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Abstract. Most of the quantum error-correcting codes studied so far
fall under the category of additive (or stabilizer) quantum codes, which
are closely related to classical linear codes. The existence and general
constructions of efficient quantum codes that do not have such an un-
derlying structure have remained elusive. Recently, specific examples of
nonadditive quantum codes with minimum distance 2 have been pre-
sented. We, however, show that there exist infinitely many non-trivial
nonadditive codes with different minimum distances, and high rates. In
fact, we show that nonadditive codes that correct t errors can reach the
asymptotic rate R = 1 − 2H2(2t/n), where H2(x) is the binary entropy
function. In the process, we also develop a general set of sufficient con-
ditions for a quantum code to be nonadditive. Finally, we introduce the
notion of strongly nonadditive codes, and provide a construction for an
((11,2,3)) strongly nonadditive code.

key words: quantum code, additive code, Gilbert–Varshamov bound.

1 Introduction

Almost all quantum error–correcting codes known so far are additive (or stabi-
lizer) codes. An additive code can be described as follows. Consider the group
G of unitary operators on the Hilbert space C 2n

defined by the tensor products

±M1 ⊗ M2 ⊗ · · · ⊗ Mn, where each Mi is either the identity I =
(

1 0
0 1

)
or one

the Pauli matrices σx, σz, or σy = iσxσz . Then an additive code is a subspace
Q of C 2n

for which there is an Abelian subgroup H of G such that every vector
of Q is a fixed point of every operator in H [3,4,7].1 This approach leads to a
close connection between self–orthogonal (under a specific inner product) linear
binary codes and additive codes, such that the minimum distance of the additive
code is determined from the binary code.

1 This is actually the definition of a real additive code; i.e., a code which has a basis
consisting of vectors from R

2n

. In this paper we restrict ourselves to the set of real
codes, but this does not restrict our results, since every additive code is equivalent
to a real one [11].

C.P. Williams (Ed.): QCQC’98, LNCS 1509, pp. 325–336, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



326 V.P. Roychowdhury and F. Vatan

It is natural to ask whether there is any quantum error–correcting code that
cannot be constructed in this way, directly or via some equivalence. We should
make here a comment on the correct formulation of this question. Since the
dimension of every additive quantum code is a power of 2, any quantum code
whose dimension is not a power of 2 is not additive or equivalent to an additive
code; especially, any subspace of an additive code with dimension not a power of 2
is a nonadditive code. We call such codes trivial nonadditive codes. But we prove a
general theorem that shows that infinite families of non-trivial nonadditive codes
with different values of d exist. The nonadditiveness of these codes does not follow
from their dimensions (the dimensions of these codes are also powers of two),
but from their very special structure. Moreover, we show that these nonadditive
codes asymptotically reach the same rate as Calderbank–Shor–Steane codes.

We also propose the notion of strongly nonadditive codes: a quantum code
Q is strongly nonadditive if the trivial code C

2n

is the only additive code that
contains any code equivalent to Q. Now the interesting problem is to find strongly
nonadditive quantum codes. Recently in [13] it is shown that a ((5, 6, 2)) strongly
nonadditive code exists, which is better than any ((5, K, 2)) additive code. Later
in [12], Rains showed that there exists a ((2m, 4m−1, 2)) nonadditive code, for
every m ≥ 3. We present an ((11, 2, 3)) strongly nonadditive code.

In Section 3 we first determine a criterion that guarantees additiveness and
strongly nonadditiveness of quantum codes, and then we present our examples
of additive and strongly nonadditive codes.

2 Preliminaries

Consider the Hilbert space C
2n

with its standard basis |v1〉 , . . . , |v2n〉, where
v1, . . . , v2n is a list of binary vectors of length n in {0, 1}n. For every binary
vector α of length n, we define the unitary operators Xα and Zα by the following
equations

Xα |vi〉 = |vi + α〉 ,

Zα |vi〉 = (−1)vi·α |vi〉 .

Note that XαZβ = (−1)α·βZβXα.
Let G be the group of all unitary operators of the form ±M1⊗· · ·⊗Mn, where

Mi ∈ { I, σx, σy, σz }. Then every member of G can be represented uniquely as
(−1)λXαZβ , where λ ∈ {0, 1} and α, β ∈ {0, 1}n. For every subgroup S of G,
let S ⊂ {0, 1}2n be the set of all vectors (α|β) such that either XαZβ ∈ S or
−XαZβ ∈ S. We say S is totally singular if for every (α|β) ∈ S we have α ·β = 0.
We also define a special inner product on {0, 1}2n as(

(a|b), (a′|b′)
)

= a · b′ + a′ · b, (1)

where the right–hand side is evaluated in GF(2). For any quantum code Q in
C

2n

, we define the stabilizer HQ of Q as

HQ = {ϕ ∈ G : ϕ |x〉 = |x〉 for every |x〉 in Q} .
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Then it is easy to check that HQ is an Abelian group and every element of
HQ squares to the identity operator. So HQ is totally singular. It also follows
that HQ is isomorphic to a vector space GF(2)m, for some m. This means that
HQ is generated by operators ϕ1, . . . , ϕm ∈ HQ and every ϕ ∈ HQ can be
written (uniquely, up to the order of the ϕi’s) as ϕ = ϕ1

c1 · · ·ϕm
cm , where

ci ∈ {0, 1}. In this case the quantum code Q has dimension 2n−m. Suppose that
ϕi = (−1)λiXαiZβi. So HQ can be determined by its m×(2n) binary generating
matrix

M =

 α1 β1

...
...

αm βm

 . (2)

Note that if such a matrix M obtained from a stabilizer, then αi · βi = 0 and
αi · βj + αj · βi = 0, for every i and j. A quantum code Q is called additive (or
stabilizer) if it is defined by its stabilizer HQ, i.e.,

Q =
{
|x〉 ∈ C

2n

: ϕ |x〉 = |x〉 for every ϕ ∈ HQ
}

.

The quantum codes Q1 and Q2 in C
2n

are locally equivalent if there is a
transversal operator U = u1 ⊗ · · · ⊗ un, with ui ∈ SU(2), mapping Q1 into Q2.
We say these codes are globally equivalent, or simply equivalent, if Q1 is locally
equivalent to a code obtained from Q2 by a permutation on qubits.

A quantum code Q ⊆ C
2n

is called nonadditive if it is not equivalent to any
additive code; moreover, Q is strongly nonadditive if the only additive code
that contains any code equivalent to Q is the trivial code C

2n

; in other words,
if ±XαZβ is in the stabilizer of any code equivalent to a supercode of Q then
α = β = 0.

A K–dimensional subspace of C 2n

that as an error–correcting quantum code
can protect against < d/2 errors, is called an ((n, K, d)) code. If this code is
additive, then K = 2k, for some k, and is called an [[n, k, d]] code. The following
theorem gives a sufficient condition for a subspace of C 2n

to be an ((n, K, d))
code. Here wt(c) denotes the Hamming weight of the binary vector c, i.e., the
number of 1–components in c, and α ∪ β is the binary vector resulting from
a component-wise OR operation of α and β; for example (10110) ∪ (00101) =
(10111).

Theorem 1. ([1], [8]) Let Q be a K–dimensional subspace of C
2n

. Consider
an orthonormal basis for Q of the form { |ci〉 : i = 1, . . . , K }. Then Q is an
((n, K, d)) code if 〈ci |XαZβ | cj〉 = 0 for every 1 ≤ i, j ≤ K and for every α, β ∈
{0, 1}n with 1 ≤ wt(α∪β) ≤ d−1. In general, a necessary and sufficient condition
for Q to be an ((n, K, d)) code is that for all 1 ≤ i, j ≤ K and wt(α∪β) ≤ d− 1
we have 〈ci |XαZβ | ci〉 = 〈cj |XαZβ | cj〉 and if i 6= j then 〈ci |XαZβ | cj〉 = 0.

ut
For an additive code Q with stabilizer HQ there is a sufficient condition in

term of the dual of HQ with respect to the inner product defined by equation
(1) for Q to be a t–error–correcting code.
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Theorem 2. ([3], [7]) Let Q be an additive code with stabilizer HQ. Let HQ
⊥

be
the space orthogonal to HQ with respect to the inner product (1). If for every pair
of binary vectors α, β ∈ {0, 1}n with wt(α∪β) ≤ d−1 we have (α|β) 6∈ HQ

⊥\HQ
then Q is an [[n, k, d]] additive code. ut

3 Existence of Nonadditive Codes

3.1 Quantum Codes Equivalent to Additive Codes

We study the quantum codes equivalent to additive codes. For such code Q, we
find a sufficient condition that guarantees that the stabilizer of Q contains a
nontrivial operator.

We begin with some useful notions and notations. Let |c1〉 , . . . , |c2n〉 be the
standard orthonormal basis of C 2n

, where each ci is a binary vector of length n.

For the vector |x〉 =
2n∑
i=1

λi |ci〉, we define the support of |x〉 as

supp(|x〉) = { ci ∈ {0, 1}n : λi 6= 0 } .

Let C ⊆ {0, 1}n be a set of binary vectors. Define the vector |C〉 in C
2n

as

|C〉 =
1

|C|1/2

∑
c∈C

|c〉 .

(If C is empty then |C〉 is the zero vector.) For any binary vector α of length
m < n, define

Cα =
{

x ∈ {0, 1}n−m : (α, x) ∈ C
}

. (3)

So to construct Cα, consider all vectors in C starting with α (if there is any),
then delete α from these vectors. Note that Cα may be empty.

For a quantum code Q, let us define the generalized stabilizer of Q as the set
GS(Q) of all unitary operators V on C

2n

such that V |x〉 = |x〉 for every |x〉 ∈ Q.
Then the stabilizer of Q is St(Q) = G ∩ GS(Q).

Lemma 1. Suppose that the quantum codes Q1 and Q2 are locally equivalent via
the transversal unitary operator U . Then for every M ∈ GS(Q1) the operator
UMU† is in GS(Q2).

Proof. Let |x〉 ∈ Q2. Now, we know that there exists a code word |y〉 ∈ Q1

such that |x〉 = U |y〉. Since M |y〉 = |y〉, so (MU†)U |y〉 = |y〉, and therefore
(UMU†)U |y〉 = U |y〉. This implies (UMU†) |x〉 = |x〉. ut

We are interested in the case of M ∈ G, i.e., M = M1 ⊗ · · · ⊗ Mn, where
Mj ∈ {I, σx, σy, σz}. We define wt(M) the weight of any M ∈ G as the number of
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j’s such that Mj 6= I. In this case UMU† = v1 ⊗· · ·⊗ vn such that det(vj) = ±1
and if Mj = I then vj = I, otherwise

vj = ηj

(
aj bj

±bj
∗ −aj

)
, ηj ∈ {1, i}, aj ∈ R and bj ∈ C . (4)

If U ∈ SU(2)⊗n then U is of the form u1 ⊗ · · · ⊗ un, where each uj is defined by
a matrix of the form (

eiα cos θ eiβ sin θ
−e−iβ sin θ e−iα cos θ

)
. (5)

If Mj = σx, σz or σy , then the corresponding vj , respectively, is(
sin 2θ cos(α − β) cos2 θei2α − sin2 θei2β

cos2 θe−i2α − sin2 θe−i2β − sin 2θ cos(α − β)

)
,

(
cos 2θ − sin 2θei(α+β)

− sin 2θe−i(α+β) − cos 2θ

)
,

or
(

−i sin 2θ sin(α − β) − cos2 θei2α − sin2 θei2β

cos2 θe−i2α + sin2 θe−i2β i sin 2θ sin(α − β)

)
.


(6)

We call a matrix vi as (4) full if ai · bi 6= 0; and we say the unitary operator
V = v1 ⊗ · · · ⊗ vn is thin if none of vi’s is full. In the next proof we will use this
property that if V is thin then |supp(V |x〉)| = |supp(|x〉)|, for every |x〉.

A quantum code Q is called real if Q has a basis consisting of real vectors;

i.e., if |x〉 =
2n∑
i=1

λi |ci〉 is any vector in the basis, then λi ∈ R, for every i.

An (n, K, d) binary code is a set C ⊆ {0, 1}n of size K such that any two
vectors in C differ in at least d places, and d is the largest number with this
property. Note that an [n, k, d] binary linear code is an (n, 2k, d) binary code.

Theorem 3. Suppose that the quantum codes Q1 and Q2 are locally equivalent
via the transversal operator U , Q2 is real and Q2 contains |C〉, where C is an
(n, K, d) binary code with d > k = dlog2 Ke. Then the following claims hold.

(i) The image of St(Q1) under the mapping M 7→ UMU†, which we call
Γ , consists only of unitary operators of the form ±XαT , where T is a Z–type
unitary operator of the form

T =
n⊗

j=1

(
eiθj 0
0 ±e−iθj

)
. (7)

(ii) Let ∆ = {α ∈ {0, 1}n : ±XαT ∈ Γ for some T of the form (7) }. Sup-
pose that St(Q2) does not contain any operator of the form ±X0Zβ, with β 6= 0.
Then |St(Q1)| ≤ |∆|. ut

The proof of this theorem can be found in [14].
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We now present a criterion for nonadditiveness of quantum codes. First a
useful notation. For a subset C of {0, 1}n let

T (C) = {x ∈ {0, 1}n : x + C ⊆ C } .

If C is a binary linear code then T (C) = C.

Theorem 4. Suppose that the quantum code Q of dimension 2` is real and
contains |C〉, where C is an (n, K, d) binary code with d > dlog2 Ke. If the identity
operator is the only unitary operator in the stabilizer of Q and 2n−` > |T (C)|
then Q is nonadditive.

Proof. Suppose, by contradiction, that Q is equivalent to additive code Q′ via
the transversal unitary operator U which maps Q′ on Q. Let Γ be the image of
St(Q′) under U . Define ∆ ⊆ {0, 1}n as in (ii) of Theorem 3. Then ∆ ⊆ T (C).
Thus

2n−` = |St(Q′)| ≤ |∆| ≤ |T (C)|,

which contradicts the assumption of the theorem. ut

When the binary code C in the above theorem is linear we can formulate the
theorem as follows.

Corollary 1. Suppose that the quantum code Q of dimension 2` is real and
contains |C〉, where C is a linear [n, k, d] code with d > k. If St(Q) = {I} and
n > k + ` then Q is nonadditive. ut

Finally, we formulate a criterion that guarantees strongly nonadditiveness of
quantum codes.

Theorem 5. Suppose that the quantum code Q is real and it contains |C〉 where
C is an (n, K, d) binary code with d > dlog2 Ke. If St(Q) = {I} and GS(Q) does
not contain any operator of the form XαT , where α 6= 0 and T is of the form
(7), then Q is strongly nonadditive.

Proof. Suppose, by contradiction, that Q ⊆ Q1 and Q1 6= C
2n

is equivalent to
an additive code Q′ with St(Q′) 6= {I}. Then, by Theorem 3, any nontrivial
stabilizer ϕ of Q′ defines an operator V = v1 ⊗ · · · ⊗ vn in GS(Q1) ⊆ GS(Q),
where vj = I or it is of the form (4) or (6). If all vj have real matrices, then
V 6= I and V ∈ St(Q), which is impossible. If at least one of vj has a complex
matrix, then V is of the form XαT with α 6= 0, which is again impossible. ut

3.2 Construction of Nonadditive Codes

Examples of Nonadditive Codes. Now we show that there is an infinite fam-
ily of nonadditive quantum error–correcting codes. These codes are constructed
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following the scheme similar to the one described in Theorem 2.4 of [16]. Con-
sider an [n, k] binary code C such that dist(C) and dist(C⊥) are both at least d0

(C needs not to be a weakly self–dual code).
First we define a function τ : C −→ {0, 1}n such that for c, c′ ∈ C and c 6= c′

we have τ(c)+τ(c′) 6∈ C⊥. This means τ(c) and τ(c′) are in different cosets of C⊥

in {0, 1}n, for c 6= c′. Since there are 2k different cosets, such mapping τ always
can be defined.

Fix d ≤ d0, and let E be the set of binary vectors of length n with weight
≤ d − 1. Consider a subset R = { a0, a1, . . . , am } of {0, 1}n such that a0 = 0
and aj is not of the form c + ai + e, for c ∈ C, 1 ≤ i ≤ j − 1, and e ∈ E . Then
the vectors

|xi〉 =
∑
c∈C

(−1)τ(c)·ai |c + ai〉 (8)

form a basis for a quantum code with distance d. To prove this, we show that
〈xi | XαZβ | xj〉 = 0, for 0 < wt(α ∪ β) < d. The case α 6= 0 or i 6= j
is straightforward. So we only consider the case α = 0 and i = j. Then for
0 < wt(β) < d we have

〈xi | Zβ | xi〉 =

〈∑
c∈C

(−1)τ(c)·ai |c + ai〉
∣∣∣∣∣∑
c∈C

(−1)τ(c)·ai+(c+ai)·β |c + ai〉
〉

= (−1)ai·β
∑
c∈C

(−1)c·β

= 0.

The last equality follows from the fact that dist(C⊥) ≥ d, so β 6∈ C⊥.

Lemma 2. In the above construction, suppose that

(n − 1)2k
d−1∑
i=0

(
n

i

)
< 2n−1. (9)

Then it is possible to choose n linearly independent vectors a1, a2, . . . , an so that
the ((n, n + 1, d )) quantum code Q with the basis |x0〉 , |x1〉 , . . . , |xn〉 (each |xi〉
is defined by (8)) has trivial stabilizer, i.e., St(Q) = {I}.

Proof. Suppose that the vectors a0, a1, . . . , am with the desired properties are
chosen. Then it is possible to choose a vector am+1 such that a1, . . . , am, am+1

are independent and am+1 is not of the form c + ai + e (for c ∈ C, 1 ≤ i ≤ m,

and e ∈ E) if 2m +m · 2k ·
d−1∑
i=0

(
n

i

)
< 2n. This shows that it is possible to choose

n vector a1, . . . , an with the desired properties.
Now we show that the identity operator is the only member of the stabilizer

of Q. Suppose that XαZβ is in the stabilizer of Q. Since

XαZβ |x0〉 =
∑
c∈C

(−1)c·β |c + α〉
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should be equal to |x0〉 =
∑
c∈C

|c〉 it follows that α ∈ C and β ∈ C⊥. Similarly, for

every 1 ≤ i ≤ n since

XαZβ |xi〉 =
∑
c∈C

(−1)τ(c)·ai+(c+ai)·β |c + ai + α〉

=
∑
c∈C

(−1)τ(c+α)·ai+(c+ai+α)·β |c + ai〉

=
∑
c∈C

(−1)(τ(c+α)+β)·ai |c + ai〉

should be equal to

|xi〉 =
∑
c∈C

(−1)τ(c)·ai |c + ai〉 ,

it follows that ai · (τ(c) + τ(c + α) + β) = 0, for every 1 ≤ i ≤ n. Since ai’s
are independent, therefore τ(c) + τ(c + α) = β ∈ C⊥, hence α = 0. Now the
conditions ai · β = 0 (for 1 ≤ i ≤ n) imply β = 0. ut

Theorem 6. Suppose that C is an [n, k, d0] binary linear code such that d0 > k
and dist(C) and dist(C⊥) are at least d. Moreover, suppose that n, k and d satisfy
(9). Let ` be the greatest integer such that 2` ≤ 2n−k/

∑d−1
i=0

(
n
i

)
. Suppose that

k + ` < n. Then there is a an ((n, 2`, d)) nonadditive code.

Proof. Consider the ((n, n + 1, d)) code Q0 constructed in the previous lemma.
Then by Theorem 4.2 of [16] it is possible to add at least 2`−(n+1) more vectors
to Q0 to build an ((n, 2`, d)) code Q, which is, by Corollary 1, nonadditive. ut

As an application we show that there are ((n, b2n−1/(n+1)c, 2)) nonadditive
codes, for every n ≥ 8. Consider the [n, 1, n] binary code C = {0,1}. Then C⊥

is consists of all even weight vectors in {0, 1}n, so it is an [n, n− 1, 2] code. The
condition (9) satisfies if n ≥ 8. Then by applying the above theorem (for k = 1
and ` = dn − 1 − log2(n + 1)e) we get the desired code. Other classes of binary
codes for which the minimum distance of the code and its dual are known (such
as Hamming codes and Reed–Muller codes) can be used to get nonadditive codes
with different parameters.

Finally, we show that the nonadditive codes are almost as good as Calderbank–
Shor–Steane (CSS) codes, at least in the case that the dimension of code is large
enough.

To utilize the CSS codes for constructing nonadditive codes, we must modify
them such that the new codes have trivial stabilizers. Let Q be an [[n, n−2k, d]]
CCS code based on the weakly self–dual [n, k] code C with dist(C⊥) ≥ d. Consider
the basis for Q consisting of vectors of the form |xa〉 =

∑
c∈C

|c + a〉, for a ∈ C⊥/C.
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Also consider the function τ : C −→ {0, 1}n defined at the beginning of this
section. We define the quantum code Q̂ with basis

|ya〉 =
∑
c∈C

(−1)τ(c)·a |c + a〉 , (10)

for a ∈ C⊥/C. Then it is easy to check that Q̂ is also an [[n, n − 2k, d]] code.

Theorem 7. Suppose that C is an [n, k, d0] weakly self–dual binary code, and
C⊥ is an [n, n−k, d1] code. Assume d0 ≥ k and 2n−2k−1 > n−k−1 (for example
it is enough to have k < (n − log2 n)/2). For any d ≤ d1 that staisfies

(
2n−k + (k − 1)2k

) d−1∑
i=0

(
n

i

)
< 2n−1, (11)

we have an ((n, 2n−2k, d)) nonadditive code.

Proof. Let Q0 be the [[n, n − 2k, d]] CSS code based on C, and let Q̂0 be the
quantum code obtained from Q0 as described in the preceding procedure. We
can choose independent vectors a1, . . . , an−k in C⊥ such that ai’s belong to
different cosets of C in C⊥. This is possible because 2n−2k−1 > n − k − 1. We
consider |ya1〉 , . . . ,

∣∣yan−k

〉
(defined by (10)) as vectors in Q̂0. Then we choose

vectors an−k+1, . . . , an such that a1, . . . , an are n independent vectors, and Q′ =
Q̂0 ∪

{∣∣xan−k+1

〉
, . . . , |xan〉

}
, is an ((n, 2n−2k + k, d)) code. The inequality (11)

implies that it is possible to choose an−k+1, . . . , an with the desired properties.
Then the proof of Lemma 2 shows that St(Q′) = {I}

Let Q be the quantum code obtained from Q′ by removing any k vectors
except |yai〉, i = 1, . . . , n. Then St(Q) = {I} (because Q contains the |yai〉,
i = 1, . . . , n). So, by Corollary 1 with ` = n − 2k, Q is nonadditive. ut

To show that there are weakly self–dual codes C that satisfy the requirements
of the above theorem, it is possible to apply the greedy method used in classical
coding theory (see [10], Chap. 17). The same method is used in [5] to prove
the existence of CSS codes meeting the Gilbert–Varshamov bound. This method
gives the following bound.

Theorem 8. For d < λn, where λ = H−1
2 (H−1

2 (1/2)), there are nonadditive
((n, 2k, d)) quantum codes with rate k/n ≥ 1 − 2H2(d/n). ut

A Strongly Nonadditive Code. In this section we provide an example of
a strongly nonadditive quantum error–correcting code. This is an ((11, 2, 3))
strongly nonadditive code.

Consider the (Paley type) Hadamard matrix of order 12 (see, e.g., [10], p.
48). Delete the all–1 column and replace −1 by 1 and +1 by 0. The result is the
following matrix
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H =



0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 1 0 0 0 1
1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1



.

We denote the ith row of H by ri. The set C = { ri : 1 ≤ i ≤ 12 } is an (11, 12, 6)
code. Then a basis for the desired quantum code consists of the following two
vectors:

|0L〉 =
12∑

i=1

|ri〉 ,

|1L〉 =
12∑

i=1

|1 + ri〉 ,

where 1 is the all–1 vector of length 11. We claim these vectors are basis for an
((11, 2, 3)) quantum code. We have to show that

〈0L | XαZβ | 0L〉 = 0, (12)
〈1L | XαZβ | 1L〉 = 0, (13)
〈0L | XαZβ | 1L〉 = 0, (14)

for every α, β ∈ {0, 1}11 such that 1 ≤ wt(α ∪ β) ≤ 2. First note that that the
distance of any two distinct vectors in the set

{ ri : 1 ≤ i ≤ 12 } ∪ {1 + ri : 1 ≤ i ≤ 12 }

is at least 5. Thus if 1 ≤ wt(α) ≤ 4 then all conditions (12)–(14) hold. Now
suppose that α = 0. Then (14) trivially holds. To see that (12) and (13) hold it
is enough to note that if 1 ≤ wt(β) ≤ 2 then ri · β = 1 for exactly 6 values of i.
This completes the proof that { |0L〉 , |1L〉 } is a basis for an ((11, 2, 3)) quantum
error–correcting code.

To show that this code is nonadditive, let ϕ = (−1)λXαZβ be any operator
in the stabilizer of this code. Since ϕ |0L〉 = |0L〉 and ϕ |r1〉 = |α〉, hence λ = 0
and α should be one of ri’s. Then we should have α = r1 = 0, because for every
ri, i 6= 1, there is some j such that ri + rj is not equal to any rk. Therefore,
ϕ = Zβ . Then

Zβ |1L〉 =
12∑

i=1

(−1)(1+ri)·β |1 + ri〉 =
12∑

i=1

|1 + ri〉
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implies that (1 + ri) · β = 0, for every i. But the set { 1 + ri : 1 ≤ i ≤ 12 } has
rank 11, so β = 0. This shows that the identity operator is the only operator
in the stabilizer of this code. Finally, suppose that XαT is in the generalized
stabilizer of this code, where the operator T is of the form (7). Note that the
operator T only affects the phases of the states, so the above argument also
implies α = 0. Now Theorem 5 implies that this code is strongly nonadditive.

4 Concluding Remarks

We showed that there are nonadditive codes with different minimum distances.
We also showed that nonadditive codes that correct t errors can reach the asymp-
totic rate R ≥ 1− 2H2(2t/n). We introduced the notion of strongly nonadditive
codes, and gave an example of such codes. It would be interesting to find more
examples of such codes. We conjecture that the nonadditive codes constructed
in Section 3.2 are also strongly nonadditive codes.

Recently we have improved the construction method for nonadditive quna-
tum codes. With this new scheme, we are now able to give explicit construc-
tions of nonadditive ((2m, 1

422m, 2)) and strongly nonadditive ((2m + 1, 1
8 (1 −

1
2m )22m+1, 2)) codes. Also we have improved the asymptotic Gilbert–Varshamov
bound for the rate of nonadditive codes. The new bound, which is for strongly
nonadditive codes, is the same as the bound for additive codes [4], i.e., R ≥
1 − H2(2t/n)− (2t/n) log2 3. All these results will appear in the final version of
this paper [14].
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