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Abstract—Operation parameters of magnetic quantum cellular
automata are evaluated for the purposes of reliable logic operation.
The dynamics of the nanomagnets is simulated via the Landau—
Lifshitz—Gilbert equations with a stochastic magnetic field corre-
sponding to thermal fluctuations. It is found that in the macrospin
approximation, the switching speed does not change under scaling
of both size and distances between nanomagnets. Thermal fluctua-
tions put a limitation on the size of nanomagnets: when we consider
a majority gate that features a biaxial anisotropy as a stabilizing
mechanism and a uniform clocking field, the gate error rate be-
comes excessive for nanomagnets smaller than about 200 nm at
room temperature.

Index Terms—Bit error rate, magnetic logic devices, ma-
jority gate, micromagnetic simulation, nanomagnets, thermal
fluctuations.

1. INTRODUCTION

HE SUCCESS of computing in the past 40 years was based
T on scaling the CMOS transistors to the nanoscale size [1].
As it is anticipated that this scaling will approach limits defined
by the quantum theory and thermodynamics [2], the search is on
for alternative logic technologies [3], [4], which would be able
to supplement CMOS and have certain advantages compared
to it. One promising technology among them is spintronics and
nanomagnetics [5].

Magnetic quantum cellular automata (MQCA) have been pro-
posed as one of the types of spintronic logic. MQCA are based
on bistable nanomagnet elements that can perform basic logic
operations by means of magnetostatic interactions. Nanomag-
nets are typically arranged in the shape of crosses—majority
gates. A majority gate has three inputs and one output. The out-
put’s logic state is determined by the “majority voting” of the
logic states of the inputs. This gate is naturally suited for the
magnetic dipole—dipole interaction that is the basis of MQCA. It
also allows us to perform AND and OR logical functions by fixing
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one of the inputs, and (in combination with the NOT element) it
can be used to perform any logical operation. Another type of
spintronics—domain-wall logic [6] can also be rendered in the
form of majority gates [7]. A chain of nanomagnets carrying the
logic variables was demonstrated by Cowburn and Welland [8].
Later, a majority gate based on these principles was proposed
and experimentally implemented [9].

To be a viable alternative to CMOS logic, MQCA must show
that they can achieve a better (or at least similar) performance
level at least in one of the benchmarks, such as size, speed,
switching energy, bit stability, and scalability. Some of these
issues have been studied through simulations [10], [11]. In this
paper, our goal is to estimate how far can we push the limits
of MQCA performance for all the aforementioned benchmarks.
To this end, we will analyze a simplified model of MQCA that
captures the basic physical principles that govern its behavior.
We pay a special attention to the limitation stemming from the
thermal fluctuations of the magnetization.

The paper is organized as follows. In Section II, we show how
the bit stability of an MQCA element puts a lower bound on its
size. In Section III, we introduce a simple model of the MQCA
dynamics and use it to simulate the behavior of an MQCA ma-
jority gate and study the speed of a signal propagating along a
chain of nanomagnets. In Section IV, we discuss the relationship
between MQCA initialization and its stability. In Section V, we
simulate the effects of thermal fluctuations and study their im-
pact on the error rate of the majority gate. Finally, in Section VI,
we summarize our results and present our conclusions.

II. BIT STABILITY AND MINIMUM SIZE

Our first step will be to study what type of constraints bit
stability imposes on the size of MQCA. The basic element of
MQCA is a nanomagnet that is used to store a single bit of in-
formation. Usually the nanomagnets are elongated along some
direction, which determines the easy axis of magnetization due
to shape anisotropy. This bit is represented by the magnetiza-
tion direction of this nanomagnet: “0” for the magnetization
“pointing up,” i.e., along positive easy axis, and “1” for the
magnetization “pointing down,” i.e., along negative easy axis.
We thus need to require these two configurations to be stable and
separated by an energy barrier to prevent bit-flip errors. Even
though material properties such as the uniaxial anisotropy can
be exploited to produce such a bistable system, shape anisotropy
is more advantageous to produce such a result because it pro-
vides an easier way to control the energy barrier by lithographic
patterning, and most proposals of MQCA are essentially based
on this idea.
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Our mathematical model is based on the free energy of a
nanomagnet with uniform magnetization M. It includes contri-
butions from the shape anisotropy, material anisotropy, and the
energy in the external magnetic field (see [12] for a derivation)

1
E=K(1—(m-eé.,)")V + 5qufvm N -m
- NOMevm : cht (1)

where m = M/ M; is the normalized magnetization (note that
|m| = 1), M, is the saturation magnetization of the material,
V' is the volume of the nanomagnet, 1 is the permeability of
vacuum, K is the uniaxial anisotropy of the material, €,y;s is a
unit vector in the direction of the easy axis, N is the demagne-
tizing tensor, and H.y is the external field. The demagnetizing
tensor can be diagonalized by finding its principal axis, and its
diagonal elements are positive and satisfy N, + N, + N, = 1.
We will consider that our nanomagnet is a rectangular prism
whose symmetry axes are aligned with the cartesian axes. We
will also assume that the easy axis of the crystalline uniaxial
anisotropy is aligned with the y-axis. The explicit expression
for these demagnetizing factors can be found in [13].

Let us consider the case of a vanishing external field. If a, b,
and c are the dimensions of the nanomagnet in the x,y, and 2
directions, respectively, we will assume that b > a > ¢, which
corresponds to a rectangular prism elongated in the y-direction.
This choice of proportions translates into an inverse ordering
of the demagnetizing factors (N, > N, > N,). This makes the
z-direction the least energetically favorable. It is easy to see
that the energy is minimal when the magnetization points in
the y-direction, either up or down. These are the two stable
states that encode a bit of information. Then, the energy barrier
between these two minima is smaller when we consider the
magnetization to be in the x—y plane. To compute this energy
barrier, we just need to evaluate (1) in the x- and y-directions
and subtract them. Then, we have
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From this equation, we can extract a few useful facts: 1) the
energy scale is given by (1/2)ugM?2V'; 2) the energy barrier,
and hence, the energy dissipation, scales down with the volume
of the nanomagnet; 3) the geometrical anisotropy can be used
to control the height of the barrier; and 4) the uniaxial crys-
tal anisotropy can be seen as a correction to the geometrical
anisotropy.

The height of the energy barrier will determine the stability
of the information stored in the nanomagnets, and hence, its
bit stability. The thermal fluctuations will cause the direction
of the magnetization to vary and with a certain probability to
turn over 90°—the direction of the energy saddle point. Af-
ter that, the magnetization will flip to the other energy mini-
mum. In a simple model, the probability of the nanomagnet’s
magnetization flips its direction due to thermal noise is given
by paip = exp(—AE/kpT), where kp is the Boltzmann con-
stant. Since we are interested in MQCA as an alternative to
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Fig. 1. Thickness versus width for a nanomagnet with an energy barrier of
1 eV. The length is taken to be twice the width.

CMOS-based logic, it is natural to require this error proba-
bility to be at least of the same order as that of CMOS tran-
sistors, which is of the order of 10~!7. This corresponds to
the condition AFE /kpT > 40. For room temperature, we have
kpT =~ 0.026 eV, and so we need AF = 1¢eV or larger. The en-
ergy barrier height gives an approximate estimate of the energy
that will be dissipated every time we switch the magnetization
direction of a nanomagnet. The exception would be slow adi-
abatic switching regime, which according to [14] applies for
clocking field ramp-up times of around 7 ns and longer. In this
paper, we will only consider instantaneous variations of the
clocking field, well outside the adiabatic regime.

The lower bound on the height of the energy barrier, coupled
with (2) allows us to extract a lower bound on the size of the
nanomagnets. Since the energy barrier depends on the volume
of the nanomagnet, any lower bound on it will translate into
a lower bound on the volume. Assuming that the geometrical
anisotropy is due to a 2:1 aspect ratio between the length and
width of the prism, we can plot the values of thickness and width
that are required to obtain a 1 eV energy barrier. In Fig. 1, we
present this plot for three different materials: permalloy, CoFeB,
and Fe (with saturation magnetizations equal to 800, 1180, and
1750 kA/m, respectively). For example, in permalloy, we can
see that for a thickness of 6 nm, the nanomagnet needs to have
a 15 nm width and a 30 nm length. Clearly, there is an ad-
vantage for higher values of the saturation magnetization, since
we can achieve the same energy barrier height with a smaller
volume (2).

It can be argued that the very high bit stability we are requiring
(error rate ~ 10~'7) might be appropriate for a memory device,
but may not need to be that high for a logic device. For MQCA,
we only need the nanomagnets to maintain their state only during
the time it takes to perform a certain computation. We might be
able to reduce the size even further, if we somewhat relax the
bit stability requirements. However, given that the dependence
of the error probability with the energy barrier is exponential, a
small reduction in size can have a huge impact on the bit stability.
We can illustrate this point by repeating the plot in Fig. 1 for
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Fig. 2. Thickness versus width for different values of the error probability
(plot corresponds to permalloy and a 2:1 aspect ratio).

permalloy, but for different values of the error probability (see
Fig. 2). We can see the rapid increase of the error probability
even for a modest reduction on the size of the nanomagnet. This
shows that the lower limit on the size of MQCA is a rather strong
one, if we want to preserve bit stability.

III. DYNAMICS AND SPEED

To estimate the speed of MQCA-based logic devices, we
will simulate their behavior using the Landau—Lifshitz—Gilbert
(LLG) equations [15], [16]. Since we are only interested in an or-
der of magnitude estimate, we will skip the detailed micromag-
netic simulations that are usually discussed in the literature [17],
and instead work with a very simple model of the MQCA. We
will model each nanomagnet as a macrospin, but we will include
the effects of geometrical and crystalline anisotropies in the
computation of the effective field. This approximation is equiv-
alent to assuming the magnetization is uniform over the whole
volume of a nanomagnet at any time, and neglecting magnetic
moments higher than the dipole moment [11], [18]. We expect
this approximation for improvement in decreasing nanomagnet
size, since the exchange interaction tends to force the magneti-
zation to be uniform on a length scale of about 10 nm. From our
discussion in earlier section, we are interested in nanomagnet
sizes of the order of tens of nanometers; therefore, we are not
that far from that regime. In any case, we are interested in an
upper bound for the speed of MQCA-based logic, and a full
simulation will most likely produce a slower device.

The LLG equations [19], [20] for the macrospin model are

dM) 8l i (1)
dt :71+a2M() x Heg
o _ _ )
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where M(?) is the magnetization of the ith nanomagnet, Hin
is the effective field at the position of the ith nanomagnet,
v = gle|/2mec = 2.21 x 10> mA™" - sec™! is the Lande fac-

tor, and « is the Gilbert damping constant, which depends on

the material and the environment of the nanomagnet and typ-
ically has values in the range 0.001-0.1. The effective field
includes the contributions of any external field, the nanomagnet
self-field, and the field due to the dipole—dipole interaction with
other nanomagnets

H =81, - N MY +3CpMY. @)
J

In this expression, we are assuming that all nanomagnets have
the same shape, and hence, the demagnetizing tensor A is the
same for all nanomagnets. This term can also include the ef-
fects of uniaxial crystalline anisotropy, if we redefine the cor-
responding demagnetizing factor N, — N, — (2K )/po M2,
where y is the easy axis of the crystalline anisotropy. The
last term on the right-hand side (RHS) of (4) represents the
dipole—dipole interaction between nanomagnets, and the ma-
trices Cy;;y are coupling constants determined by their size
and relative positions. If (2(?), y(*) 2()) are the coordinates of
the ith nanomagnet, we define the coordinate differences for a
pair of nanomagnets as d\'’) = z() — 27, dg,ij) =y — 4y,
dgj) =20 _ zU), and the distance between nanomagnet cen-
ters as d("/) = \/(d;(fj))2 + (d7)2 + (@2, 1f we define a
vector d(¥) = (dy’j),dy‘”,dgi)), we can write the coupling
constant matrices C(i ) as
(7) g iy .

)= M@(d(mﬁ L0 i) (5)
where I is the identity matrix. In our case, since all nanomag-
nets will be in the (z, y) plane, this expression simplifies, since

C

dg’j ) =0.An important fact about the matrices C; ;) is that they
are dimensionless, and hence, invariant under scaling of both the
sizes of nanomagnets and the distances between nanomagnets.
We will see that this property is preserved by the LLG equations
in our model.

To simplify the simulation and analysis, it is useful to normal-
ize the LLG equations. This is accomplished using the following
definitions:

) M)

T

(i)

h(l) — Heﬁ'

eff M@
t' = t(yMsy) (6)

where now all the quantities on the left-hand side (LHS) of
(6) are dimensionless (note that [yM,] =s~1). With these
rescalings and using vector identities and the obvious fact that
dM) /dt. M) = 0, we can rewrite the normalized LLG equa-
tions in an implicit form that simplifies the implementation of
the simulation

dm() dm()
; ; @)
dt dt
These equations have the property that the value of the magne-

tization is constant [m(?)(#')| = 1V# and this feature must be
preserved in the discretized numerical model. To do this, we

=-—m x hig +am x
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Fig. 3. Majority gate: the thick arrows represent nanomagnets with fixed
magnetization that simulate inputs to the gate. The remaining nanomagnet align
their magnetization in order to minimize the energy of the system from an initial
magnetization in the x-(horizontal) direction. The output of the gates can be
extracted from the magnetization of the “output” nanomagnet on the right.

employ the midpoint method [21] with which this constraint is
automatically satisfied.

To estimate the speed with which MQCA switch, we sim-
ulated the behavior of the majority gate. Let us first briefly
review its operation. The nanomagnets forming the gate are ar-
ranged as seen in Fig. 3. We also include three nanomagnets
with fixed magnetization that are used to simulate the inputs
of the gate. The nanomagnets that form the gate are initially
magnetized in the x-direction, and then are left to evolve driven
by the magnetic dipole interaction. The magnetization of each
nanomagnet will tend to align itself with the field produced by
the other nanomagnets at its position. The geometric anisotropy
will force the magnetization to lay in the y-direction, and the
influence of other nanomagnets will decide if it ends pointing
up or down. The fields of the three inputs will add at the position
of the central magnet and decide its direction of magnetization,
hence computing the majority of the input signals. Finally, this
signal can be read on the output magnet. Note that a signal that
propagates horizontally is inverted every time it is received by
the next nanomagnet (due to the antiferromagnetic coupling).
This does not affect the function of the gate, although this fea-
ture must be tracked in order to correctly interpret the output of
any MQCA-based gate.

Again, in order to extract numerical estimates from the simu-
lation, we specified the properties of the material (M and K1)
to be those of permalloy. The value of the Gilbert damping con-
stant did not have a big effect on the simulation when confined
to the typical range 0.001-0.01. We found that the typical gate
time, measured as the time it took the output to reach 90% of
its final magnetization, was about 700 ps. An interesting feature
of our model is that the normalized equations (7) are invari-
ant under changes of scale, which means that the gate time is
independent of size. Even though this is only true in this sim-
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Fig. 4. Signal propagation through a horizontal wire made up of a chain of
nanomagnets. The antiferromagnetic coupling forces neighboring nanomagnets
to become antiparallel.

plified model, and making less approximations will likely break
this invariance, whatever effects this may have on the the gate
time will likely be of higher order. This is in contrast to CMOS
logic [1] as well as MQCA based on magnetic wires (rather than
discrete nanomagnets) [7].

From the form of the normalized equations, we can see that
the speed of this gate will depend on the material properties.
In particular, the speed of the gate increases linearly with the
saturation magnetization of the material. This follows from the
scaling of actual time ¢ with respect to normalized time ¢/, as
defined by (6).

Another issue that needs to be considered, when analyzing
the speed of MQCA-based information processing, is the speed
of propagation of information. In MQCA, this is accomplished
by chains of nanomagnets that are initially magnetized in the z-
direction, and evolve according to the dipole—dipole interaction
propagating a signal, as can be seen in Fig. 4 for the case of a
horizontal wire. Note that the antiferromagnetic coupling forces
neighboring nanomagnets are antiparallel. For vertical wires, the
coupling is ferromagnetic and the nanomagnets magnetization
tends to become parallel.

This evolution follows the same dynamical equations pre-
sented in the earlier section; therefore, we can use them to
simulate the propagation of a signal along a chain of nanomag-
nets and estimate its speed. For nanomagnets made of permalloy
with a width of about 10 nm, separated by 15 nm, the speed of
signal propagation is around 100 m/s, or equivalently, 150 ps
per magnet. This is of the order of the speed of sound, and
would certainly limit the speed of an integrated MQCA chip, if
communication is done using the same principles as logic. This
speed depends on the material through the saturation magneti-
zation, but only linearly; therefore, it is not likely that choosing
a different material will solve this problem for MQCA.

IV. INITIALIZATION AND BIT STABILITY

Asdiscussed earlier, in order to run a MQCA-based logic gate,
it is necessary to initialize the magnetization of all nanomagnets
in the z-direction (i.e., the hard axis.) In terms of energy, this
corresponds to placing all nanomagnets at the top of the energy
barrier created by the geometrical and crystalline anisotropies
[see Fig. 5(a)]. However, this configuration corresponds to an
unstable equilibrium point for each nanomagnet, and it should
be expected that small perturbations due to thermal effects and
stray fields will randomly force the nanomagnets to relax to
one of their stable configurations independent from the input
signals.
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Fig. 5. (a) Energy profile for geometrical and uniaxial anisotropies. Stable
configurations correspond to magnetization in the y-direction (up or down).
Magnetization in the z-direction (initial configuration) is an unstable equi-
librium point. (b) Including a biaxial anisotropy produces local minima for
magnetization in the z-direction, stabilizing the initial configuration.

This is an important issue for any implementation of MQCA-
based logic, and some possible solutions have been suggested.
One consists of exploiting the biaxial anisotropy of the ma-
terial to create a stable configuration around the initialization
direction, by generating a local minimum of the energy [22]. If
we consider the magnetization confined to the x—y plane, and
note @ as the angle between the magnetization direction and the
z-axis, the geometric and uniaxial anisotropy result in an energy
profile proportional to cos?(#), as can be seen in Fig. 5(a). The
biaxial anisotropy introduces another term that is proportional
to sin”(26), and by carefully choosing the parameters, we can
produce a local minimum for 6 = 0, as seen in Fig. 5(b).

This energy minimum provides a latch mechanism that keeps
the initialized nanomagnets pointing in the z-direction while the
information from the input signal propagates through the chain
of magnets. Once again, the effectiveness of this local minimum
to trap the magnetization direction against thermal fluctuations
will depend on the height of the energy barrier around it [i.e.,
the energy difference between the peaks and the local minimum
in Fig. 5(b)]. The reasoning of Section II applies to estimate the
energy of this barrier necessary to preserve the bit in its local
energy minimum for sufficiently long time, and hence, obtain
an estimate of the strength of the required biaxial anisotropy.
We realize that the requirements to the height of this barrier are
contradictory—it should be high enough to prevent spontaneous
transition to one of the global minima before the signal reaches
the bit; it also needs to be low enough so that the signal can
reliably switch it to the desired local minimum. In the following
section, we simulate the behavior of the majority gate, including
the biaxial anisotropy, in the presence of thermal fluctuations.

V. THERMAL EFFECTS AND GATE ERROR PROBABILITY

In this section, we model the effects of the thermal fluctua-
tions on the operation of MQCA. We especially focus on gate

errors caused by spontaneous transitions from the local energy
minimum after the initialization of elements of MQCA.

Our simulations will use the stochastic LLG equations based
on the midpoint rule derived by d’Aquino ef al. in [21]. The
only difference with the aforementioned model (see Section III)
will be the inclusion of an extra term that represents the field
generated by the biaxial anisotropy (we show in the appendix
that the introduction of this term does not affect the useful
properties of the discretized equations.)

Let us start by considering the extra term in the normalized
effective field that is responsible for the biaxial anisotropy acting
on nanomagnet ()

ll(i)

eff (biaxial) =

+ml) (1= (ml")*)z). @®)
The biaxial anisotropy constant K has dimensions of J - m~3.
It is not difficult to show that, when restricted to the x—y plane,
the contribution to the energy of this term is proportional to
sin?(26), where @ is the angle between the magnetization direc-
tion and the x-axis. In order to have a local minimum around
6 = 0, the constant K5 must satisfy the condition

1 2K
Ky > Kywin = 510 MIV {Nz - (Ny - ﬂOMg)} O

The thermal fluctuations manifest themselves as random vari-
ations of the overall magnetization of the nanomagnet. We de-
scribe this process by the stochastic LLG equations [23], [24],
which are obtained by adding a random force, or, in other words,
a stochastic thermal magnetic field h<TZ ) (t) to the effective field
in (7). Note that we are considering a different thermal field
for each nanomagnet, since it is usually assumed that the ther-
mal fluctuations in different nanomagnets are uncorrelated. The
random thermal field hgf) (t) is assumed to be an isotropic vec-
tor Gaussian white-noise process with variance 2, and there-
fore, it can be expressed in terms of the Wiener process as
hgf) (t)dt = v dW'). Then, the stochastic LLG equations take
the form

dm = —m( % (hig +hn®

eff (biaxial

))dt

—m® x vdW + am x dm. (10)

The value of v can be obtained from the fluctuation dissi-
pation theorem in thermal equilibrium, and is given by v =

Using (10), we simulated the behavior of the majority gate
for various values of size, damping constant, and temperature.
We fixed the saturation magnetization and uniaxial anisotropy
to be those of permalloy, and studied the error rate of the gate as
a function of K5 and for several values of the damping constant
a. Starting with the nanomagnets initialized with magnetiza-
tion in the x-direction, each run simulated the evolution of the
gate for 2000 ps. We considered the gate to be successful, if
the average of the output magnet during the last 300 ps was
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Fig. 6. Error probability of the majority gate as a function of the (scaled)
biaxial anisotropy for different values of the damping constant (7' = 300 K).

larger than 80% of the ideal output value (all runs used the same
set of fixed inputs.) In any other case, we considered that the
gate failed. For each value of the parameters Ky and a, we
ran 1000 instances of the simulation. The results are presented
in Fig. 6. The error probability is plotted against the ratio of
K5 to Koy in, where Ko,,i, 18 the minimum value of the biaxial
anisotropy that produces a local energy minimum around 6 = 0.
If we increase Ko, we expect the error probability to decrease
when we pass Ks/Konin = 1, since the biaxial anisotropy be-
comes more effective in preventing a premature flipping of the
nanomagnets spurred by the thermal fluctuations. On the other
hand, if we increase the biaxial anisotropy too much, the local
energy minimum is too deep for the signal to force the nano-
magnet to flip. This is the behavior we can appreciate in Fig. 6.
For Ky > 2K, the gate becomes essentially frozen by the
biaxial anisotropy; for Koy < Ko < 2Konin, the error prob-
ability seems to have a minimum for a certain value of K> that
depends on the damping constant. However, an important re-
sult of these simulations is that for the particular temperature
and size considered (30 nm x 15 nm x 6 nm magnets), the gate
error rate exceeds a certain minimum value, 15% in this case.
The stabilizing effects of the biaxial anisotropy are either too
weak, and spontaneous gate errors happen, or too strong so that
it prevents the normal evolution of the gate.

One possible solution for the gate error probability will be to
decrease the temperature. Then, thermal fluctuations will be
weaker and smaller values of the biaxial anisotropy will be
enough to keep the magnets magnetized in the x-direction until
the signal, in the form of the magnetization of a neighboring
magnet in the y-direction, reaches the magnet and makes it flip
up or down, and since the required biaxial anisotropy is not too
large, it does not freeze the magnet in its initial magnetization
direction. We used our model to study the dependence of the
gate error probability on the temperature, again running 1000
simulations for each value of the temperature and the biaxial
anisotropy, and then finding the minimum value of the error
probability for each temperature. These results are presented in
Fig. 7.

We can see that, as expected, the error probability decreases
with decreasing temperature, although this decrease seems
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Fig. 8. Minimum error probability of the majority gate as a function of the

length of the nanomagnets.

rather slow for temperatures above 150 K. For temperatures
below 30 K, the error probability is below 0.001, but it could
not be accurately estimated with the same number of simulation
runs.

Another approach to lowering the error probability of the gate
is to increase the size of the magnets. We know that larger mag-
nets have a larger energy barrier between the states of up and
down magnetization. This increases the stability of the compu-
tational states of the magnets, but it is not the reason why the
majority gate becomes more reliable. The key parameter is the
ratio of the height of the energy barrier surrounding the local en-
ergy minimum around the magnetization in the z-direction and
the strength of the signal produced by neighboring magnets. We
ran our simulations for different sizes of the nanomagnets, but
keeping a 2:1 aspect ratio and a thickness of 6 nm. Figs. 8 and
9 show the results for a = 0.1 and o = 0.01, respectively.

For both values of o, we can see that the error probability
decreases fast with size. The mechanism for this behavior is the
following. When we increase the size of the magnets following
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Fig. 9. Minimum error probability of the majority gate as a function of the

length of the nanomagnets.

the aforementioned prescription, the depth of the local mini-
mum increases, but this increase is approximately a linear func-
tion of the length. On the other hand, the volume of the magnet
increases quadratically with the length (since we are keeping
a fixed aspect ratio), and hence, the strength of the magnetic
field generated by the magnets also increases quadratically. The
deeper local minimum does a better job in stabilizing the mag-
net against thermal fluctuations, while the magnetic interaction
grows faster, preventing the biaxial anisotropy from freezing
the nanomagnets. By comparing the simulation results for the
two values of the damping constant, we can see that damping
plays a dual role. On the one hand, it corresponds to stronger
magnetic noise and thus a larger tendency of the nanomagnet
to escape from the quasi-stable equilibrium state. On the other
hand, damping causes a force that drives the nanomagnet toward
the quasi-stable equilibrium. As a result, simulations show that
both for o = 0.1 and a = 0.01, the probability of error are of
the same order of magnitude. From these results, we can also
see that nanomagnets with size less than 200 nm have too high
gate error probability and thus cannot be used to build MQCA.

VI. CONCLUSION

The goal of this study was to estimate the characteristics of
an MQCA-based logic device, in particular, the limits that can
be achieved in terms of minimum size, gate-switching time,
switching energy, and gate error probability. To this end, we an-
alyzed a simplified model in an effort to understand how these
features are affected by the basic parameters that characterize
the MQCA. A reasonable requirement on the bit stability of
these devices naturally leads to a lower bound on the size of the
basic element of any MQCA. A nanomagnet must be at least
20 nm long in one of its dimensions to prevent thermal fluc-
tuations from inducing an error rate larger than that of today’s
CMOS transistors. Furthermore, reducing this size results in a
rapidly degrading bit stability of the components, making its
applications in logic circuits less useful. Fault-tolerant design
does not seem to help in this situation, since any reduction in the

size of the nanomagnets will be offset by the increase in their
number due to the overhead usually accompanies fault-tolerant
implementations. Another way to push beyond this limit would
be to work at much lower temperatures, but that regime will not
be practical in the most common situations.

The lower bound on size also provides us with an estimate of
switching for MQCA. After initialization of an MQCA, energy
is dissipated when the magnetization of each nanomagnet “rolls
down” the energy barrier until it reaches a minimum energy con-
figuration (like a ball rolling on curved surface in the presence
of friction.) Then, the energy dissipated by each nanomagnet is
just the energy it had at the top of the barrier, and that is just the
height of the barrier. From the bit stability constraint, we found
that this height should be at least 1 eV, and hence, a MQCA
could, in principle, dissipate about 1 eV per nanomagnet. A logic
gate such as the majority gate requires only five nanomagnets;
therefore, we could perform logic functions with a switching
energy as low as a few electronvolts. This is a big advantage of
MQCA over CMOS transistors that requires several thousand
electronvolts to operate [25]. This is, however, only a theoretical
limit, and it does not take into account the practical difficulties
of efficiently transferring such a small amount of energy to each
nanomagnet.

To estimate the speed of MQCA logic gates, we considered a
very simple model in which we approximated the nanomagnets
by point dipoles when computing their interaction, but included
the effects of geometrical and crystalline anisotropies through
the computation of the effective field. This approach is less
sophisticated than the micromagnetic simulations that have been
used in the literature to study similar systems; our goal was not
to obtain a very detailed picture of the dynamics, but rather
to have a good estimate of the fastest gate time MQCA can
achieve. Our model includes all the fundamental elements of
MQCA dynamics, and more refined simulations are likely to
result in slower gate times. Using this simple model, we found
that the majority gate produces the required output in about
700 ps, which is slower than gate times expected from CMOS
in the next few years.

Another obstacle for implementing MQCA-based logic has
to do with information transmission. In MQCA, this is accom-
plished following the same basic principles as logic. Chains of
nanomagnets propagate a signal through the dipole—dipole in-
teraction. But the propagation speed of this signal turns out to
be around 100 m/s, which is extremely slow when compared
with the speed of electric signals in a wire (typically around
107 m/s.) This is a huge disadvantage for any MQCA scheme.

MQCA suffers from the problem that its nanomagnets are
initialized in an unstable state before the computation. Ther-
mal fluctuation will push the nanomagnets randomly into one
of the stable states, regardless of the value prescribed by the
computation. It has been proposed [22] that exploiting the biax-
ial anisotropy of the material can increase the robustness of the
MQCA initial state against thermal fluctuations, preventing pre-
mature relaxation of the nanomagnets before the computation
is complete. On the other hand, a strong biaxial anisotropy can
completely freeze the dynamics, by trapping the magnetization
in the local energy minimum of the initial state. We simulated
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the behavior of the majority gate in the presence of thermal
fluctuations and analyzed the error rate of the majority gate for
different values of the biaxial anisotropy in order to find what
are the optimal choices of the parameters. We found that for
room temperature operation (7' = 300 K), the gate error rate
has an impractically high value (> 1%) for all sizes of nano-
magnet smaller than 200 nm. This seems to show that the biaxial
anisotropy approach may not be enough to solve the gate error
rate problem, and scale MQCA logic to smaller sizes at room
temperature.

APPENDIX

PROPERTIES OF THE DISCRETIZED STOCHASTIC
LLG EQUATIONS

In this appendix, we show some of the details of the numeri-
cal approach used to solve the stochastic LLG equations in the
presence of thermal fields. As mentioned earlier, we follow es-
sentially the approach presented in [21] that uses the midpoint
rule to discretize the stochastic LLG equations. Here, we will
show that introducing an extra term in the effective field that
represents the effects of the biaxial anisotropy does not change
the two main properties of this technique, namely, the uncon-
ditional preservation of the magnetization magnitude and the
consistency of the evolution of the free energy.

The stochastic LLG equations take the form

dm = —m® x hDdt — m? x vdW? + am x dm')

(11
where h‘(fff) includes the biaxial term. Applying the midpoint
method corresponds to the following replacements:

R ) (12)
(é) ()
mmﬁ<mM;mn) -
(4) ()
i i iy (ML +my
] e S I
aw i (Wi, - W) a9

where 2, (1/2) = t, + At /2. These substitutions result in the
discretized stochastic LLG equations

(i) (i)
;i . m + my,
(my}, —m{)) = - (”“2 ) XV (16)

where
(i)

, (i)
V—M?C%“;mﬁmw>ﬁ

+ V(Wftij—l - WE;))
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Due to the form of (16), it is clear that the RHS vanishes when

scalar is multiplied by (mm1 + mgf) ), while the LHS becomes

- a(mfﬁrl - mﬁﬁ)

(\mml > — |m§f) |?), and therefore, we have

jmi P = [m{ 7 (18)
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which means the midpoint method unconditionally preserves
the magnitude of the magnetization. Note that the form of the
term added to the effective field does not affect this property,
since the corresponding term on the RHS is still of the form
(m!), +m{) x U.

Another property that the discretized stochastic LLG equa-
tions presented in [21] have is that the change in the discretized
free energy is bounded by the work performed by the thermal
fields on the magnetization for any finite value of the increment
At. Their proof of this fact relies on the particular form of the
effective field, namely, the free energy is an at most quadratic
polynomial function of the magnetization. Even though when
we add the biaxial anisotropy term the free energy has a term of
degree 4, the result still holds as shown in the following. First,
we write the free energy g(m)

1 , . : .
g(m) — 5 Zm(l) N . m(l) _ Zh((egt . 1’1’1(1)

_ % S5m0 m)

i ji

2

T

(mz(l —mi)X

M2

+my(1—m))y +m.(1 —m?)z) (19)

where A is the demagnetization tensor that includes a term
corresponding to the uniaxial anisotropy, C'*/) is the matrix
that encodes the dipole—dipole interaction between nanomag-
nets (and it is symmetric with respect to ¢ and 7). We want to
compute g, 1 — gn, Where g, = g(m,, ). Clearly, this will give
us an expression in powers of sm(") = (mgfll —m!). We will
keep terms up to order (4m(?))?, since from the LLG equations,
we can see that om(? is proportional to (Wi:ll — W,(f) ), and
(Wfﬁl — Wﬁf) )2 is of order At . With that in mind, after some
algebra, we get

Gns1 — Gn =~ Z <m<i) N — Zmu) .0 L) hfal)t
i j#i

) ) 1 _ .
- hl()li>axial> : 5m(7) + 5 Z 6m(2) ’ N ’ 51’11(2)
1 . . .
) Z Z(;m(l) .00 . ()
i j#i
Ky (i) (i)
TE Zam .D-dm (20)

where D =1 + 2m{'m{’" - 3 diag((mg;i))%, (my))%,
(mé” )2). Note that the term multiplying 4m?) in the first sum
is exactly —hig (m,,) (as it should be). Now we go back to the
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discretized LLG equations that have the form
i i i i At
mgl-)l—l - m’sp = _m( ) 1 X <h£ﬂ) ( < ) 1 atn + >At

n+s
_ mgp))

21

v(W, = WD) +a(m)

where now h(g also includes the biaxial term. This equation is

of the form mflil — m5f> = —msli(l/m x A, and therefore, if

we scalar multiply both sides by A, the RHS vanishes and we
get

, . . A ,
D)2 = ) (mSil ot ;) -om At
2

alom

+u(W - W) sm® (22)
Now we write hig( Ebl 1/2),75,1—&—(At/2)) in terms of

h((ﬂgf> (m,7 ) (we drop the time, since the field does not have
an explicit time dependence). After some more algebra, we get

hYﬁ) (mfﬁ(l/g)) -6m) = hoff)( 55)) om'”
+ Z smb) . ¢l . sm®
J#i
—sm® MO . sm®  (23)
where M) = (K, /ugM2)(3M) —T) — (1/2)N,  with

M© = diag((m{)2, (m{")2, (m{?)2). Now, using thlS in
the expression, we computed for ¢, ;1 — g,, and doing even

more algebra, we arrive to

_ (i) i i
In+1 — Gn = Ktz (W,,:Jrl — W£7)) . 5m( )
- Z om - M (m,)-sm  (24)
where MW (m, ) = (/A + (2K /poM?) my my) ™

Hence, M) (
have finally

m,,) is positive semidefinite, and therefore, we

(WI(L-)Q-l £’ )>
At

In+1 — Gn < V(mq(mlll - mszl)) : (25)

which shows that the change in the discretized free energy is

always less than the work done by the stochastic field during the
time interval At.
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