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Correspondence 

On the Number of Spurious Memories in the 
Hopf ield Model 

JEHOSHUA BRUCK. MEMBER, IEEE. A N D  
W A N 1  P. ROYCHOWDHURY 

Ahstruet -It is shown that the outer-product method for programming 
the Hopfield model is shown, which can result in many spurious stable 
states-exponential in the number of vectors that we want to store-even 
in the case when the vectors are orthogonal. 

I. INTRODUCTION 

We consider the neural network model that was suggested by 
Hopfield in 1982 [lo]. It is a discrete time system that can be 
represented by a weighted graph. There is a weight attached to 
each edge of the graph and a threshold value attached to each 
node (neuron) of the graph. The order of the network is the 
number of nodes in the corresponding graph. Let N be a neural 
network of order n; then N is uniquely defined by ( W ,  T )  where 

W is an n x n matrix, with element wlJ equal to the weight 

T is a vector of dimension n, where element t, denotes the 
attached to edge ( 1 , ~ ) ;  

threshold attached to node I .  

Every node (neuron) can be in one of two possible states, either 1 
or - 1. The state of node I at time t is denoted by U,(?). The state 
of the neural network at time t is the vector V ( t )  = 

(u , ( t ) ,  U2(').. . .. u,(t)) .  
The state of a node at time ( t  + 1) is computed by 

(1) 
1, i f H , ( t ) > O  u i ( t + l )  =sgn( H , ( t ) )  = { -1, otherwise 

where 
n 

w ; , l u J ( t ) - t l '  

1-1  

The next state of the network, i.e., V( t + l), is computed from 
the current state by performing the evaluation (1) at a single node 
of the network. This mode of operation is known as serial or 
asynchronous mode. The node at which the computation is 
performed can be chosen at random or according to some deter- 
ministic rule. 

A state V ( t )  is called stable iff V(r )  = sgn( W V ( t ) -  T ) .  i.e., 
the state of the network is not changing as a result of computa- 
tion. The set of stable states of a network N is denoted by M N .  

One of the most important properties of the model is the fact 
that, when it operates in a serial mode, it will always get to a 
stable state (provided W is a symmetric matrix with nonnegative 
diagonal); see [5], [7], [lo] for more details on convergence 
properties. This property suggests the use of the model as an 
associative memory device. An associative memory is a device 
that memorizes a set M of distinct n-bit vectors. It gets as an 
input an n-bit vector and its output is a vector which belongs to 
M and is the closest (e.g., in Hamming distance) to the input 
vector. The idea is that a network N can implement an associa- 
tive memory with M MN and the association done by conver- 
gence to the closest stable state. There are many interesting 
questions related to this idea [l], [6 ] ,  [ l l ] ,  [15]. 

One of the interesting issues concerning the use of the network 
as an associative memory is how one should program the net- 
work. Programming of a network can be defined as follows. 

Consider the set M = { Vi, . ., 5 )  that consists of s vectors 
over (1, - l j" .  Construct a network N = ( W ,  T )  such that M C 
MN, i.e., the set M is a subset of the set of stable states of N .  
Hopfield [lo] suggested computing W by the outer-product 
method (which is a Hebb-type rule [9]). Namely, 

S 

W =  (cl+ I")  
i = l  

where I,  is the n x n identity matrix. Using this method, T is 
chosen to be the all-zero vector. Note that if the 4 ' s  are orthogo- 
nal then 

WV, = ( n  - s) 4 

So if n > s  every one of the 5's  is stored. Hence, a natural 
question is: are there any other (spurious) stable states? Namely, 
what can be said about the number of stable states that are not in 
M ?  

The main contribution of this correspondence is proving that 
in certain cases the number of spurious memories (vectors which 
are in MN but not in M )  can depend exponentially on s. Our 
results hold for the three following cases that cover all the 
possibilities for s: 

1) s is small: 1 I s I log n. 
2) s is big: n -log n I s < n. 
3) The intermediate cases: s = 2k, where 0 5 k < log n. 

The results are the first constructive evidence for the results in 
[l], [14], [15], [18] where such a phenomenon was suggested based 
On probabilistic arguments. 
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11. COMBINATORIAL RESULTS 

We now prove that the number of spurious memories can be 
exponentially big in the number of memories we are trying to 
store using the outer-product method. Intuitively, we should 
suspect something like this to happen when the number of 
vectors that we want to store is close to n; surprisingly, this also 
happens in cases when the number of vectors is small. The first 
result (Theorem 1) provides an example in which the number of 
vectors, say s, to be stored is less than or equal to log n; and the 
number of stable states in the resulting network is exponential in 
s. This question is also addressed in [2 ] ,  where the result is proved 
for s = 3, 5, and 7. Here we present a proof for an arbitrary odd 
s. The idea in the proof is to represent vectors over { 1, - 1)" by 
polynomials. For example, consider vectors over { 1, - 1)'; then 
any vector can be represented by a polynomial of three variables. 
The vectors that correspond to the three variables are 

X 1 = ( l , - l , l , - l , l , - l , l , - l ) ,  

X 2 = ( l , l , - l , - l , l , l , - l , - l ) ,  

X3=(1,1,1,1,-1, -1 , -1 , -1)  

and 

Theorem 1 :  Let s 21 be odd. Let n = 2'. Consider the s 
vectors X,, X,; . ., Xs over (1, - 1)" that correspond to the 
Boolean functions defined by the xi's. Let W be the matrix that 
is computed by the outer-product method, i.e., 

S 

w= ( T T ' 4 " ) .  
i - 1  

Consider the vectors of the form 

wherep=(P1,P2;..,PS). Then: 1) For all P E  {1,0,-1}', such 
that the support of /3 (number of nonzero entries in P )  is odd, 
the vector Us is stable in the network N = ( W, T )  ( T  is the 
all-zero vector). 2)  All the (3' + 1)/2 Us's that correspond to fl  
with odd support are distinct. 

Proo) The idea in the proof is to compute Wcl, and to show 
that sgn(WU,) = Us. First we prove that, for /3 being the all-1 
vector and for all 1 I i I s, we have 

1 s - l \  

\ ' /  

Using the notation in Appendix I, X T q  = 2su,,0,...,0. Namely, the 
inner product of Us with XI is just the corresponding spectral 
coefficient times 2". Without loss of generality we prove the result 
for i = 1. Notice that for /3 being the all-1 vector the vector 
corresponds to the majority function of s variables. To compute 
the spectral coefficient that corresponds to XI consider the vector 

V = X 2 + X 3 +  ..'+A-'. 
Clearly, V is zero in 

s - 1  

2 [ ! + q  

entries. For example, for s = 3 ,  X,  + X, is zero in four 
entries-see the example preceding the theorem. There is a 

negative and half positive. Hence, in XTsgn( X,  + V ) ,  the posi- 
tive and negative entries cancel each other and we get as a result 

s - 1  

2 [ q ] .  

' iii 
w(J ,- - 2s-w+1 [;] w - 1 t P , x , - " s .  

By similar arguments we get the result for general P with odd 
support w 

w - 1  
X , T u s = P . 2 r - W + 1  w-1 , 

Hence for p with odd support w we have 

i = l  

From the foregoing equation it follows that the sign of WUs is 
dominated by the sign of 

t P I X , .  

r = l  

Thus, for all odd s 21 and /3 E {1,0, - l}", such that the support 
of is odd, we have sgn( WUs) =Us. The Us's are distinct 
because they all have a distinct polynomial representation. 0 

A natural question is whether such phenomena hold for other 
values of s. The next result (Theorem 2 )  shows that indeed, for 
any s = 2k where 0 I k < log n, there are sets of s orthogonal 
vectors that will result in an exponential number of spurious 
memories. 

A note regarding the technique: in the foregoing theorem the 
spurious memories are a nonlinear function of the vectors that we 
want to store. In the results to follow we use a different technique 
to prove that a state is stable: we prove that it is in the linear 
span of the vectors that were stored. By the following lemma, 
every state that is in the linear span of the stored vectors is also 
stable. 

Lemma I :  Let 1 I s < n. Let Vl ,  V 2 ; .  ., V ,  be a set of orthogo- 
nal vectors where K E (1, - 1)" for all 1 I i I s. Let 

S 

w= ( V y - I J  
1 - 1  

Then a vector V E { 1, - 1)" that is in the linear span of the 
corresponds to a stable state in N = ( W ,  T )  with T = 0. 

's 

Proof: V is in the linear span, hence there exist yi's such that 
S 

V =  c Y , Y .  
i = l  

Thus, WV= ( n  - s ) V .  So if s < n we get that sgn( W V )  = V. 0 

Theorem 2: Let n = 2'. For every 0 I k < s there exists a set of 
2k orthogonal vectors { V,, V 2 : .  ., V2*} ,  where V,  E { l ,  -1}", such 
that when W is computed by the outer-product method, i.e., 

2' 

w= ( F F T -  I " ) .  
i = l  

the network N = ( W,0) has 22' stable states. 

Proof The idea in the proof is to choose the vectors 5's to 
be the basis functions of the Boolean functions with k variables 

symmetry in the values of the other entries, half of them being (there are 2k basis functions). For example, for k = 2 we consider 
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the vectors that correspond to 1, X,, X ,  and XlX2. Clearly, all 
the Boolean functions of k variables (there are 2,' of those) are 
in the linear span of those vectors. Hence by Lemma 1, all of 

0 those are stable in N .  

From these equations we get the following necessary and suffi- 
cient condition for V to be orthogonal to both U, and U,: 

N + +  ( U,, V )  = N - -  ( U,, V )  = N + - (  U,, V )  = N - + (  U,, V )  = !! . 
4 

The next interesting case is the case in which s, the number of 
vectors to be stored, is very close to n: i.e., n -1ogn 5 s < n. In 
turns out that for n - 1, n - 2 and n - 3 orthogonal vectors we 
can count exactly the number of vectors in the linear span. In the 
next theorem we give counting results for these cases. Note that 
those results hold for n for which there exist Hadamard matrices 
(not just for n being a power of 2 as in previous results). 

Theorem 3: The number of vectors over { 1, - 1)" in the linear 
span of 

1) ( n  - 1) orthogonal vectors is 

[:I* 
2) (n - 2) orthogonal vectors is 

and 
3) ( n  - 3) orthogonal vectors is 

n 

j = O  

Proof: Throughout the proof we consider only vectors over 
{ 1, - l}".  Counting the number of vectors in the linear span is 
the same as counting the number of vectors that are orthogonal 
to the null-space. Namely, we have to count the number of 
vectors over (1, - 1)" that are orthogonal to a single vector (for 
l)), two vectors (for 2)) and three vectors (for 3)). 

Without loss of generality, assume that the single vector is the 
all-1 vector. Clearly, the vectors that are orthogonal to this vector 
are those that consist of (n/2) 1's and (n/2)-l's. Hence we get 
1): the number of vectors in the linear span of any ( n  - 1) 
orthogonal vectors is (,,;*). 

For 2). we consider, without loss of generality, the all-1 vector 
to be denoted by U, and a vector in which half of the entries are 
1 and the other half are - 1  to be denoted by U,. We introduce 
some notation: let N + +  (U, V )  be the number of entries in which 
both U and V are 1. Similarly, let N + - ( U ,  V )  be the number of 
entries in which there is a 1 in U and a -1 in V ,  and let N - +  
and N - -  denote the other two cases. Assume that V is orthogo- 
nal to both U, and U,; then we have 

N + + (  U,, V )  + N + - (  U,, V )  = f , 

Hence, there are ("':)' vectors that are orthogonal to both U1 
and U,. 

For 3) we consider three orthogonal vectors U,, U,, and U,. We 
choose, without loss of generality, Ul and U, as in 2). From 2) we 
know that there is a unique canonical form for U, in which the 
first quarter is 1, the second is - 1, the third quarter is 1 and the 
fourth quarter is -1. Consider a vector V that is orthogonal to 
U,, U,, and U,. Let j be the number of 1's in the first quarter of 
V. By similar arguments as in 2) we get that the number of - 1's 
in the second quarter is j ,  the number of -1's in the third 
quarter is j and the number of 1's in the fourth quarter is j .  
Again this is a necessary and sufficient condition for a vector to 
be orthogonal to U,, U, and U,. Hence the number of vectors in a 
linear span of ( n  - 3) orthogonal vectors is 

n 

j = O  

0 

So by Lemma 1 we get that number of stable states is indeed 
exponential for the cases of n - 1, n - 2  an2 n - 3 orthogonal 
vectors. An important remark is that those are the only stable 
states, namely, there are no other stable states besides those in 
the linear span. 

The foregoing approach for counting vectors in the linear span 
does not work for n -4: we do not have a canonical form any 
more (this phenomenon is related to the question of existence of 
Hadamard matrices of order n that is divisible by four 1131). 
Hence, we assume that n is a power of 2 (we consider the 
Sylvester-type Hadamard matrix) and we would like to count the 
number of high-frequency Boolean functions-functions which 
have a zero constant term and zero linear terms in the polynomial 
representation. Counting the number of high-frequency Boolean 
functions is the same as counting the number of vectors in the 
linear span of n - log n orthogonal vectors (those that correspond 
to higher order terms in the polynomial representation). In the 
following theorem we provide a lower bound on this number. 

Theorem 4: Let n =2". Consider the set of vectors S =  
{l, X I , . . . ,  X,}  over (1 ,  -1}" that corresponds to the Boolean 
functions defined by 1, xlr. . . , x,. The number of vectors in 
{ l ,  - 1)" that are orthogonal to the vectors in S is at least T"". 

Proof: The number of Boolean functions (vectors over (1 ,  
- 12") that are functions only of the first s - 2 variables is 
22'- = 2"/'. Let f( xl; . ., x,) be one of this functions, namely, f 
is a function only of the first (s -2) variables. Let 

and 

N ' + ( U , , V ) + N - + ( U , , V )  =:, where @ is exclusive OR. Consider the polynomial representa- 
tion of g 

N + +  ( U,, V )  + N - -  ( U,, V )  = : X )  = X , - l X , f (  X ) .  

Since f is dependent only on the first s - 2  variables, in the 
polynomial representation of g(  X ) ,  we have a, = 0 for all a of 
weight (number of 1's) less or equal 1. In other words, the 
polynomial representation of g has no constant term nor has it N + - (  U,, V )  + N - +  (U,, V )  = :. 
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linear terms. In the language of vectors: 
2“14 vectors that are orthogonal to S .  

Again, by Lemma 1 all the vectors in the 

111. CONCLUSION 

we exhibited a set of 
0 

linear span are stable. 

We proved that the number of spurious memories resulting 
from using the outer-product method is in many cases exponen- 
tially big. A few remarks follow. 

I )  Bud Networks: In the discussion in the previous section we 
were interested in lower bounds on the number of spurious 
memories. It is also possible to give a description of the networks 
associated with the constructions and compute the exact number 
of spurious memories. For example, consider the construction in 
Theorem 2. for n/2 vectors we get 

where I,,/, is an n /2x  n/2 identity matrix. The network associ- 
ated with W consists of n/2 pairs of nodes each connected with 
an edge of weight 1. Since every pair of nodes is isolated and has 
two stable states we get a total of 2“12 stable states. For s = 2k 
we get a network that consists of 2k subnetworks each of which is 
fully connected with all the weights being one. Since there are 
two stable states in each subnetwork, we get a total of 2” stable 
states. 

2) Being more Generul: Although our results are for some 
specific sets of vectors, it is not hard to see that they provide 
evidence for a more general phenomenon. In particular, Theorem 
3 holds for any set of n - 1, n - 2 and n - 3 orthogonal vectors. 
Also any set of orthogonal vectors that contains in its linear span 
a subset of one of the bad sets (those that result in many spurious 
memories) of vectors that we exhibited will also be bad. 

3) Booleun functions: The main tool in proving the results was 
the polynomial representation of Boolean functions. One of 
results in the correspondence is a lower bound of 2”/4 on the 
number of high frequency Boolean functions. In fact, we can also 
prove a better result-a lower bound of 2n-10~2n, but that is 
beyond the scope of this paper. Computing the exact number of 
high frequency Boolean functions is left as an open problem. 

APPENDIX 
POLYNOMIAL REPRESENTATION OF BOOLEAN FUNCTIONS 

The representation of Boolean functions as polynomials over 
the field of rational numbers is presented. This representation 
was first suggested by Muller [16] and then was used by 
Ninomiya [17] and Golomb [8] to get results on counting the 
number of equivalent Boolean functions. See [3], [4], [12] for 
more details. 

A Boolean function f of n variables is a mapping, 

f :  {l,-l}“- {l ,- l}.  

Note that we use the multiplicative representation of { O , l }  via 
the transformation U - ( -  1)‘. 

Definition: Given a Boolean function f of order n , p  is a 
polynomial (with coefficients over the field of rational numbers) 
equivalent to f iff for all X E { 1, - l}“: 

f (  X >  = P(  X I .  
As an example, let f = x 1 8 x 2 ;  that is, f is the XOR function of 
two variables. It is easy to check that in the (1, - 1 )  representa- 
tion p ( x I ,  x z )  = x1x2 .  Notice that for every Boolean function f, 
the polynomial p is linear in each of its variables because x 2  = 1 
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for x E { - 1,l). It is known that every Boolean function has a 
unique representation as a polynomial [12]. This representation is 
derived by using the Hadamard matrix, as described by Theorem 
5 below. 

Definifion: A Hadamard matrix of order m ,  to be denoted by 
H,,,, is an m x m matrix of + 1‘s and - 1’s such that 

H,,, H,’ = mI,,, (2) 
where I,,, is the m x m identity matrix. This is equivalent to 
saying that any two rows of H are orthogonal. 

Hadamard matrices of order 2k exist for all k 2 0. The so 
called Sylvester construction is as follows [13]: 

H1= [I1 

. = [ :  -:I 
Theorem 5: Let f be a Boolean function of order n. Let p be 

a polynomial equivalent to f. Let A,. denote the vector of 
coefficients of p .  Let P,. denote the vector of the 2“ values of p 
(and f). Then 

1) The polynomial p always exists and is unique. 
2) The coefficients of p are computed as follows, 

Proof (ideu): The proof is constructive. The idea is to compute 
0 A,. by solving a system of linear equations. 

Exumple: Consider the function f ( x l ,  x 2 )  = x 1  A x , .  Then 
f( l , l)=l,  /(l,-l)=l, / ( - l , l )=l  and f(-l ,- l)=-l .  By 
Theorem 5 

1 

2 
f( x l .  x * )  = -(1+ x1 + x, - x l x z ) .  

Notution: The entries of the vector A are denoted by { U , ] &  E 
{0,1}” } and are called the spectral representation of a function. 
Note that uu is the coefficient of Xu in the polynomial represen- 
tation where X u  = x p x ?  . . . x:. Hence, every Boolean function 
can be written as 

a €  (0,l)“ 

The vectors corresponding to X“ will be denoted by XplX;lz . . . 
X 2 .  
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The True Dimension of Certain Binary Goppa Codes 
MARCEL VAN DER VLUGT 

Abtruct -By applying a result from algebraic g e o m e e ,  due to 
E. Bombieri, the true dimension of certain binary Coppa codes is calcu- 
lated. The results lead in many cases to an improvement of the usual lower 
bound for the dimension. 

I. INTRODUCTION 

Let L = F2- = { P,, P2; . ., P2- 1 and g ( z )  a polynomial over 
of degree r( 21)  without zeros in L. We consider the binary 

Goppa code r ( L , g )  of length n =  2”, consisting of words 
(c,, c2,. . . , c,,) such that 

= 0 (mod g( z ) ) Cl E-- 
1-1 z - P, 

For the dimension k of r( L,  g )  we have the inequality k 2 n - mr 
(see [l], [2], [3]). Let g ( z )  = g : ( z ) g 2 ( z )  be the unique factonza- 
tion with gl( z ) ,  g2( z )  E F2-[r] of degree r,, r2 respectively and 
g 2 ( z )  squarefree. It is well known (see [1],[2],[3]) that the mini- 
mum distance d,, satisfies d- 2 2( r, + r2)  + 1. The purpose of 
this article is to prove that for polynomials g ( z )  with 

2” +1 
( - 2 + r + t ) < -  

where t is the number of distinct roots of g ( z )  in an algebraic 
closure of F2, the following holds: 

P 

dim r( L ,  g )  = n - m( r1 + r 2 ) .  

Manuscript received October 24. 19x8; revised July 7. 1989. 
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This result is similar to a result for BCH codes (see [l], Ch. 9, 
Sect. 3, Cor. 8). 

11. THE TRACE OPERATION AND BOMBIERI’S INEQUALITY 

First we consider the dual code r( L ,  g )  * . 
The code r( L ,  g ) *  is closely connected with a generalized 

Reed-Solomon code, namely the code that has as words 

where f(r) E F2,[z] of degree < r .  
This is a ( I I  = 2”, r .  2m - r + 1) code over E;-. 
Now if we look at the words 

where tr is the trace mapping from F2- to F2, we get a binary 
linear code. We call this binary code the trace code induced by 
the generalized Reed-Solomon code. From [ l ]  (ch. 12, sect. 3, 
Th. 5) it follows that this trace code is precisely r( L ,  g )  * . So to 
determine the dimension of r( L ,  g) it suffices to know how 
many different words we get by performing the trace operation to 
the words of the generalized Reed-Solomon code. 

This calculation relies heavily on Bombieri’s result [4]: 
IF  f( z ) / g (  z )  (f and g as previously mentioned) has poles Qi ,  

i = 1.. . . , I, with multiplicities n, and IF Y 2  - Y = f( z ) / g (  z )  has 
no solutions in the field of rational functions over an 
algebraic closure of F2, THEN 

where the summation runs over all points P of the projective line 
P( F2-) over E;-. 

111. THE MAIN RESULT 

By simple substitution we can prove Lemma 1. 
Lemma 1: If f ( z )  = g 2 ( z ) ( h 2 ( z ) -  g , ( z ) h ( z ) )  where h ( z )  E 

F2*[z] of degree < rl, then h ( z ) / g l ( z )  E F2,(z) is a solution of 

For different h ( z )  we get different f ( z ) .  Now for the f ( z )  as 
Y2 - Y = f( z ) / g (  z ) .  

in Lemma 1 it follows that 

for all P E F2-. 
So at least (2”)‘1 polynomials f( z )  induce the zero word in the 

trace code. This leads to Corollary 1. 
Corolluiy 1:  Let r( L ,  g )  be a binary Goppa code with Goppa 

polynomial g ( z )  E F2,[z]  and g ( z )  = g: ( z )g , ( z )  with g l ( z ) ,  
g 2 ( z )  E F2-[z] of degree r,, r2 respectively and g 2 ( z )  squarefree, 
then 

d i m r (  L ,  g )  * I m( r1 + r2 )  and d i m r (  L , g )  2 n - m( r1 + r 2 ) .  

The last inequality is already an improvement of the usual 
lower bound if r, > 0 and gl( z )  has multiple roots. For the other 
inequality for the dimension of r ( L ,  g ) *  we first prove 
Lemma 2. 

Lemmu 2: If f ( z )  E F2-[z] .  with_ f f 0 of degree < r ,  and 
Y 2 - Y = f ( z ) / g ( z )  is solvable in F 2 ( z )  thendegreef2r ,+r2.  
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