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Any deterministidbipartite-entanglement transformation involving finite copies of pure states and carried out
using local operations and classical communicatlddCC) results in a net loss of entanglement. We show that
for almost all such transformations, partial recovery of lost entanglement is achievable by uInguXiliary
entangled states, no matter how large the dimensions of the parent states are. For the rest of the special cases
of deterministic LOCC transformations, we show that the dimension of the auxiliary entangled state depends
on the presence of equalities in the majorization relations of the parent states. We show that genuine recovery
is still possible using auxiliary states in dimensions less than that of the parent stat$ patterns of
majorization relations except only one special case.
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Entanglement, shared among spatially separated parties, tise use of ancillary resources and to reduce the complexity of
a critical resource that enables efficient implementations ofhe collective operations, we consider a partial recovery of
several quantum-information processind1,2] and entanglement process to béficient if the dimension of the
distributed-computatiof8] tasks. To better exploit the power auxiliary statesk is the minimum required for the recovery
of entanglement, considerable effort has been put into undeprocess to happen. Moreover, in order for the partial recov-
standing its transformation propertigs—7] and characteriz- ery process to bgenuine we require the dimension of the
ing transformations allowed under local operations and clasauxiliary states to be smaller than that of the parent states
sical communicationLOCC). A central question is what (i.e., k<n), since otherwise, ik=n then one can have a
happens to the overall entanglement during transformationstomplete recovery of lost entanglement by a trivial choice
In the asymptotic limit involving infinite number of copies of |x)=|¢) and|w)=|).
pure states, entanglement can be concentrated and diluted A first step toward achieving partial recovery of entangle-
with unit efficiency[4]. This remarkable asymptotic “non- ment has recently been taken[i] for the special case of
dissipative” property, however, does not hold in the finite n=2. This result is of limited interest only, since the auxil-
copy regime, where the process becomes inherently “dissiiary pure states are necessarily of the same dimension as the
pative,” and a localdeterministicconversion between two parent statei.e.,k=n=2), one can always have a complete
pure entangled statéwhich are not locally unitarily related  recovery of lost entanglement by a trivial choice of the aux-
alwaysresults in a net loss of entanglem¢t. iliary states. However8] presents nontrivial selections of

It is of fundamental importance to devise local strategiesauxiliary stated(i.e., |x)#|¢)) that lead to partial recovery
to recoverthe lost entanglement in an entanglement manipuef entanglement.
lation. Such recovery strategies would requiadlectivema- We prove that genuine and efficient partial recovery of
nipulations with ancillary resources. That is, lét)) entanglement isalways possible for almost all bipartite-
=3 Jai|i)|i) and |¢)=32"",VBili)]i) be, respectively, entanglement transformations amy finite dimension(i.e.,
the source and target statesnx n such that¢)—|¢) un-  for any n>2). Moreover, for almost all comparable pairs,
der LOCC with certainty. Then the amount of entanglementsuch partial recovery is achievable by using auxiliary states
lost in such a transformation B(|¢)) —E(|¢)) (whereEis  of minimum possible dimension, i.&k=2, no matter how
the entropy of entanglementand we say that there is a large the dimensions of the parent states are. For the rest of
partial recoveryof the lost entanglement if there exist en- the special cases of comparable parent states, we show that
tangled statesy), |w) in kxk, such that|y)®|x)—|¢)  the dimension of the auxiliary entangled state depends on the
®|w) with certainty under LOCC, an&(|w))>E(|x)). structure of the majorization relations of the parent states,
Since the overall transformation involving the auxiliary where the presence of equalities in the majorization relations
states is dissipative, the recovered entanglemEftw))  either in isolation or in blocks determine the dimension of
—E(]x)), is always less than or equal to the initial amountthe auxiliary entanglement.
of lost entanglemen&(|#)) —E(] ¢)). In order to minimize Recall that our parent bipartite pure states are represented

as |y) =21 Vaili)]i) and|¢)=3{_;VBii)]i), where

=a,=---=a,andB,=p,=---=,, are the Schmidt co-

*Electronic address: som@ee.ucla.edu efficients. Define the vector of the eigenvalues of the reduced
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*Electronic address: Farrokh.Vatan@jpl.nasa.gov =(pB1, . ...Bn). Since our parent states are comparable, i.e.,
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|y — | @) with probability one under LOCC, it follows from Next, let us restricp to belong to such a nontrivial fea-
[5] that\ , is majorizedby X\, (denoted as\ ,<\,), i.e., sible setF. We next show thal¢,®x(p)_<1)\¢®x(p) for all val-
ues ofpeF, exceptat most 2 —1 discrete values. Hence,
m m the set of pointg where the majorization inequalities are
> @<, B; foreverym=1,...n—1. (1)  strict and the ordering of Schmidt coefficients is preserved is
i=1 i=1 of nonzero measure, i.e., it includes intervals. If in the ma-
jorization relationship of\ ;¢ () <X¢s,(p) ONE of the in-
equalities(among the B—1 nontrivial inequalities is an

Note that both sides equal one for=n. .
equality, then we must have

First we consider the case whexg is strictly majorized

by A, i.e., all the inequalities of the majorization conditions X y s t
(1) are strict, and show that recovery with an auxiliary en- pz aﬁ(l—p)Z “i:pZ :3j+(1_p)_2 B,
tangled state in X2 is always possible. We represent strict j=1 j=1 j=1 j=1

majorization ash ,<I\,. Note that for a randomly picked _ _ _ )
pair of comparable states, the majorization inequalities aré/Nérex+y=s+t, x=y, ands=t. Equivalently,

strict with probability one. This guarantees that the case ; « y s t t y
where all the majorization inequalities are strict covars Z aj_Z “J_Z ’3]_+Z B; p:Z ,31'_2 aj .
most all possible comparable pairs. We first illustrate the |\j=1 i=1 j=1 j=1 =1 =1
basic idea involved in the proof with a simple example. ©)

Example Consider the state$y) and |@) with . .
~(0.4,0.3,0.2,0.1), andl,=(0.5,0.3,0.2,0). Then ,<Ix, . There are two cases noww) Eq. (3) determines a value qf,

; d(ii) Eqg. (3) is an equivalence, and hence, does not deter-
Note that sincg#)—|¢), then for all 2<2 states| x(p)), an L .
where \ y=(p,1~p) and pe(051), we have|y) mine a value fop . We show that casgi) is impossible, Eq.

2 |x(p))—>|©)®|x(p)). One can verify that fop=0.8 we 3 goes not de’)[/ermine e:value fpr if and only 'if 3 qq
have e (o) <IN oo y(p)» Moreover, for any small perturba- =218 and Zj_ ;=2 B;. Sincer,<I\,, it follows
tion aroundp=0.8, the ordering of the Schmidt coefficients thatx>s andy>t. This contradictsthe conditionx+y=s

of |¢)®|x(p)) is preserved. In particular, one can verify that '.1"[. H(_ance, every potential equality in the m{ajonzatlon rela-
the relation\ ;. ,(p) <\ pe y(p—) holds if 0<&<0.08. Thus, tionship X e, (p) <A e x(p) COrresponds to a fixed value for
we can choosdy)=|x(0.8)), and |w)=|x(0.73)). Then p. Since, there are at mosh2 1 such nontrivial equalities,
1)@ |x)—|e)®|w), whereE(|w))>E(|x)). While in this there are at most -1 values forp for which \ 4, p
example we directly provided a value pfaround which a ~Meex(p) IS NOt Strict.

perturbation leads to partial recovery, the proof of the fol- Hence, there exist acFC(3,1) and an &e<3 such

lowing theorem shows that suchpaalways exists, and out- that\ ;s ,(p)<Mgeyp--) - The proof is completed by setting

lines how one can find suchmsystematically. [ | Ix)=1x(p)) and|w)=|x(p—¢))- [ |
Theorem 1If A ,<I\, then there are 22 stated y) and What happens ih , is not strictly majorized by\ ,? We

|w) such thaf ) ®|x)—|¢)®|w) andE(|w))>E(|x)). first defineA, , as the set of all indicesn such that the
Proof. Let |x(p)) be a 2x2 state with\ ,(;)=(p,1—p),  relation(1) is an equality:A, ,={m: 1sm=n-1, 3L, ¢

and ;<p<1. Note that, in general, i|fl//1>—>j<P1> and|g,)  =3M B} Note that 1= A, is equivalent to the case,

—|@2) then[yn)®[ ) —|e1)®|@y). Therefore, for all val- =g, andn—1e4,,, is equivalent to the case,= 3, .

ues ofpe(3,1), | ®|x(p))—|e)®|x(p)). The choice of We first show that even in the presence of many patterns

p determines the orderings of the Schmidt coefficients oPf equalities in the majorization relationship of the parent
|y)y®|x(p)) and|e)®|x(p)), and hence the inequalities in states recovery is still possible using only<2 auxiliary
Nyox(p)<Nooy(p) - COnversely, one can think in terms of the States. _

orderings of the Schmidt coefficients. There is only a finite Theorem 2 Suppose that &A, . (i.e., a;#B;), n
number(in fact, at mosn!) of possible individual orderings —1é&A,, (i.e., an#By), and ifje A, , thenj+1£A,

of the coefficients of#)®|x(p)) and|¢)®|x(p)). For each (i.e., there are no consecutive equalities in the majorization
such ordering of the coefficients ¢&b)®|x(p)), one can Then there are 2 statesx) and|w) such that)®|x)

determine its feasible set: values p& (%,1) for which the _’|F‘f>®f|"\’/2/apd I‘?('r:l»)ThE(t'ﬁ]». < w interval
ordering is valid. Each nonempty feasible set corresponds to [00' e s 15 ow that there exists a nonemply interva
the solution of a set of linear inequalities, and hence, is 4=(z.a) (1>a>3), such that each inequality in the major-

union of intervals and discrete points i, @). Moreover, the  12ation relationshiph e () <Xy y(p) IS either(i) a benign

union of the feasible sets of all possible orderings of thei(_jentity forallpel, thatis, the equality holds even if on the

- . . . . : . right-hand side is perturbed tp— ¢, for anye >0, or(ii) is
coefficients is the intervaly1). Since the union of this "ot inequality, for allpel, except forat most 21— 1

finite set of intervals and discrete points i$,{), hence, it discrete values. Such a majorization, where each inequality
follows from simple measure-theoretic arguments that therés either strict or a benign identity, is represented as
exists at least one ordering, where the corresponding feasible,¢ ,(y I\ oo, (p)- One can then use simple measure-

setF includes intervals of nonzero lengths of the foragl{),  theoretic arguments, as introduced in the proof of Theorem 1,
wherei<a<b<1. and show that there exists an ordering of the Schmidt coef-
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ficients of |¢)®|x(p)) such thatFN1 has a nonzero mea- wherej e{1,2}. The reason identities as in E&) are benign
sure(i.e., includes interva)s whereF is the feasible set for for our purposes is that whemis substituted by —¢ on the
the given ordering. The two above results then show thatight-hand side, then the identity still remains an equality. To
there exists @ € FNI such that ;.\, (<IN ,s,(p)» @and ina  prove the above claim, consider an equality in the majoriza-
neighborhood aroung the ordering of the Schmidt coeffi- tion relationship, which as discussed in the proof of Theorem
cients of|p)®|x(p)) is preserved. Hence, there is ar® 1 [see Eq.(3)], can be written as
<3, slu;:hdtrl;amlf,?t)_((g);)\ﬁ@f(p),;). ;’Te>pr(|)02c can )t)he\;:/ be « y s . y
completed by settingy)=|x(p)) and|w)=|x(p—=¢)). We
now present a construction of such a ket ;1 ai_gl % _le ﬁi+j21 Bilp=2 B~ 2 «,

First consider the case where there are only two equali- (6)
ties, i.e., A, ,=1Kkq,k;}, where kk;<k,<n—1 andk,
—ky=2. Sincea,# B4, it cannot be the case thabth «; ~ Where x+y=s+t, x=y, and s=t. Equation (6) is an
=a) andB; =By : if itis true then thektlh inequality in the e_quwalence if and_oply_|f trtle foIIong two co_ndlt_lons are
majorization is also strict anl; A, ,, which contradicts simultaneously satisfiedi) E1':_131:21_:1“1' , which IS true
our assumption. Hencey,> ay or 81> B or both. Simi- onlyt if t=y§{0,I§1,k2}, or if y>t; and (i) Zj_,a
larly, one can argue thati) since kyjeA,,, and k; =2j=18j, which is true only |fx=3e{_k1,k_2,n_},£)r Ifx
+1¢A,,, both 1= and Br, 1= P, cannot pbe =S. The benign |dent|ty' cases occurxf=y—s—'t—kj, I

L e€{1,2. Let us then consider all the other potentially feasible

true, and (ii) since k,eA, ., and k;+1¢A, ., both

° d 2 t be t N i cases and show that they are iallpossible (i) if (y>t and
Ay+1=an and By, 1=pB, cannot be true. Now se x=s) or (y=t andx>s) then we reach the contradiction

=(3,a), where that x+y>s+t; (i) if (y=t=0) and k=se{k;,k,,n}),
this implies that (+p)a;<pay, and (1-p)B1<ppB,
) ay B A, +1 which contradicts the fact thate (3,a) [see Eq(4)]; (iii) if
a=mim A e, 2B 8 B e (y=t=k;) and &=selk,,n}), this implies that (1
1 1 1 2

—P)ak +1<Ppay, and (1-p)Bx, +1<PPBk, Wwhich again
contradicts the construction introduced in Ed4); (iv) if (y

. Bry+1 q Xky+1 q Biy+1 @ 1=k and k=s=n), this implies that (i-p)ay,:,
4,3k1+1+/3’k2’ Sa'k2+1+ an’ 6,8k2+1+,8n ' <pa;, and (1-p) Bx,+1<PBn, which again contradicts the
construction introduced in Ed4).
andq; =2, if its accompanying multiplicative term equals In general, whenA, ,={k; ky, ... k/}, where <k,

otherwiseq;=1. Thus, if ;= @y, thenq,;=2 and the first <~ <k,<n—1 andk;,;~ki=2, then one can show the
term, gy ; /(e + ey )]=1, plays no role in determining above results fof=(3,a), where

the value ofa, otherwise, ifa;> ay,, theng,; =1 and the first _ @y B,

term, 5<q1[a1./(a11+ “kl)]<1’ can pot.entlally determine a=min q1011+ak1’q2,31+5k1’ ce

a. By construction; <a<1, and hencel, is nonempty. The
motivation of defininga as above is that by restricting

e(3,a), it enforces goartial ordering of the Schmidt coef-

ficients of |@)®|x(p)) and |#)®]|x(p)). For example, if
B1> B, then from Eq.(4) it follows that pBy <(1—p)Ba,

Xy, +1 ,Bk/71+1 Ay +1

U2/-1 U2/ o417
ag, +1ta, 7 Be, +11 By, ag,+1t ay

and hence, in the ordering of the Schmidt coefficients of Ao/ o1 P, +1
le)®|x(p)), (1-p)By will appear beforgsy . DB 1t By
Next, we showa <\ for all pe FNI, except
' o x(p) =N e@x(p) J , :
at most 2—1 discrete values. In the majorization relation- @ndd;’s are chosen as in E@). _ u
Ship OF X s (<X g (p) €t ONE OF the inequalitie@@mong We next show that for certain equality patterns in the

the 2n—1 nontrivial inequalities be an equality. Then fol- majorization relation, partial recovery with the _help of 2
lowing arguments similar to those used in the proof of Theo-<2 States(or even 3< 3 stategis not always possible
rem 1 and using the partial ordering of Schmidt coefficients Leémma 1If a;=p; or a,=B,, then recovery is not
enforced by the selection df[see Eq.(4)], we show that possible with 22 auxiliary states. Also, if both relations
either (i) the equality determines a value pf(hence, there 1= 1 anda,= B hold then there is no recovery even with
are at most @— 1 discrete values qf where any such equal- 3% 3 auxiliary states.
ity can exis}, or (i) the equality is enignidentity with one Proof. First assume that; =, or a,= 3, . Suppose, by
of the following forms: contradiction, there are 22 states|y) and |w) such that
lelx)—le)®|w) and E(Jw))>E(|x)). Let N, =(p,1
K, —p) and\,=(q,1—q) be the vector of eigenvectors pf)
gt(1-p)> g, (5 and|w) with p,g>3. The conditionE(|w))>E(|x)) im-
1 = plies thatg<p. The relation\ ;. , <\ ,s,, implies thata,p
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<Bq and 1-a,(1-p)<1-B,(1—q). So if a;=p8; or
an= B, thenp=q andE(|w))<E(| x)), which is a contra-
diction.

The proof for the case, where;=3; and a,=8,, is
similar to the above case: assume that there &8 3ecov-
ery stategy) and|w) [hence E(|w))>E(|x))] with eigen-
value vectors\,=(p,q,1-p—q) and \,=(p’,q",1-p’
—q') with p=q=1-p—q andp’'=q’'=1-p’'—q’. Then
it will follow that |x)—|w), which implies the contradiction
that E(|w))<E(|x)) (see[5)). m

The following theorem shows that &,= 3, then there
indeed exist X 3 auxiliary states for partial recovery.

Theorem 31f A, ,={1} then there are 83 states|x)
and |w) such that [y e|x)—|e)®|w) and E(|w))
>E(|x))-

Proof. Let [x(p,q)) be a 3x3 state with A, q
=(p,q,1-p—q), wherep=q=1—p—qg=0. The goal is to
find a state|w) of the form|x(p,q—¢)), for somee>0,
such thai\ 5 (p, q)<)\‘P®X(p q-s) - OUr approach is similar to
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a line in (p,q) plane, and hence comprises a measure zero
set. Hence, the set of all points iiwhere there might be a
nonidentical equality is of measure zero. Cdsg it is a
benign identity of the form pa;+qa;+(1—p—q)a;
=pB1+aB1+(1-p—a)pBs. u

We now consider the case where the majorization in-
equalities contain both consecutive equalities and isolated
ones. Lety,, , be the size of the longest block of consecutive
equalities in the majorization relationship pf) and|¢).
With the techniques that we have developed in this paper it is
not difficult to show that ife,# B,,, then partial recovery of
entanglement is always possible using auxiliary states of di-
mensionk= 7, ,+2. Thus, ifa,# B,, thengenuinepartial
recovery isalways possiblesince ap# B,, 7, ,<~(n—3)
and hence&k<n.

In summary, we have shown that a nontrivial recovery is
always possible except for the special case whegye 8,,,
whether recovery is still possible for this special case is left
as an open problem. There are many other open questions

that introduced in the proof of Theorem 2: we construct athat might be of interest. For example, for a given pair of

region R={(p,q)|p=q=1—p—q=0}, with nonzero area
such that\ ;¢ (p.q)[ N e x(p, ) for almost all (,q) eR, and
the set of points where it is violated hasasure zeroHere,
an identity is considered to beenignif the equality holds
when on the right-hand sidep(q) is perturbed to 1§,q

comparable states, one may ask what is the maximum en-
tanglement that can be recovered. Similarly, can one recover
more entanglement by increasing the dimension of the aux-
iliary entangled states? For example, we show that for almost
all comparable states,»22 auxiliary states are sufficient to

—¢). Then, measure-theoretic arguments will guarantee thdfplement partial recovery, however, can one have more re-

there is ane>0, such thal ;¢ ,(p.q)<Mee y(p.g—e) -

In order to construcR, we note that since 24, ,, a;
> a,. Also note that ife,= «,, then 8,> B, . Therefore, we
have to consider one of two casé$ a,> a,>«,, and (ii)
a1>ay=ay, and B,>B,. To defineR, we choose the pa-
rameters andq such thap=q=1—-p—qg=0 and they sat-
isfy the following conditions. For cas@) qa;<pa,, and
pa,<(l—-p—q)a, or, caselii) qa;<pa,, and pB,<(1
—p—0q)B;. One can verify that in both caseR,defines a
nonempty triangular region in thep(q) plane. For any
(p,q) eR, if any of the 3 inequalities in the majorization
relationship s (p.q) <\ e y(p,q) 1S @n equality, then one of
the two following cases must be true. Caggit is a non-
identicalequality, i.e., the set of(,q) that satisfies it defines

covery of entanglement if the dimension of the auxiliary
state is increased? We hope that the results of the present
paper will lead to a better understanding of the subtleties
involved in local entanglement manipulation in higher
dimensions.

This work was sponsored in part by the Defense Ad-
vanced Research Projects Agen@ARPA) Project No.
MDA972-99-1-0017, and in part by the U.S. Army Research
Office/DARPA under Contract No. DAAD19-00-1-0172.
The research of F.V. was supported also by a contract from
the National Aeronautics and Space Administration. This
work was also supported in part by the NSF under Grant No.
EIA-0113440.

[1] E. Schrodinger, Naturwissenschafteg 807 (1935; 23, 823
(1935; 23, 844 (1935H; for a review see, M.B. Plenio and V.
Vedral, Contemp. PhyS9, 431(1998.

[2] C.H. Bennett, Phys. Toda48, 24 (1995.

[3] J. Preskill, Proc. R. Soc. London, Ser4A4, 469 (1998.

[5] M.A. Nielsen, Phys. Rev. LetB3, 436 (1999.

[6] H.K. Lo and S. Popescu, e-print quant-ph/9707038; G. Vidal,
Phys. Rev. Lett83, 1046(1999; D. Jonathan and M.B. Ple-
nio, ibid. 83, 3566 (1999; G. Vidal, D. Jonathan, and M.A.
Nielsen,ibid. 62, 012304(2000.

[4] C.H. Bennett, H.J. Bernstein, S. Popescu, and B. Schumacher[7] S. Bandyopadhyay, V.P. Roychowdhury, and U. Sen, e-print

Phys. Rev. A63, 2046(1996; C.H. Bennett, D.P. DiVincenzo,
J.A. Smolin, and W.K. Woottersbid. 54, 3814(1997.

quant-ph/0103131.
[8] F. Morikoshi, Phys. Rev. Let84, 3189(2000.

040303-4



