free logical segments, according to Special
Case 2 (see figure 4(b)).

2.3.2. The General Reconfiguration Procedure.

Step 1. Partition the array into the following kind of
subarrays that have (N + 1) columns (see figure 4(a)):

1. Fault-free subarrays ffsai, i = 1 k of size f
• (N + 1) each (see for example ffsal and ffsa z of
figure 4(a)).

2. Subarrays that have only one faulty PE in each row,
ofsai, i = 1 l of size o i x (N + 1) each (see
for example ofsal of figure 4(a)).

3. Subarrays ssai of size si • (N + 1) that have n i (>
1) stacks each of size s i (see for example subarrays
ssal and ssa2 in figure 4(a); in ssal, there are two
stacks of size 2, and in ssa 2 there are again two
stacks but of size 1).

Step 2. For each subarray with faulty stacks ssai apply
the Multiple Stack Reconfiguration Procedure (see
figure 4(a)(b)).

Step 3. Do the following:

1. Consider now the columns of each reconfigured seg-
ment, defined in Step 2, from left to right and the
segments from left to right and from top to bottom.

336 Varvarigou, Roychowdhury and Kailath

i [] [] [] [] [] [] [] D [] i

r : ~ : : : z : : . ,

iD [] DI [] [] [] []

~ : : : : : : : : : ~ 555~5SE ' : : : : : : : : : : : : : : : := : : : : : : : : '

~

d ~ l ' U ~ ~
.

(a)

iq] []

(b)

Fig. 4. Reconfiguration for the General Case.

Map each one of the columns of every segment to
a faulty-free row considering the latter ones from
top to bottom. For example, the first column of dll
maps to physical fault-free row 1. The second col-
urnn of dn is mapped to the physical fault-free row
2. The column of segment d21 is mapped to the
physical fault-free row 8.

2. Consider now every fault-free subarray ffsai. Let
the columns cj of ffa i which are mapped to the rows
of ffai be the special columns of ffai. The degree kj,
corresponding to each special column cj, equals the
number of fault-free rows of the fault-free subarray
ffsai that are mapped to column cj. For example, as
shown in figure 4(b), ffsal has special columns
cl = 2 and c2 = 3 with corresponding degrees
k I = 1 and k2 = 1; ffsa2 has ca = 5 with cor-
responding degree k 1 = 1.

3. Reconfigure each subarray ffsai according to
Special Case 3 (see figure 4(b)).

The reconfiguration presented above can handle any
faulty pattern if the number of the faulty PEs is no
greater than the number of spare PEs, and achieves

reconfiguration probability of 100 %. In the case where
the number of the faulty PEs is less than the number
of spare PEs, we treat the healthy spare PEs of several
fault-free rows as faulty and apply the general recon-
figuration algorithm presented above. The above results
can be summarized in the following theorem:

TnEOP, ZM 1. The reconfiguration algorithm presented
above reconfigures any N • (K + 1) array with N faulty
PEs into a N • K healthy array of PEs.

Proof On the proof of the theorem we shall make the
following comments:

�9 The given array is segmented in Step 1 of the general
reconfiguration algorithm into subarrays that: (1) are
fault-free (2) have multiple faulty stacks (3) have only
one column of faulty PEs.

�9 The subarrays that have only one column of faulty
PEs get reconfigured by disregarding the column of
faulty PEs. This faulty column is replaced by the col-
umn of spare PEs available in every subarray.

�9 In Step 2 of the general reconfiguration algorithm,
we handle subarrays that have more than one (ni >
1) faulty columns. We define segments around (n i -
1) of the faulty columns of subarray ssai and recon-
figure them according to Special Case 2. Each seg-
ment gets reconfigured in terms of the number of the
logical columns that it should have. The n~ faulty
column of the subarray gets replaced by the spare
column of PEs available in the subarray. So the whole
subarray ssai gets reconfigured in terms of the
number of its columns. Of course some of those col-
unms become shorter in length than others. Step 3
compensates for this loss of length as discussed
below:

�9 In the third step of the general reconfiguration
algorithm, every column of the segments defined in
Step 2 that need an additional PE to compensate for
the length lost in Step 2 is mapped to a fault-free col-
umn; it is easy to see that the total number of those
columns equals the total number of the fault-free
rows. The logical columns that need additional PEs
become the special columns of the fault-free segments
with corresponding degree equal to the total number
of additional PEs needed. Thus, we reconfigure the
fault-free subarrays according to Special Case 3, in-
creasing the length of the special columns by a
number of PEs equal to their degree and reducing
at the same time the total number of logical columns
of the fault-free subarray by one.

New Algorithms for Reconfiguring VLSI/WSI Arrays 337

3. Generalization for Arrays with More Than One
Spare Columns

In this section, we shall outline the generalization of
the reconfiguration algorithm presented in the previous
section for arrays that have more than one spare col-
umn. The general idea for the reconfiguration remains
the same when the number of spare columns is M >
1. It is still a local treatment of the faulty patterns that
has segmentation of the array into different kinds of
subarrays as its basic step. The basic differences com-
pared to the algorithm presented in Section 2 can be
summarized as follows:

* Instead of the segmentation of Step 1 of the general
reconfiguration algorithm of Section 2, the array is
now segmented into the following kind of subarrays:
subarrays that (1) have less than M faulty PEs in their
rows, (2) have exactly M faulty PEs in their rows and
(3) have more than M overlapping stacks of faulty
PEs.

�9 The subarrays that have exactly M PEs in their rows
get reconfigured just by disregarding the M faulty PEs
of each row and substituting them with the M spare
PEs available in each row.

�9 The subarrays that have more than M overlapping
faulty stacks get reconfigured according to Step 2 of
the general reconfiguration procedure presented in
Section 2. Hence, we again reconfigure the subarray
in terms of the number of its coltmms using the recon-
figuration algorithm for special case 2 as we did when
we had only one column of spare PEs. The only dif-
ference is that we need now only define segments
around (n i - M) (instead of (n i - 1) in the case of
the only one spare column) of the faulty stacks. This
is because we need only create (ni - M) new logical
columns since there are M available columns of spare
PEs to replace M of the faulty stacks of the subarray.

�9 The subarrays that have less than M faulty PEs in
their columns stand for the fault-free subarrays of the
general reconfiguration algorithm. Each one of their
rows r i has m i faulty PEs, where 0 < m i < M , and
thus has M - mi available PEs. So, in the third step
of the general reconfiguration procedure, a total of
(M - mi) columns (instead of just one as it was for
the case of the only one column of spare PEs) of the
segments defined in Step 2 are mapped to row r i.

�9 The reconfiguration algorithm for the third Special
Case is now simply generalized to an algorithm that
is applied to arrays that have rows with less than M
faulty PEs instead of fault-free arrays. Each logical
column can now get up to M - m i PEs from
physical row i that has m i < M faulty PEs.

4. Evaluation of the Algorithm

As already stated in Theorem 1, if the interconnect
lengths between the logical neighbors of the reconfigured
array are unrestricted, then our algorithm has a 100 %
reconfiguration probability for any general faulty pat-
tern. The general objective for reconfiguration in models
such as the one under consideration, however, is to
derive a logical array such that the geometric distances
between logical neighbors are kept small even for dif-

f i c u l t faulty patterns. In this section we are going to
evaluate the performance of our algorithm in terms of
the interconnect lengths that it requires to reconfigure
faulty patterns of certain difficulty. More precisely, in
the first part of this section we are going to restrict the
interconnect lengths allowed to be ~ or less, i.e., every
PE is restricted to have all its logical neighbors among
the 20 PEs that are shown in figure 5(a). The permit-
ted set of logical neighbors for every PE will be defined
as its neighborhood. We will prove that the basic recon-
figuration algorithm and the reconfiguration algorithms
for the special cases presented in Section 2 maintain
the neighborhood constraints set above. We will also
prove that several general faulty patterns can be recon-
figured without increasing the neighborhood as depicted
in figure 5(a). In Section 4.2, we use the results of Sec-
tion 4.1 to show that our algorithm performs provably
better than those in [8], i.e., can reconfigure many more
faulty patterns than possible by the algorithm in [8].
We also show that for certain faulty patterns, our
algorithm requires only constant interconnect lengths
whereas, the algorithm in [2] requires lengths propor-
tional to the size of the array.

4.1. Reconf igura t ion Under N e i g h b o r h o o d Constraints

De f in i t ion 6. For each entry (i, j) of the given array,
we define as neighborhood (or legal neighborhood) of
(i, j) the set of PEs: Ni, j = {(k, l) / (k , l) = (i, j) +

(m, n), (m, n) ~ T} where T is a set of Tuplus.

In this section, we consider Ni, j as shown in figure
5(a). In other words: Ni, j = { (k , l) / (i - k) 2 + (j -
0 2 -< 5}. If the reconfiguration results in an intercon-
nect scheme where all PEs are only connected with PEs
that are in their neighborhoods (legal neighborhood)
then the reconfiguration maintains the n e i g h b o r h o o d
constraints .

THEOREM 2. The reconfiguration for Special Case 3
maintains the neighborhood constraints when the
degree ki of every special column c i of the array is less
than or equal to one.

338 Varvarigou, Roychowdhury and Kailath

D

D

D

D

D
Eli

D

D

D

D

D

D

D

D

D

D
D
[2

(a)

t ' S_u

E:I EEl I-d
S_I -,j

(b)

Fig. 5. Definitions.

Proof The proof comes directly from figure l(b). It
is easy to check that for each entry (i ' j ') of the logical
array that is mapped in physical entry (i, j) its logical
neighbors: (i' + 1, j ') , (i' - 1, j ') , (i', j ' - 1),
(i', j ' + 1) are mapped in (i, j) 's legal neighborhood.

THEOREM 3. The basic reconfiguration algorithm of a
(N + 1) • N logical array from a N • (N + 1) physical

array maintains the neighborhood constraints men-
tioned above.

Proof The basic reconfiguration procedure is a
restricted case of special case 3 when all the columns
of the array are chosen to be special columns with cor-
responding degree one. So the proof follows immedi-
ately from Theorem 2.

We now prove that reconfiguration of Special Case
I maintains the neighborhood constraints. We shall first
make the following definitions:

Definition 7. St is the subset of the PEs (i, j) of the
physical array for which (i - j) _> 0 is true, (see figure
5(b)). The PEs of the array that are in Sl from now on
will be referred to as St PEs.

Definition 8. Su is the subset of the PEs (i, j) of the
physical array for which (i - j) > 0 is true (see figure
5(b)). The PEs of the array that are in Su from now
on will be referred to as Su PEs.

Definition 9. For each 2-fault logical column i the cor-
responding 0-fault logical column is defined as the
0-fault logical column j, j > i for which the following
is true: all logical columns k, i < k < j are 1-fault
logical columns (see figure l(c)).

We now present some lemmas that we will use later
to prove that the reconfiguration algorithm for Special
Case 1 maintains the neighborhood constraints.

COROLLARY 1. The number of 2-fault logical columns
equals the number of the 0-fault logical columns.

LEMMA 1. The $1 PEs of the i th logical column are part
of the i th physical column whereas the Su ones are part
of the (i + 1) th physical column.

Proof Immediately from the basic reconfiguration
algorithm. For example in figure 5(b) the Sl PEs of
the 3 rd logical column belong to the 3 rd physical col-
umn whereas the Su PEs belong to the 4 th physical
column.

LEMMA 2. Each logical column has at most two faulty
PEs. If a logical column has two faulty PEs, then one
of them is in St and one in Su.

New Algorithms for Reconfiguring VLSI/WSI Arrays 339

Proof The first part follows immediately from the basic
reconfiguration algorithmn by observing that each
logical column i occupies parts of only two physical
columns; the part of the physical column i which is in
St, and the part of the physical column (i + 1) which
is in S~ (by Lemma 1). It is thus obvious that i cannot
have both faulty PEs in St(Su) since there is only one
faulty PE in each of the physical columns i and (i + 1).

LEMraA 3. Suppose that the only faulty PE of logical
column i is in St. Then one of the following is true:

1. The (i + 1) logical column has only one faulty PE
which is also in St.

2. The (i + 1) logical column has two faulty PEs (one
in S~ and one in St).

Proof: Since the only faulty PE of the logical column
i is in St, (in the i th physical column), the faulty PE
of the (i + 1) th physical column should be in St. So
the logical column (i + 1) has one faulty PE in St.
Therefore, if logical column (i + 1) is 1-fault logical
column, then 1 is true; otherwise (by Lemma 2) 2 is
true.

LEMMA 4. Suppose that logical column i has one faulty
PE in S~. Then one of the following is true:

1. The logical column (i + 1) has only one faulty PE
in the S~ part of physical column (i + 2).

2. The logical column (i + 1) is 0-fault logical column.

Proof Since there is a fault in the Su of physical col-
umn (i + 1), there is no faulty PE in St in the same
physical column. So, if physical column (i + 2) has
a faulty P E n Su, then 1 is true; otherwise 2 is true.

LEMMA 5. Suppose that logical column i is fault free.
Then one of the following is true:

1. The (i + 1) logical column has only one faulty PE
in St.

2. The (i + 1) logical column is a 2-fault logical column.

Proof. Since i is a 0-fault logical column, the Su part
of (i + 1) physical column is fault-free. Thus there is
a fault in the St part of the (i + 1) th logical column.
So, if the (i + 2) th physical column has no fault in Su,
then 2 is true; otherwise 1 is true.

LEMMA 6. Each 2-fault logical column i has a cor-
responding 0-fault logical columnj. Moreover, all the
1-fault logical columns k with i < k < j have their
faulty PEs in Su.

Proof Since i is a 2-fault logical column then (by
Lemma 1) it has a faulty PE in Su. Then by Lemma
4 the (i + 1) logical column is (a) either fault-free, in
which case we are done (b) or has one faulty in Su,
in which case the lemma has been proved for logical
column (i + 1). Logical column (i + 1) now has one
faulty PE in Su and so Lemma 4 can be applied again
to prove that logical column (i + 2) is either fault-free
or has only one fault in its Su part. One can easily
show by induction that all the logical columns between
the i th and thej th ones are 1-fault logical columns with
faulty PEs in their S l parts.

The above lemma implies that there are one or fewer
borrowing processes (like the ones described in Special
Case 1) between the 2-fault logical columns and the
0-fault logical columns going on along the same col-
umns of physical row N (since there are only 1-fault
logical columns between every 2-fault logical column
and its corresponding 0-fault logical column).
Moreover, there are no faulty PEs along the physical
rows where the borrowing process is taking place. We
now use the lemmas developed above to outline the
proof that the reconfiguration of Special Case 1 main-
tains the neighborhood constraints.

THEOREM 4. The algorithm for the Special Case 1, that
reconfigures a N • (N + 1) physical array with N faulty
PEs that are in different physical columns, into a N •
N logical array, maintains the neighborhood constraints.

Proof We have only to prove that the neighborhood
constraints are maintained along the logical columns
and the rows of the reconfigured array.

�9 The fact that the neighborhood constraints are main-
tained along the columns of the logical array follows
immediately from Theorem 2. The first step of the
reeonfiguration algorithm for Special Case 2 is just
the basic reconfiguration algorithm. One can easily
see in figure l(c)(d) that when a fault appears in the
straight part of a logical column like the one appear-
ing in the third logical column, then the interconnect
length increases from 1 to x/2 which is still within per-
missible limits. If a fault appears in the bent part of
the logical column like the one appearing in the sec-
ond logical column of the array of the same figure,
then the interconnect length decreases from vr2 to 1.

340 Varvarigou, Roychowdhury and Kailath

�9 The proof that the neighborhood constraints are main-
tamined along the rows of the reconfigured array where
there is no borrowing process taking place is illus-
trated in figure l(c) and (d). The worst case as far
as connections between PEs of the same logical row
are concerned appears when two adjacent logical col-
umns have faulty PEs before and after their bent
parts. For example, see adjacent logical columns three
and four of figure l(c). One can easily check that the
neighborhood constraints are maintained between the
neighboring PEs of the two logical columns. One can
also check that the neighborhood constraints are main-
tamined in all the other cases when the two adjacent
columns both have their faulty PEs before or after
their bent part (see for example adjacent logical col-
umns 4 and 5 in figure l(c)), or when one of the two
adjacent columns is fault-free and the other has its
faulty PE before or after its bent part (see for exam-
ple logical columns 5 and 6 of figure l(c)).

�9 The neighborhood constraints are also maintained
along the rows of the array where the borrowing proc-
ess is taking place. Note that by Lemma 6, there is
no fault in St between the 2-fault column and the
fault-free column, and no more than one borrowing
process occurs along the same columns of physical
row N. So the example of figure l(d) proves that in
general, the neighborhood constraints are maintained
along the rows of the array where the borrowing proc-
ess is taking place, since any general borrowing proc-
ess is no different than the one presented in figure
l(d).

THEOREM 5. The reconfiguration procedure for Special
Case 2 maintains the neighborhood constraints.

Proof The proof that the reconfiguration algorithm of
Special Case 3 maintains the neighborhood constraints
follows immediately from Theorem 4 above, since
Special Case 2 is reconfigured using the reconfigura-
tion algorithm of Special Case 2.

So far we have proved that the reconfiguration for
Special Cases 1 and 2 and the Basic Reconfiguration
Algorithm maintain the neighborhood constraints. We
have also proved that Special Case 3 can get recon-
figured in the legal neighborhood if the degree of the
special columns does not exceed one. The following
theorem proves that the General Reconfiguration algor-
ithm results in arrays that do not violate the neighbor-
hood constraints if Step 3 of the general reconfigura-
tion algorithm does not result into special columns with
degree more than one.

THEOREM 6. Our algorithm can reconfigure any faulty
pattern within the legal neighborhood if step 3 of the
general reconfiguration algorithm does not result into
special columns with degree more than one.

Proof The proof of this theorem follows from theorem
2 and 4 presented above as follows:

�9 The fact that the neighborhood constraints are main-
tamined in the fault-free subarrays of the array defined
in Step l of the General Reconfiguration Algorithm
follows immediately from Theorem 2.

�9 It is easy to check in figure 4(b) that the neighborhood
constraints are maintained in the subarrays that have
only one faulty PE in every row.

�9 The subarrays that have more than one column of
faulty PEs are divided into segments that are recon-
figured according to Special Case 1. The reconfigura-
tion of those segments maintain the neighborhood
constraints as stated in Theorem 4. The neighborhood
constraints are also maintained between adjacent such
segments o1" between such segments and fault-free ad-
jacent columns (arguments similar to those presented
in the proof of Theorem 4 hold for this case as well,
since the boundary columns of the adjacent segments
can be seen as adjacent columns in the same
segment).

�9 The neighborhood constraints are also maintained
between adjacent subarrays, as can be easily seen in
figure 4(b).

4.2. Comparing the General Reconfiguration Algorithm
to Other Reconfiguration Algorithms

The algorithm presented in [2] uses a similar model
to the one we have discussed in this paper. It is a general
algorithm that can handle various faulty patterns with
good interconnect requirement performance. Never-
theless it sometimes requires interconnect lengths that
are proportional to the size of the array whereas our
algorithm reconfigures the same patterns keeping the
required interconnect length constant. Such an exam-
ple is presented in figure 7(a). The series of PEs in-
dicated as S in the figure can grow proportionally to
the size of the array and so can the length of the inter-
connect link indicated as L in the same figure. Figure
7(b) shows the reconfiguration of the same faulty pat-
tern according to our algorithm. It is easy to check that
the interconnect length required remains constant as
the size of the array grows.

New Algorithms for Reconfiguring VLSI/WSI Arrays 341

i

[]

m

m
m

[]

m
[]

[]

[]

Fig. 6. Reconfiguration for the multiple-stack case.

E

_q

_q

ff] r-qr-q r-q[] r-1 r-1 ff] r-qr--q
I~ I-I[31-I[3 [] i-I I-I I-I I--I

[] [] [] e [] [] [] =

 qleee ee

~ E I D D

can grow in length
proportionaly to the

[] []] ~ [-] [] [] [] [] [] [] slze of the array.

~ Link L grows with the length of S

(a)

(b)

Fig. 7. (a) Reconfiguration according to the algorithm presented in
[2]. (b) Reconfiguration according to our algorithm.

Another set of algorithms that uses the same kind
of model as that which we have used is presented in
[8]. The underlying model in [8] has only one column

of spare PEs. The maximum length of interconnect
links that is allowed is ~ and so the legal neighborhood
used is the one that we studied in the Section 4.1. The
algorithms presented in [8] are very simple, implement-
able in a distributed fashion, and achieve quite satisfac-
tory reconfiguration yield. However, those reconfigum-
tion algorithms are very fragile; they fail to reconfigure
the array even when the faulty PE distributions are very
simple. The following are only two simple instances
(one can generate several other instances) where they
fail: (1) if the bottom row and the top row does not have
any faulty processors, and (2) if there is an overlap of
faulty stacks even of size two.

The algorithms that we develop can reconfigure all
instances of faulty arrays as the algorithms reported in
[8]. Moreover, we can also reconfigure arrays with
several other faulty distributions, without increasing the
neighborhood constraints. In particular, our algorithm
can reconfigure most of the overlapping stack patterns,
keeping the size of the neighborhood as in [8] (see for
example the reconfiguration of the case of multiple
stacks in figure 6) and has no constraints about the first
and the last rows of the array being fault-free. We now
show that all the faulty patterns that are reconfigurable
using the algorithm in [8], meaning the faulty patterns
with overlapping stacks of size at most one can be
reconfigured by our algorithm without increasing the
interconnect length requirements.

When there are no overlapping stacks in the faulty
array, then according to Theorem 4, the array is recon-
figurable within the legal neighborhood. We now prove
that when there are overlapping stacks of size at most
one, we can reconfigure the array within the legal
neighborhood. This completes the proof that our
algorithm can reconfigure all the faulty patterns as can
the algorithms in [8] with no increase of the legal
neighborhood.

THEOREM 7. The general reconfiguration algorithm can
handle overlapping stacks of size at most one while
maintaining the reconfiguration constraints.

Proof Figure 8 presents the worst case of overlapping
of size one between stacks; the overlap occurs in adja-
cent columns of the array, and as such is supposed to
be the worst case as far as interconnection between PEs
in adjacent rows is concerned. Neither can the inter-
connection between PEs in the same logical column
get harder. It is easy to check in figure 8 that the
neighborhood constraints are maintained.

342 Varvarigou, Roychowdhury and Kailath

E] E] :]-

::
EI IXI 12-1 E-!
E-1 IX1E-I E
F] r] E

E]
- ~ j D n

Fig. 8. Reconfiguration for worst case of size-one overlapping stacks.

5. Conclusion

In this paper we have presented new algorithms for
reconfiguring processor arrays in the presence of faulty
PEs. We used a model of a rectangular array with spare
columns on one side and have focused on the minimiza-
tion of the resulting lengths of the links between the
PEs in the reconfigured array. Our algorithm is based
on a local treatment of the faulty patterns and on an
equal treatment of the spare and the non-spare PEs.
We not only achieve a reconfiguration yield of 100%,
but we can also reconfigure all the faulty patterns that
other algorithms can reconfigure, and even more com-
plicated ones, while keeping the required length of in-
terconnection links the same or even less. Finally, we
may note that the basic principles of our algorithm can
be used to reconfigure processor arrays that have both
columns and rows of spare PEs. Moreover, the
algorithms presented for the special cases can be ap-
plied to change the shape of a rectangular army of given
dimensions into a rectangular array of arbitrary dimen-
sions, keeping the necessary interconnections as small
as possible.

Appendix

A. Complexity Issues

A.1. Complexity of the Reconfiguration Algorithms for
the Special Cases

All the reconfiguration algorithms for the following
special cases are of linear time complexity (O(N) where
N is the size of the array).

�9 Basic Reconfiguration Procedure (Section 2.1).
�9 Special Case i (Section 2.2); step I of the algorithm

(in page 6) is of O(N) complexity, each iteration of
steps 2, 3, and 4 is of O(1) complexity and the total
number of iterations is N.

�9 Special Case 2 (Section 2.2); step 1 of the algorithm
(in page 6) is of O(1) complexity, step 2 is of O(N)
complexity, and step 3 is of O(1) complexity.

�9 Special Case 3 (Section 2.2); both steps 1 and 2 are
of linear complexity.

A.2. Complexity of the Multiple Stack Reconfiguration
Procedure

We are now going to describe in detail a possible im-
plementation of the multiple stack reconfiguration
algorithm which is of complexity O(N s) (N is the
number of columns of the subarray and s is the number
of rows). More precisely we are going to give an O(N
s) algorithm for implementing step 1 of the reconfigura-
tion procedure described in Section 2.3 First we
describe subroutine SEGMENT which defines (if pos-
sible) (n - 1) non-overlapping segments of size s •
s around (n - 1) out of the n faulty columns c 1
cn of the x • (N + 1) subarray.

SEGMENT:
For subarray ssaj with faulty columns cl, . . . , cn do:

1. Initialize all the columns of the subarray to
UNMARKED

2. Fori = 1 t o n d o
Consider faulty column el. Assign (if possible) un-
marked columns (ci - l, . . . , q, . . . , ci + s + l) to
segment dji for the biggest possible l.

New Algorithms for Reconfiguring VLSI/WSI Arrays 343

�9 If NOT possible and FLAG=true then:
FLAG=false
/*column ci is going to be the one for which we
are not going to define a s • s segment*/

�9 If NOT possible and FLAG=false then:
Signal FAILURE

/*there is already a column for which we did not
define a segment and we cannot define a segment
for c i either */

�9 If possible then M A R K columns (c i - l, . . . , ci,

�9 . . , ci + s - l) and continue.

Now the procedure that implements step 1 of the
Multiple Stack Reconfiguration Algorithm can be
described as follows:

Step O: i=0

Step 1: Divide the subarray into two subarrays, one
containing the first s - i rows and the other
the bottom i ones.

Step 2: Apply procedure S E G M E N T to the top
subarray.

�9 If S E G M E N T fails then:
i *-- (i + 1) and goto step 1

�9 I f S E G M E N T succeeds then: divide the bot-
tom subarray into subarrays of size (s - i)
each (the last one might be of smaller size
if i/(s - i) is not an integer) and apply SEG-

M E N T to each of them (note that S E G M E N T
cannot fail in this case)

It is obvious that S E G M E N T procedure takes O(N)
time and is called at most s times. So step 1 of the
Multiple Stack Reconfiguration algorithm is of O (N s)

complexity. Step 2 of the algorithm is of O(N) com-
plexity so the total complexity is O (N s).

A.3. Complexity o f the General Reconfiguration
Algori thm

The General Reconfiguration Algorithm presented in
section 2.3.2 is of complexity O(N2). The complexity
of each step is:

Step 1: The partitioning of the array into fault-free, one
fault per row, and multiple stack subarrays in step 1
of the algorithm can be done in O(N) time. A simple
implementation of such a partition can be described as
follows:

1. i = 1
2. If row i is compatible with the subarray under con-

sideration (meaning if the subarray under considera-
tion being extended by row i remains of the same
type) then extend the subarray by row i.

3. If row i is not compatible with the subarray under
consideration, then start a new

�9 fault-free subarray if the row is fault-free
�9 one faul t p e r row subarray if the row has only one

faulty PE.
�9 multiple stack subarray if the row has more than

one faulty PE.

It is obvious that the procedure above is of O(N)
complexity.

Step 2: As it follows from the previous section, the com-
plexity of this step is

0 N s = O(N 2)
i=1

Step 3: All the three substeps of Step 3 are of linear
complexity.

So the total complexity of the general Reconfigura-
tion algorithm is O(N2).

References

1. R.M. Tanner, "Fault-Tolerant 256-K Memory Design," IEEE
Transactions on Computers, vol. C-33, pp. 314-322, 1984.

2. M. Chean and J.A.B. Fortes, "The Full-Use-of-Suitable-Spares
(fuss) Approach to Hardware Reconfiguration for Fault-Tolerant
Processor Arrays, 1EEE Transactions on Computers, vol. 39, pp.
564-571, 1990.

3. J.S.N. Jean, H.C. Fu, and S.Y. Kung, "Yield Enhancement for
WSI Array Processors Using Two-And-Half-Track Switches" in
International Conference on Wafer Scale Integration, San Fran-
cisco, CA, pp. 243-250, 1990.
S.Y. Kung, S.N. Jean, and C.W. Chang, "Fault-Tolerant Array
Processors Using Single-Track Switches" in IEEE Transactions
on Computers, vol. 38, pp. 501-514, 1989.

5. W.R. Moore, ' ~ Review of Fault-Tolerant Techniques for the
Enhancement of Integrated Circuit Yield" Proceedings of the
IEEE, vol. 74, pp. 684-698, 1986.
A.L. Rosenberg, "The Diogenes Approach to Testable Fault-
Tolerant Array of Processors," IEEE Transactions on Computers,
vol. C-32, pp. 902-910, 1983.
V.E Roychowdhury, L Bruck, and T. Kailath, "Efficient
Algorithms for Reconfiguration in VLSI/WSI Arrays" IEEE
Transactions on Computers: Special Issue on Fault Tolerant Com-
puting, vol. 39, pp. 480-489, 1990.

4.

6.

7.

344 Varvarigou, Roychowdhury and Kailath

8. M. Sand and R. Stefanelli, "Reconfigurable Architectures for
VLSI Processing Arrays" Proceedings of the 1EEE, vol. 74, pp.
712-722, 1986.

9. T. Varvarigou, V.P. Roychowdhury, and T. Kailath, ' ~ Polynomial
Time Algorithm for Reconfiguring Multiple Track Models," to
appear in IEEE Transactions on Computers.

10. Theodore A. Varvarigou, Vwani P. Roychowdhury, and Thomas
Kailath, "Reconfiguring Arrays Using Multiple-Track Models"
submitted to IEEE Transactions on Computers, 1990.

of Athens, Athens, Greece in 1988, the M.S. degree from Stanford
University, Stanford, California in 1989.

She is currently a Ph.D. student in the Electrical Engineering
Department at Stanford University. Her research interests include
parallel algorithms and architectures, fault-tolerant computation and
parallel scheduling on multiprocessor systems.

Vwani P. Roychowdhury was born in Asansol, India, on April 16,
1961. He received the B. Tech degree from the Indian Institute of
Technology, Kanpur, India, the M.S. degree from University of
Rochester, Rochester, NY, and the Ph.D. degree from Stanford Uni-
versity, Stanford, CA, in 1982, 1983, and 1988 respectively, all in
Electrical Engineering.

He is currently an assistant professor in the Electrical Engineering
Department at Purdue University. His research interests include paral-
lel algorithms and architectures, special purpose computing arrays
and VLSI design, fault-tolerant computation and design and analysis
of neural networks.

Theodora A. Varvarlgou was born in Athens, Greece, in 1966. She
received the B. Tech degree from the National Technical University

Thomas Kaflath was educated in Poona, India, and at the Massachu-
setts Institute of Technology (S.M., 1959; Sc.D., 1961). From October
1961 to December 1962, he worked at the Jet Propulsion Laboratories,
Pasadena, CA, where he also taught part-time at the California Insti-
tute of Technology. He joined Stanford University as an Associate
Professor of Electrical Engineering in 1963. He has been a Full Pro-
fessor since 1968, served as Director of the Information Systems
Laboratory from 1971 through 1980, as Associate Department Chair-
man from 1981 to 1987, and currently holds the Hitachi America Pro-
fessorship in Engineering. He has held short term appointments at
several institutions around the world.

Dr. Kailath has worked in a number of areas including informa-
tion theory, communications, computation, control, linear systems,
statistical signal processing, stochastic processes, linear algebra and
operator theory; his recent research interests include array processing,
fast algorithms for nonstationary signal processing, and the design
of special purpose computing systems. He is the author of Linear
Systems, Prentice Hall, 1980, and Lectures on Wiener and Kalman
Filtering, Springer-Verlag, 1981. He has held Guggenheim, Churchill
and Royal Society fellowships, among other, and received awards from
the IEEE Information Theory Society and the American Control
Council, in addition to the Technical Achievement and Society Awards
of the IEEE Signal Processing Society in 1989 and 1991. He served
as President of the IEEE Information Theory Society in 1975, and
was awarded an honorary doctorate from Link6ping University,
Sweden, in 1990. He is a Fellow of the IEEE and of the Institute
of Mathematical Statistics and is a member of the National Academy
of Engineering.

