
ON THE UNIQUENESS OF THE MINIMUM OF THE

INFORMATION-THEORETIC COST FUNCTION FOR THE SEPARATION OF

MIXTURES OF NEARLY GAUSSIAN SIGNALS

Riccardo Boscolo and Vwani P. Roychowdhury

Electrical Engineering Department

University of California, Los Angeles

Los Angeles, CA 90095

{riccardo,vwani}@ee.ucla.edu

ABSTRACT

A large number of Independent Component Analy-
sis (ICA) algorithms are based on the minimization of
the statistical mutual information between the recon-
structed signals, in order to achieve the source sepa-
ration. While it has been demonstrated that a global
minimum of such cost function will result in the sepa-
ration of the statistically independent sources, it is an
open problem to show that such cost function has a
unique minimum (up to scaling and permutations of
the signals). Without such result, there is no guaran-
tee that the related ICA algorithms will not get stuck
in local minima, and hence, return signals that are sta-
tistically dependent. We derive a novel result showing
that for the special case of mixtures of two independent
and identically distributed (i.i.d.) signals with symmet-
ric, nearly gaussian probability density functions, such
objective function has no local minima. This result
is shown to yield a useful extension of the well-known
entropy power inequality.

1. INTRODUCTION

In the classic independent component analysis (ICA)
framework, a generative model is assumed where N
independent stationary signals s = {s1, . . . , sN} are
mixed through a linear transformation x = As. It
has been shown (for example in [1]) that, in absence
of noise, there always exist an inverse linear transfor-
mation of the type y = Bx, through which the re-
construction of the original signals is possible, up to
an arbitrary scaling and permutations of the signals
themselves. In particular, if we consider the statisti-
cal mutual information [2] between the reconstructed
signals as a function of the unmixing matrix B1, such

1I(y1, . . . , yN )
4

=

∫

py(y) log
py(y)

∏

N

i=1
pyi

(yi)
dy

a function has a global minimum, yielding the source
separation [3][4].

Therefore, a vast number of independent compo-
nent analysis frameworks are designed to solve the fol-
lowing optimization problem:

Bopt = arg min
B

I(y1, . . . , yN ) (1)

or an approximate version thereof. When the mixture
data x is sphered prior to the reconstruction (Cov(xxT )
= I), one can show that the unmixing matrix B must
belong to the manifold of orthogonal matrices[5]. Using
some basic information theory inequalities, the problem
posed in (1) can be re-written as:

min
B

N
∑

i=1

h(yi) (2)

s.t. BBT = I , (3)

where h(a) = −
∫

pa(u) log pa(u)du is the differential
entropy of the continuous random variable a. The
equality constraints (3) define a sub-group of the Stiefel
manifold for the case of square matrices. If we define

F (B)
4

=
∑N

i=1 h(yi), then the gradient of the cost func-
tion defined on such manifold is given by [6]:

∇mF (B)
4

= ∇F (B) − B∇F (B)T B . (4)

where ∇F (B) is the conventional gradient of F (B) in
the Euclidean space. The extrema of the optimization
problem (2) are found in correspondence to all the ma-
trices satisfying the condition:

∇mF (B) = 0 ⇒ ∇F (B)BT = B∇F (B)T . (5)



Several ICA algorithms optimizing different approxi-
mated versions of the cost function (1) have been shown
to possess good local convergence properties [7][8]. Al-
though the global minimum of (1) is known to yield
the desired source separation [1], no proof is available
to show that such a function has no local minima. On
the other hand, because of the uniqueness of the sepa-
ration matrix (up to permutations and scaling), proved
by Comon in [1], convergence to any solution other
than the global would result in a failure to separate
the source signals. The problem of convergence to sub-
optimal solutions was recently investigated for example
in [9] and in [10].

In this paper, we address the fundamental prob-
lem of the uniqueness of the minimum (up to scaling
and permutation of the solution) of the information-
theoretic cost function in the case of linear mixtures.
We show that in the case of mixtures of two symmet-
ric i.i.d. nearly gaussian signals, such cost function is
indeed free from spurious local minima. In addition,
we derive an interesting connection between the prob-
lem defined by (2) and the well-known entropy power
inequality, showing that, under the aforementioned hy-
potheses, not only this inequality does not hold for de-
pendent random variables, but it is, in fact, always
violated (converse entropy power inequality).

2. EXTREMA FOR MIXTURES OF TWO

NEARLY GAUSSIAN SOURCES

We consider the traditional linear framework, where we
assume that the mixing matrix A is the 2 × 2 identity
matrix and the original signals are zero-mean, and unit
variance. The reconstructed signals can be written as:

y1 = b11s1 + b12s2 (6)

y2 = b21s1 + b22s2. (7)

The general case where the mixing matrix is not the
identity matrix can be mapped to this special case
through an orthogonal transformation [5], as long as
the mixture data is sphered, thus preserving the char-
acteristics of the solution space of (2) (in particular,
the number of extrema). We restrict our analysis to
those cases where the probability density functions of
s1 and s2 are symmetric and they can be approximated
using a Gram-Charlier [11] expansion of the type:

fsi
(u) = g(u)

(

1 +
κ4,si

24
H4(u)

)

i = 1, 2. (8)

where H4(u) is the 4th order Chebyshev-Hermite poly-
nomial and g(u) is the zero-mean, unit-variance, nor-
mal probability density function. The probability den-
sity functions of y1 and y2, can be approximated as2:

fyi
(u) ≈ g(u)

(

1 +
κ4,yi

24
H4(u)

)

i = 1, 2. (9)

The cumulants κ4,yi
can be computed as:

κ4,y1
= E[y4

1 ]−3 = b4
11µ4,s1

+6b2
11b

2
12+b4

12µ4,s2
−3 (10)

κ4,y2
= E[y4

2 ]−3 = b4
21µ4,s1

+6b2
21b

2
22+b4

22µ4,s2
−3 (11)

where µ4,si
is the 4th order central moment of si.

The extrema of the cost function (2) must satisfy (5).
For mixtures of two sources these conditions can be
written as:

∇h(b1)b
T
2 = ∇h(b2)b

T
1 , (12)

where bi is the ith row of B, and in order to make
explicit the dependence of the entropy h(yi) on bi, we

can define h(bi)
4

= h(yi), i = 1, 2. Given that:

∂h(bi)

∂bij

= −

∫

∞

−∞

(1 + log fyi
(u))

∂fyi
(u)

∂bij

du (13)

the identity (12) can be written as:

∫

∞

−∞

log fy1
(u)

[

b21
∂fy1

(u)

∂b11
+ b22

∂fy1
(u)

∂b12

]

du = (14)

=

∫

∞

−∞

log fy2
(u)

[

b11
∂fy2

(u)

∂b21
+ b12

∂fy2
(u)

∂b22

]

du .

Using (9) we can compute explicitly (i = 1, 2):

∂fyi
(u)

∂bi1
= g(u)

(

1

6
b3
i1µ4,s1

+
1

2
bi1b

2
i2

)

H4(u) (15)

∂fyi
(u)

∂bi2
= g(u)

(

1

6
b3
i2µ4,s2

+
1

2
b2
i1bi2

)

H4(u) (16)

Now define:

D1(u,B)
4

=
1

g(u)

[

b21
∂fy1

(u)

∂b11
+ b22

∂fy1
(u)

∂b12

]

(17)

2Only the 8th order term of this Gram-Charlier expansion is
non-zero and it is neglected.



= c4,y1
H4(u),

where:

c4,y1
=

1

6

(

b3
11b21µ4,s1

+ b3
12b22µ4,s2

)

+ (18)

+
1

2

(

b11b
2
12b21 + b2

11b12b22

)

and:

D2(u,B)
4

=
1

g(u)

[

b11
∂fy2

(u)

∂b21
+ b12

∂fy2
(u)

∂b22

]

(19)

= c4,y2
H4(u).

where:

c4,y2
=

1

6

(

b11b
3
21µ4,s1

+ b12b
3
22µ4,s2

)

+ (20)

+
1

2

(

b11b21b
2
22 + b12b

2
21b22

)

,

The following integrals need to be evaluated:

∫

∞

−∞

g(u) log fyi
(u)Di(u,B)du i = 1, 2 . (21)

where:

log fyi
(u) = −

1

2
log(2π) −

u2

2
log(e) + (22)

+ log
(

1 +
κ4,yi

24
H4(u)

)

i = 1, 2 .

Substituting this expression in (21), we obtain:

∫

∞

−∞

g(u)

[

−
1

2
log(2π) −

u2

2
log(e) + (23)

+ log
(

1 +
κ4,yi

24
H4(u)

)

]

Di(u,B)du

Now notice that:

∫

∞

−∞

g(u)H4(u)du = 0 , (24)

and:

∫

∞

−∞

u2g(u)H4(u)du = 0 . (25)

The integral (23) simplifies as:

∫

∞

−∞

g(u) log
(

1 +
κ4,yi

24
H4(u)

)

Di(u)du. (26)

Using the following useful indefinite integral:

∫

g(u)Di(u)du = −c4,yi
H3(u), (27)

we can integrate (26) per parts. If we define Xi(u)
4

=
κ4,yi

H4(u)/24, we obtain:

∫

∞

−∞

g(u) log (1 + Xi(u))Di(u)du = (28)

= c4,yi

∫

∞

−∞

g(u)H3(u)
X ′

i(u)

1 + Xi(u)
du,

where X ′

i(u) = κ4,yi
H3(u)/6. Using (28), we find that

(14) reduces to:

c4,y1
κ4,y1

∫

∞

−∞

H2
3 (u)

1 + κ4,y1
/24H4(u)

g(u)du = (29)

= c4,y2
κ4,y2

∫

∞

−∞

H2
3 (u)

1 + κ4,y2
/24H4(u)

g(u)du.

In particular, when the sources are i.i.d. (µ4,s1
=

µ4,s2

4

= µ4), we have that k4,y1
= k4,y2

6= 0, and the
two integrals on the left-hand-side and on the right-
hand-side of (29) are always equal. Moreover, because
their integrands are non-negative, these integrals are
also strictly positive. Thus, the conditions for the gra-
dient to be zero become simply:

c4,y1
= c4,y2

(30)

We can now study the solutions of (30) in the space of
orthogonal matrices. This is achieved by operating the
substitution:

[

b11 b12

b21 b22

]

=

[

cos θ sin θ
− sin θ cos θ

]

. (31)

Substituting in the expressions for c4,y1
and c4,y2

, we
obtain:

c4,y1
= −

1

6
sin θ cos θ

[

(µ4 − 3)(cos2 θ − sin2 θ)
]

(32)

c4,y2
=

1

6
sin θ cos θ

[

(µ4 − 3)(cos2 θ − sin2 θ)
]

(33)



Thus, (30) is satisfied if and only if:

(µ4 − 3) sin θ cos θ cos 2θ = 0. (34)

Because of the symmetry of the problem, it suffices to
study the zeros of (34) in the interval [0, π/2). The
solutions found in [π/2, 2π), correspond, in fact, to a
permutation or sign change of the rows of B. In this
interval, (34) has only two zeros, one for θ = 0 corre-
sponding to a minimum of (2), and one for θ = π/4,
corresponding to a maximum of the objective function,
thus proving that (2) has no local minima.

3. AN EXTENSION OF THE ENTROPY

POWER INEQUALITY

In this section we will illustrate the connection between
the result we just proved and the well-known entropy
power inequality [2].

The entropy power of a scalar random variable s is
defined as:

N(s) =
1

2πe
e2h(s) (35)

Given two independent random variables s1 and s2, the
entropy power inequality states that:

N(s1 + s2) ≥ N(s1) + N(s2), (36)

with equality holding if and only if s1 and s2 are both
normal. The inequality (36) can be used to prove the
convexity of the entropy under a covariance preserving
transformation, i.e. given 0 ≤ λ ≤ 1, it holds that [12]:

h(λs1 +
√

1 − λ2s2) ≥ λ2h(s1) + (1 − λ2)h(s2). (37)

Now simply define:

λ = cos θ ⇒
√

1 − λ2 = sin θ 0 ≤ θ ≤ π/2 (38)

Thus one can write:

h(cos θ s1 + sin θ s2) ≥ cos2 θ h(s1) + sin2 θ h(s2) (39)

and analogously:

h(− sin θs1 + cos θs2) ≥ sin2 θh(s1) + cos2 θh(s2) (40)

(note that h(as) = h(s) + log |a|, a being a scalar pa-
rameter). Simply by adding (39) and (40) we obtain:

h(y1) + h(y2) ≥ h(s1) + h(s2). (41)

In particular (41) proves that the extremum correspon-
ding to θ = 0 is a global minimum of (2), regardless of
the actual distributions of s1 and s2. The uniqueness of
this minimum, proved in the previous section, extends
the inequality theorem showing that there are no local
minima of h(y1) + h(y2), for 0 ≤ λ < 1.

This result can be used to show that a converse
entropy power inequality holds, if certain hypotheses
are satisfied. Define two random variables z1 and z2 as
follows:

z1 = λy1 +
√

1 − λ2y2 (42)

z1 =
√

1 − λ2y1 + λy2, (43)

for 0 ≤ λ < 1. Because of the uniqueness of the min-
imum of h(y1) + h(y2) in this interval, it follows that
the following inequality never holds:

h(z1) + h(z2) 6≥ h(y1) + h(y2), (44)

unless y1 and y2 are obtained from s1 and s2, solely
through scaling or permutation. In other words, the
entropy power inequality is always violated by two de-
pendent random variables obtained through an orthog-
onal projection of independent random variables.

4. CONCLUSIONS

We introduced a novel result proving the uniqueness
of the minimum of the information-theoretic cost func-
tion, for the special case of linear mixtures of indepen-
dent and identically distributed signals with symmetric
probability density functions. Such a result, the first
of its kind, can be used to show that a converse en-
tropy power inequality holds for this particular class of
distributions. In process of deriving a proof for our re-
sult, we introduced a useful framework that can poten-
tially be extended in order to investigate the problem
for more general classes of distributions. In particular,
the method can be used to study whether a converse
entropy power inequality, proved for this special case,
holds in general. So far, in fact, examples of source
distributions for which the uniqueness property is sys-
tematically violated have not been identified.



5. REFERENCES

[1] P. Comon, “Independent component analysis, a
new concept?,” Signal Processing, vol. 36, no. 3,
pp. 287–314, 1994.

[2] T.M. Cover and J.A. Thomas, Elements of Infor-
mation Theory, John Wiley & Sons, 1991.

[3] Jean-François Cardoso, “Infomax and maximum
likelihood for source separation,” IEEE Letters on
Signal Processing, vol. 4, no. 4, pp. 112–114, Apr.
1997.

[4] S. Amari S. Cruces, A. Cichocki, “The minimum
entropy and cumulant based contrast functions for
blind source extraction,” in Bio-Inspired Appli-
cations of Connectionism, Lecture Notes in Com-
puter Science, Springer-Verlag. [6th International
Work-Conference on Artificial and Natural Neural
Networks (IWANN’2001)], J. Mira and A. Prieto
editors, Eds., Granada, Spain, June 2001, vol. II,
pp. 786–793.

[5] D. Obradovic and G. Deco, “Information maxi-
mization and independent component analysis: Is
there a difference?,” Neural Computation, vol. 10,
pp. 2085–2101, 1998.

[6] S.T. Smith A. Edelman, T.A. Arias, “The geome-
try of algorithms with orthogonality constraints,”
SIAM J. Matrix Anal. Appl., vol. 20, no. 2, pp.
303–353, 1999.

[7] Aapo Hyvärinen, “Survey on independent compo-
nent analysis,” Neural Computing Surveys, vol. 2,
pp. 94–128, 1999.

[8] S. i. Amari, A. Chichoki, and H.H. Yang, “A new
learning algorithm for blind source separation,” in
Advances in Neural Information Processing Sys-
tems. 1996, vol. 8, pp. 757–763, MIT Press, Cam-
bridge, MA.

[9] M. Rattray and Gleb Basalyga, “Scaling laws and
local minima in hebbian ica,” in Advances in Neu-
ral Information Processing Systems 14, S. Becker
T.G. Dietterich and Z. Ghahramani Editors, Eds.,
Vancouver, Canada, Dec.

[10] M. Rattray and Gleb Basalyga, “Stochastic trap-
ping in a solvable model of on-line Independent
Component Analysis,” Neural Computation, vol.
14, pp. 421–435, 2002.

[11] D. L. Wallace, “Asymptotic approximations to
distributions.,” Ann. Math. Stat., vol. 29, pp. 635–
654, 1958.

[12] A. Dembo and T.M. Cover, “Information theo-
retic inequalities,” IEEE Trans. On Information
Theory, vol. 37, no. 6, pp. 1501–1518, 1991.


	Page137: 137
	Header: 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), April 2003, Nara, Japan
	Page138: 138
	Page139: 139
	Page140: 140
	Page141: 141


