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Partial recovery of entanglement in bipartite-entanglement transformations
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Any deterministicbipartite-entanglement transformation involving finite copies of pure states and carried out
using local operations and classical communication~LOCC! results in a net loss of entanglement. We show that
for almost all such transformations, partial recovery of lost entanglement is achievable by using 232 auxiliary
entangled states, no matter how large the dimensions of the parent states are. For the rest of the special cases
of deterministic LOCC transformations, we show that the dimension of the auxiliary entangled state depends
on the presence of equalities in the majorization relations of the parent states. We show that genuine recovery
is still possible using auxiliary states in dimensions less than that of the parent states forall patterns of
majorization relations except only one special case.
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Entanglement, shared among spatially separated partie
a critical resource that enables efficient implementations
several quantum-information processing@1,2# and
distributed-computation@3# tasks. To better exploit the powe
of entanglement, considerable effort has been put into un
standing its transformation properties@4–7# and characteriz-
ing transformations allowed under local operations and c
sical communication~LOCC!. A central question is wha
happens to the overall entanglement during transformatio
In the asymptotic limit involving infinite number of copies o
pure states, entanglement can be concentrated and di
with unit efficiency @4#. This remarkable asymptotic ‘‘non
dissipative’’ property, however, does not hold in the fin
copy regime, where the process becomes inherently ‘‘di
pative,’’ and a localdeterministicconversion between two
pure entangled states~which are not locally unitarily related!,
alwaysresults in a net loss of entanglement@5#.

It is of fundamental importance to devise local strateg
to recoverthe lost entanglement in an entanglement mani
lation. Such recovery strategies would requirecollectivema-
nipulations with ancillary resources. That is, letuc&
5( i 51

n Aa i u i &u i & and uw&5( i 51
n Ab i u i &u i & be, respectively,

the source and target states inn3n such thatuc&→uw& un-
der LOCC with certainty. Then the amount of entanglem
lost in such a transformation isE(uc&)2E(uw&) ~whereE is
the entropy of entanglement!, and we say that there is
partial recoveryof the lost entanglement if there exist e
tangled statesux&, uv& in k3k, such thatuc& ^ ux&→uw&
^ uv& with certainty under LOCC, andE(uv&).E(ux&).
Since the overall transformation involving the auxilia
states is dissipative, the recovered entanglement,E(uv&)
2E(ux&), is always less than or equal to the initial amou
of lost entanglement,E(uc&)2E(uw&). In order to minimize
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the use of ancillary resources and to reduce the complexit
the collective operations, we consider a partial recovery
entanglement process to beefficient, if the dimension of the
auxiliary states,k is the minimum required for the recover
process to happen. Moreover, in order for the partial rec
ery process to begenuine, we require the dimension of th
auxiliary states to be smaller than that of the parent sta
~i.e., k,n), since otherwise, ifk5n then one can have a
complete recovery of lost entanglement by a trivial cho
ux&5uw& and uv&5uc&.

A first step toward achieving partial recovery of entang
ment has recently been taken in@8# for the special case o
n52. This result is of limited interest only, since the aux
iary pure states are necessarily of the same dimension a
parent states~i.e.,k5n52), one can always have a comple
recovery of lost entanglement by a trivial choice of the au
iliary states. However,@8# presents nontrivial selections o
auxiliary states~i.e., ux&Þuw&) that lead to partial recovery
of entanglement.

We prove that genuine and efficient partial recovery
entanglement isalways possible for almost all bipartite
entanglement transformations inany finite dimension~i.e.,
for any n.2). Moreover, for almost all comparable pair
such partial recovery is achievable by using auxiliary sta
of minimum possible dimension, i.e.,k52, no matter how
large the dimensions of the parent states are. For the re
the special cases of comparable parent states, we show
the dimension of the auxiliary entangled state depends on
structure of the majorization relations of the parent sta
where the presence of equalities in the majorization relati
either in isolation or in blocks determine the dimension
the auxiliary entanglement.

Recall that our parent bipartite pure states are represe
as uc&5( i 51

n Aa i u i &u i & and uw&5( i 51
n Ab i u i &u i &, where a1

>a2>•••>an andb1>b2>•••>bn , are the Schmidt co-
efficients. Define the vector of the eigenvalues of the redu
density matrices as lc[(a1 , . . . ,an) and lw

[(b1 , . . . ,bn). Since our parent states are comparable, i
©2002 The American Physical Society03-1
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uc&→uw& with probability one under LOCC, it follows from
@5# that lc is majorizedby lw ~denoted aslcalw!, i.e.,

(
i 51

m

a i<(
i 51

m

b i for everym51, . . . ,n21. ~1!

Note that both sides equal one form5n.
First we consider the case wherelc is strictly majorized

by lw , i.e., all the inequalities of the majorization conditio
~1! are strict, and show that recovery with an auxiliary e
tangled state in 232 is always possible. We represent str
majorization aslcvlw . Note that for a randomly picked
pair of comparable states, the majorization inequalities
strict with probability one. This guarantees that the ca
where all the majorization inequalities are strict coversal-
most all possible comparable pairs. We first illustrate t
basic idea involved in the proof with a simple example.

Example. Consider the statesuc& and uw& with lc
5(0.4,0.3,0.2,0.1), andlw5(0.5,0.3,0.2,0). Thenlcvlw .
Note that sinceuc&→uw&, then for all 232 statesux(p)&,
where lx(p)5(p,12p) and pP(0.5,1), we have uc&
^ ux(p)&→uw& ^ ux(p)&. One can verify that forp50.8 we
havelc ^ x(p)vlw ^ x(p) , moreover, for any small perturba
tion aroundp50.8, the ordering of the Schmidt coefficien
of uw& ^ ux(p)& is preserved. In particular, one can verify th
the relationlc ^ x(p)alw ^ x(p2«) holds if 0,«,0.08. Thus,
we can chooseux&5ux(0.8)&, and uv&5ux(0.73)&. Then
uc& ^ ux&→uw& ^ uv&, whereE(uv&).E(ux&). While in this
example we directly provided a value ofp around which a
perturbation leads to partial recovery, the proof of the f
lowing theorem shows that such ap always exists, and out
lines how one can find such ap systematically. j

Theorem 1. If lcvlw then there are 232 statesux& and
uv& such thatuc& ^ ux&→uw& ^ uv& andE(uv&).E(ux&).

Proof. Let ux(p)& be a 232 state withlx(p)5(p,12p),
and 1

2 ,p,1. Note that, in general, ifuc1&→uw1& and uc2&
→uw2& thenuc1& ^ uc2&→uw1& ^ uw2&. Therefore, for all val-

ues ofpP( 1
2 ,1), uc& ^ ux(p)&→uw& ^ ux(p)&. The choice of

p determines the orderings of the Schmidt coefficients
uc& ^ ux(p)& and uw& ^ ux(p)&, and hence the inequalities i
lc ^ x(p)alw ^ x(p) . Conversely, one can think in terms of th
orderings of the Schmidt coefficients. There is only a fin
number~in fact, at mostn! ! of possible individual orderings
of the coefficients ofuc& ^ ux(p)& anduw& ^ ux(p)&. For each
such ordering of the coefficients ofuw& ^ ux(p)&, one can

determine its feasible set: values ofpP( 1
2 ,1) for which the

ordering is valid. Each nonempty feasible set correspond
the solution of a set of linear inequalities, and hence, i

union of intervals and discrete points in (1
2 ,1). Moreover, the

union of the feasible sets of all possible orderings of

coefficients is the interval (12 ,1). Since the union of this

finite set of intervals and discrete points is (1
2 ,1), hence, it

follows from simple measure-theoretic arguments that th
exists at least one ordering, where the corresponding fea
setF includes intervals of nonzero lengths of the form (a,b),
where 1

2 ,a,b,1.
04030
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Next, let us restrictp to belong to such a nontrivial fea
sible setF. We next show thatlc ^ x(p)vlw ^ x(p) for all val-
ues ofpPF, exceptat most 2n21 discrete values. Hence
the set of pointsp where the majorization inequalities ar
strict and the ordering of Schmidt coefficients is preserve
of nonzero measure, i.e., it includes intervals. If in the m
jorization relationship oflc ^ x(p)alw ^ x(p) one of the in-
equalities~among the 2n21 nontrivial inequalities! is an
equality, then we must have

p(
j 51

x

a j1~12p!(
j 51

y

a j5p(
j 51

s

b j1~12p!(
j 51

t

b j , ~2!

wherex1y5s1t, x>y, ands>t. Equivalently,

S (
j 51

x

a j2(
j 51

y

a j2(
j 51

s

b j1(
j 51

t

b j D p5(
j 51

t

b j2(
j 51

y

a j .

~3!

There are two cases now:~i! Eq. ~3! determines a value ofp,
and~ii ! Eq. ~3! is an equivalence, and hence, does not de
mine a value forp . We show that case~ii ! is impossible, Eq.
~3! does not determine a value forp, if and only if ( j 51

x a j

5( j 51
s b j and ( j 51

y a j5( j 51
t b j . Sincelcvlw , it follows

that x.s and y.t. This contradictsthe conditionx1y5s
1t. Hence, every potential equality in the majorization re
tionship lc ^ x(p)alw ^ x(p) corresponds to a fixed value fo
p. Since, there are at most 2n21 such nontrivial equalities
there are at most 2n21 values forp for which lc ^ x(p)
alw ^ x(p) is not strict.

Hence, there exist apPF#( 1
2 ,1) and an 0,«, 1

2 such
thatlc ^ x(p)alw ^ x(p2«) . The proof is completed by settin
ux&5ux(p)& and uv&5ux(p2«)&. j

What happens iflc is not strictly majorized bylw? We
first defineDc,w as the set of all indicesm such that the
relation ~1! is an equality:Dc,w5$m: 1<m<n21, ( i 51

m a i

5( i 51
m b i%. Note that 1PDc,w is equivalent to the casea1

5b1 andn21PDc,w is equivalent to the casean5bn .
We first show that even in the presence of many patte

of equalities in the majorization relationship of the pare
states recovery is still possible using only 232 auxiliary
states.

Theorem 2. Suppose that 1P” Dc,w ~i.e., a1Þb1), n
21¹Dc,w ~i.e., anÞbn), and if j PDc,w then j 11P” Dc,w
~i.e., there are no consecutive equalities in the majorizatio!.
Then there are 232 statesux& and uv& such thatuc& ^ ux&
→uw& ^ uv& andE(uv&).E(ux&).

Proof. We first show that there exists a nonempty interv

I 5( 1
2 ,a) (1.a. 1

2 ), such that each inequality in the majo
ization relationshiplc ^ x(p)alw ^ x(p) is either ~i! a benign
identity for all pPI , that is, the equality holds even if on th
right-hand sidep is perturbed top2«, for any«.0, or ~ii ! is
a strict inequality, for all pPI , except forat most 2n21
discrete values. Such a majorization, where each inequ
is either strict or a benign identity, is represented
lc ^ x(p)vlw ^ x(p) . One can then use simple measur
theoretic arguments, as introduced in the proof of Theorem
and show that there exists an ordering of the Schmidt co
3-2
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ficients of uw& ^ ux(p)& such thatFùI has a nonzero mea
sure~i.e., includes intervals!, whereF is the feasible set for
the given ordering. The two above results then show t
there exists apPFùI such thatlc ^ x(p)vlw ^ x(p) , and in a
neighborhood aroundp the ordering of the Schmidt coeffi
cients ofuw& ^ ux(p)& is preserved. Hence, there is an 0,«
, 1

2 , such thatlc ^ x(p)alw ^ x(p2«) . The proof can then be
completed by settingux&5ux(p)& and uv&5ux(p2«)&. We
now present a construction of such a setI.

First consider the case where there are only two equ
ties, i.e., Dc,w5$k1 ,k2%, where 1,k1,k2,n21 and k2
2k1>2. Sincea1Þb1, it cannot be the case thatboth a1

5ak1
andb15bk1

: if it is true then thek1
th inequality in the

majorization is also strict andk1P” Dc,w , which contradicts
our assumption. Hence,a1.ak1

or b1.bk1
or both. Simi-

larly, one can argue that~i! since k1PDc,w , and k1
11¹Dc,w , both ak1115ak2

and bk1115bk2
cannot be

true, and ~ii ! since k2PDc,w , and k111P” Dc,w , both
ak2115an and bk2115bn cannot be true. Now setI

5( 1
2 ,a), where

a5minH q1

a1

a11ak1

,q2

b1

b11bk1

,q3

ak111

ak1111ak2

,

q4

bk111

bk1111bk2

,q5

ak211

ak2111an
,q6

bk211

bk2111bn
J , ~4!

andqi52, if its accompanying multiplicative term equals1
2 ,

otherwiseqi51. Thus, ifa15ak1
, thenq152 and the first

term, q1@a1 /(a11ak1
)#51, plays no role in determining

the value ofa, otherwise, ifa1.ak1
, thenq151 and the first

term, 1
2 ,q1 @a1 /(a11ak1

)#,1, can potentially determine

a. By construction, 1
2 ,a,1, and hence,I is nonempty. The

motivation of defininga as above is that by restrictingp

P( 1
2 ,a), it enforces apartial ordering of the Schmidt coef-

ficients of uw& ^ ux(p)& and uc& ^ ux(p)&. For example, if
b1.bk1

then from Eq.~4! it follows that pbk1
,(12p)b1,

and hence, in the ordering of the Schmidt coefficients
uw& ^ ux(p)&, (12p)b1 will appear beforepbk1

.

Next, we showlc ^ x(p)vlw ^ x(p) for all pPFùI , except
at most 2n21 discrete values. In the majorization relatio
ship of lc ^ x(p)alw ^ x(p) let one of the inequalities~among
the 2n21 nontrivial inequalities! be an equality. Then fol-
lowing arguments similar to those used in the proof of Th
rem 1 and using the partial ordering of Schmidt coefficie
enforced by the selection ofI @see Eq.~4!#, we show that
either ~i! the equality determines a value ofp ~hence, there
are at most 2n21 discrete values ofp where any such equal
ity can exist!, or ~ii ! the equality is abenignidentity with one
of the following forms:

p(
i 51

kj

a i1~12p!(
i 51

kj

a i5p(
i 51

kj

b i1~12p!(
i 51

kj

b i , ~5!
04030
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wherej P$1,2%. The reason identities as in Eq.~5! are benign
for our purposes is that whenp is substituted byp2« on the
right-hand side, then the identity still remains an equality.
prove the above claim, consider an equality in the majori
tion relationship, which as discussed in the proof of Theor
1 @see Eq.~3!#, can be written as

S (
j 51

x

a j2(
j 51

y

a j2(
j 51

s

b j1(
j 51

t

b j D p5(
j 51

t

b j2(
j 51

y

a j ,

~6!

where x1y5s1t, x>y, and s>t. Equation ~6! is an
equivalence if and only if the following two conditions ar
simultaneously satisfied.~i! ( j 51

t b j5( j 51
y a j , which is true

only if t5yP$0,k1 ,k2%, or if y.t; and ~ii ! ( j 51
x a j

5( j 51
t b j , which is true only ifx5sP$k1 ,k2 ,n%, or if x

.s. The benign identity cases occur ifx5y5s5t5kj , j
P$1,2%. Let us then consider all the other potentially feasib
cases and show that they are allimpossible: ~i! if ( y.t and
x>s) or (y>t and x.s) then we reach the contradictio
that x1y.s1t; ~ii ! if ( y5t50) and (x5sP$k1 ,k2 ,n%),
this implies that (12p)a1,pak1

and (12p)b1,pbk1
,

which contradicts the fact thatpP( 1
2 ,a) @see Eq.~4!#; ~iii ! if

(y5t5k1) and (x5sP$k2 ,n%), this implies that (1
2p)ak111,pak2

and (12p)bk111,pbk2
, which again

contradicts the construction introduced in Eq.~4!; ~iv! if ( y
5t5k2) and (x5s5n), this implies that (12p)ak211

,pan and (12p)bk211,pbn , which again contradicts the
construction introduced in Eq.~4!.

In general, whenDc,w5$k1 ,k2 , . . . ,kl %, where 1,k1
,•••,kl ,n21 andki 112ki>2, then one can show th

above results forI 5( 1
2 ,a), where

a5minH q1

a1

a11ak1

,q2

b1

b11bk1

, . . . ,

q2l 21

akl 2111

akl 21111akl

,q2l

bkl 2111

bkl 21111bkl

,q2l 11

akl 11

akl 111an
,

q2(l 11)

bkl 11

bkl 111bn
,

andqi ’s are chosen as in Eq.~4!. j
We next show that for certain equality patterns in t

majorization relation, partial recovery with the help of
32 states~or even 333 states! is not always possible.

Lemma 1. If a15b1 or an5bn , then recovery is not
possible with 232 auxiliary states. Also, if both relation
a15b1 andan5bn hold then there is no recovery even wi
333 auxiliary states.

Proof. First assume thata15b1 or an5bn . Suppose, by
contradiction, there are 232 statesux& and uv& such that
uc& ^ ux&→uw& ^ uv& and E(uv&).E(ux&). Let lx5(p,1
2p) andlv5(q,12q) be the vector of eigenvectors ofux&
and uv& with p,q. 1

2 . The conditionE(uv&).E(ux&) im-
plies thatq,p. The relationlc ^ xalw ^ v implies thata1p
3-3
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<b1q and 12an(12p)<12bn(12q). So if a15b1 or
an5bn then p<q andE(uv&)<E(ux&), which is a contra-
diction.

The proof for the case, wherea15b1 and an5bn , is
similar to the above case: assume that there are 333 recov-
ery statesux& and uv& @hence,E(uv&).E(ux&)# with eigen-
value vectorslx5(p,q,12p2q) and lv5(p8,q8,12p8
2q8) with p>q>12p2q and p8>q8>12p82q8. Then
it will follow that ux&→uv&, which implies the contradiction
that E(uv&)<E(ux&) ~see@5#!. j

The following theorem shows that ifa15b1 then there
indeed exist 333 auxiliary states for partial recovery.

Theorem 3. If Dc,w5$1% then there are 333 statesux&
and uv& such that uc& ^ ux&→uw& ^ uv& and E(uv&)
.E(ux&).

Proof. Let ux(p,q)& be a 333 state with lx(p,q)
5(p,q,12p2q), wherep>q>12p2q>0. The goal is to
find a stateuv& of the form ux(p,q2«)&, for some«.0,
such thatlc ^ x(p,q)alw ^ x(p,q2«) . Our approach is similar to
that introduced in the proof of Theorem 2: we construc
region R5$(p,q)up>q>12p2q>0%, with nonzero area
such thatlc ^ x(p,q)@lw ^ x(p,q) for almost all (p,q)PR, and
the set of points where it is violated hasmeasure zero. Here,
an identity is considered to bebenign if the equality holds
when on the right-hand side (p,q) is perturbed to (p,q
2«). Then, measure-theoretic arguments will guarantee
there is an«.0, such thatlc ^ x(p,q)alw ^ x(p,q2«) .

In order to constructR, we note that since 2P” Dc,w , a1
.a2. Also note that ifa25an thenb2.bn . Therefore, we
have to consider one of two cases~i! a1.a2.an and ~ii !
a1.a25an and b2.bn . To defineR, we choose the pa
rametersp andq such thatp>q>12p2q>0 and they sat-
isfy the following conditions. For case~i! qa1,pa2, and
pan,(12p2q)a1 or, case~ii ! qa1,pa2, and pbn,(1
2p2q)b1. One can verify that in both cases,R defines a
nonempty triangular region in the (p,q) plane. For any
(p,q)PR, if any of the 3n inequalities in the majorization
relationshiplc ^ x(p,q)alw ^ x(p,q) is an equality, then one o
the two following cases must be true. Case~i! it is a non-
identicalequality, i.e., the set of (p,q) that satisfies it defines
.

ch
,

04030
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a line in (p,q) plane, and hence comprises a measure z
set. Hence, the set of all points inR where there might be a
nonidentical equality is of measure zero. Case~ii !, it is a
benign identity of the form pa11qa11(12p2q)a1
5pb11qb11(12p2q)b1 . j

We now consider the case where the majorization
equalities contain both consecutive equalities and isola
ones. Lethc,w be the size of the longest block of consecuti
equalities in the majorization relationship ofuc& and uw&.
With the techniques that we have developed in this paper
not difficult to show that ifanÞbn , then partial recovery of
entanglement is always possible using auxiliary states of
mensionk5hc,w12. Thus, ifanÞbn , thengenuinepartial
recovery isalways possible, since anÞbn , hc,w<(n23)
and hencek,n.

In summary, we have shown that a nontrivial recovery
always possible except for the special case wherean5bn ,
whether recovery is still possible for this special case is
as an open problem. There are many other open ques
that might be of interest. For example, for a given pair
comparable states, one may ask what is the maximum
tanglement that can be recovered. Similarly, can one reco
more entanglement by increasing the dimension of the a
iliary entangled states? For example, we show that for alm
all comparable states, 232 auxiliary states are sufficient t
implement partial recovery, however, can one have more
covery of entanglement if the dimension of the auxilia
state is increased? We hope that the results of the pre
paper will lead to a better understanding of the subtle
involved in local entanglement manipulation in high
dimensions.
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