Regular Processor Arrays
for
Matrix Algorithms with Pivoting *

V. P. Roychowdhury T. Kailath

Information Systems Laboratory
Stanford University

Abstract

Pivoting operations are often necessary to ensure the satisfactory numerical behavior of
several matrix algorithms. The resulting disruption of the regular operation flow makes it
uncertain whether systolic array implementations (as commonly understood) can be found for
such algorithms. By using results from the theory of Regular Iterative Algorithms (RIAs),
introduced by Karp, Miller and Winograd [5] and recently extended by Rao, Jagadish and
Kailath (see e.g., [16], [4], [17]), we show how to obtain regular (though nonsystolic) processor
arrays for algorithms with pivoting. First, the fact that pivoting algorithms cannot be systolic
(as formally defined e.g., in [22] and [17]) is established. Then it is shown how RIAs can be
formulated for the Gaussian elimination algorithm with partial pivoting and how the algorithm
can then be implemented on the so called regular iterative arrays (locally connected arrays of
essentially identical processor modules, with register pipelines and/or LIFO buffers in some of
the links). The generalizations of these ideas to other pivoting algorithms have been worked out
in [22).

1 Introduction

Kung and Leiserson (8], [6], [7], proposed a class of regular locally connected structures known as
systolic arrays for high speed parallel implementation of a number of algorithms in areas such as
numerical linear algebra and graph theory. Since then, many authors have devised systolic arrays
for a variety of problems. However, it is fair to say that until recently no general systematic method
for design has been presented, though partial results appear in Moldovan [14], [13], Quinton [15],
and especially Kung [9], [10]. Moreover, till recently there was no theoretical framework available
for addressing issues such as the following. In their pioneering work, Kung and Leiserson [8] had
presented a systolic array for the solution of linear equations by using the Gaussian elimination
algorithm but without pivoting. However, except in special cases, one would need to use pivoting
algorithms in order to obtain numerically meaningful results. Now pivoting (either row or column
or full) disturbs the regular pattern of operations in Gaussian elimination, and therefore it is
perhaps not surprising that no one has yet devised a systolic array for pivoting algorithms. But
does that mean that it is impossible to do so, or just that no one clever enough has still attacked
the problem? It would be useful to know an answer to such a question. Moreover, suppose we have
not succeeded in easily finding a systolic array for a given algorithm, one might ask if there is not
some generalization of the notion of systolic arrays that would allow an acceptable solution? In
other words, what feature(s) of a systolic array might we be willing to give up?

While there may always be questions outside the scope of any effort, nevertheless in the recent
work of Rao, Jagadish, and Kailath (see [16], [4], [18], [17], [19], [3]), building on a seminal paper
of Karp, Miller, and Winograd [5], some progress has been made in this direction. For example,
this work allows us to say the following. A formal definition of systolic arrays can be obtained that
captures their generally accepted properties, especially regularity (mostly identical processors),

*This work was supported in part by the SDIO/IST, managed by the Army Research Office under Contract
DAAL03-87-K-0033, the Department of the Navy (NAVELEX) under Contract N00039-84-C-0211, NASA Headquar-
ters, Center for Aeronautics and Space Information Sciences (CASIS) under Grant NAGW-419-S1.3, and the SDI/IST
Program managed by the Office of Naval Research, under Contract N00014-85-K-0550.

CH2603-9/88/0000/0237$01.00 © 1988 IEEE 237

238 International Conference on Systolic Arrays

spatial locality (‘local’ interconnections), temporal locality (no delay-free operations, or more
precisely, all combinational elements are latched) and pipelined operation (throughput independent
of the order, suitably defined, of the system). Some authors (e.g, Leiserson et al. [11]) use only
a subset of these properties, but the present consensus in the literature appears to require all
those mentioned above (see e.g., {19] and [10]). Using this definition, and its consequences, one
can formally show [22] for example that there is no systolic array for algorithms that use pivoting
(Gaussian elimination, QR-factorization, etc). However, there is a reasonable generalization of the
concept that does allow implementation of such algorithms (and many others, including of course
all systolic algorithms). The generalization allows the presence of register pipelines of various
lengths at different points in a regular array of (mostly) identical processors, and sometimes also
some LIFO (Last-In-First-Out) buffers. Rao et al. called such arrays Regular Iterative Arrays, and
algorithms implementable on such arrays were dubbed as Regular Iterative Algorithms. For RIAs
with bounded index spaces, Rao et al. [16], [17], [18] provided formal methods to determine lower
bounds on I/O latency and memory requirements; systematic procedures for implementing RIAs
on regular processor arrays that can achieve the lower bound on I/0O latency and can generate all
possible architectures were also developed. The implications of these results are quite extensive.
It has been shown [16] [4] [10] that many algorithms in digital filtering (convolution, correlation,
autoregressive, and moving-average filtering), numerical linear algebra, discrete methods for PDEs
and ODEs, graph theory (transitive closure, some coloring problems) can be reformulated as RIAs.

In this paper, we shall show how the results of Rao et al., and some additions to it that we
have obtained, can be used to obtain regular processor arrays for matrix pivoting algorithms, and
in particular work out the example of Gaussian elimination with partial (row or column) pivoting.
This method can also be extended to other pivoting algorithms, e.g., Gaussian elimination with
full pivoting and QR-factorization with column pivoting [22]. Space limitations will not allow us
to report all the deatils which the interested reader can find in [22]. We shall begin by reviewing
the definition and basic properties of RIAs. Due to space limitations it is not possible to provide
a complete characterization of the systolic algorithms (defined as the algorithms implementable on
systolic arrays) here. However, we shall state a necessary property of systolic algorithms using
which we can show that pivoting algorithms are non-systolic. In section 3, we show how Gaussian
elimination with partial pivoting can be written in RIA form. We shall then outline how several
architectures can be derived, including it turns out certain arrays previously obtained by Capello
[1] (2-dimensional arrays) and by Ipsen, Saad and Schultz [2] (1-dimensional arrays). Our approach
(Pivoting algorithms — RIAs — Dependence Graphs — Processor arrays) allows us to generate
different architectures (both 1 and 2-dimensional) by simply changing specific parameters in the

procedure that maps the dependence graph of the algorithms to processor arrays. the details).
Finally, section 4 has some concluding remarks.

2 Regular Iterative Algorithms

A major step towards extracting parallelism in a given algorithm is to express the algorithm in a
proper language. Sequential programming languages such as Fortran or Pascal have built-in order-
ings of the computations that obscure parallelism in the algorithm. Also, in an effort to minimize
storage requirements the practice of overwriting on variables is encouraged in these languages,
which compounds the problem of extracting parallelism even more. Single Assignment languages
were designed to overcome the difficulties mentioned above by requiring that every variable defined
in the program take on a unique value during the course of execution. Given a single assignment
algorithm, it is possible to capture the information regarding the parallelism in the algorithm by
means of a dependence graph. To implement the algorithm in parallel one simply has to sched-
ule the computations on the available processors subject to the precedent constraints specified by
the dependence graph. In general, the problem of optimally scheduling is hard and any available
structure in the dependence graph is very desirable.

The Regular Iterative algorithms mentioned in the introduction are necessarily in the single
assignment form and have the added property that the dependence graph of the algorithm is highly
regular, which fact was exploited by Karp et al. [5], and later by Rao et al. (see e.g., [16], [18],
[17], [20]) to optimally schedule them on processor arrays.

Example 1: A simple RIA.

For all tuples (i,5),1<4,5< N do

Algorithms 239
z(4, j) = Jz(i =1, 7+ 1)y(i, j)
y(i, §) = i+ 1, j-1)+2(, 7-1)

This example displays the following (characteristic) features of an RIA:

Each variable in the RIA is identified by a label and an indez vector (I = [i j]7, in the example).
The main feature is the regularity of the dependences among the variables with respect to the index
points. That is, if z(I) is computed using the value of y(I — d) then the indez displacement vector
d, corresponding to this direct dependence, is the same regardless of the index point I.

As a consequence of this regularity, the dependence graph of an RIA has an iterative structure,
which can be clearly demonstrated by drawing the dependence graph within the index space. The
formal definition of the RIA follows:

Definition 1 A Regular Iterative algorithm is defined by a triple {I, X, F}where

1. 1 is the Index-Space which is the set of all lattice points enclosed within a specified region in
a §-dimensional Euclidean space.

2. X is a set of V variables that are defined at every point in the index space, where the variable
z; defined at the indez-point I will be denoted as z;(I) and takes on an unique value in any
particular instance of the algorithm, and

3. F is the set of functional relations among the variables, restricted to be such that if z;(I) is
computed using z;(I — Dj;), then

a. Dj; is a constant vector independent of I and the extent of the indez space, and

b. for every J contained in the indez-space, z;(J) is directly dependent on z;(J — Dj;) (if
(J — Dj;) falls outside the indez-space, then, z;(J — Dj;) is an ezternal input to the
algorithm).

We should comment that the functional relations among the variables in F may involve conditional
branches, as will be seen in later sections.

2.1 Writing Algorithms in RTA form

Algorithms are seldom specified as RIAs and certain amount of work has to be done to write an
algorithm in the RIA form. Unfortunately, this first step is still somewhat heuristic, though some
useful rules can be deduced from the very many diverse problems that have already been studied.
The heuristic rules that have been found for conversion can be stated as a three-step procedure:

1. Single Assignment Form: Introduce additional indices for the variables in the algorithm so
that the resulting modified algorithm is in Single Assignment form.

2. Indez-Maiching: Arrange that all variables have the same number of indices.

3. Localization: This step ensures that a variable at any particular index point must be depen-
dent upon variables at neighboring index-points only. This can be accomplished, in most
cases, by using conditionals and by propagating the variables across the index-space in a
regular fashion.

In the next section, we shall illustrate the use of these rules by deriving the RIA for GAussian
elimination algorithm with partial pivoting,.

2.2 Non-systolic Algorithms and Matrix Pivoting Algorithms

Can the class of systolic algorithms be precisely defined? Of course the answer will depend on
whether the systolic arrays can be precisely defined. Several authors including S. Y. Kung {9], Mel-
helm and Rheinboldt [12], and Leiserson and Saxe [11] have provided characterizations of systolic
arrays, though they do not all use the same conception of such arrays. A comparative study of
various definitions along with a formal definition that captures the generally accepted qualitative
features of systolic arrays (e.g., topological regularity, functional regularity, temporal locality, and
pipelineability) can be found in [22], [16], [19]. Based on this definition it can be proved that

240 International Conference on Systolic Arrays

systolic algorithms form a precise sub-class of the RIAs. The necessary and sufficient conditions
for an RIA to be systolic can be stated in various ways however, one characterization of systolic
algorithms that is particularly useful in our context is given by the following theorem.

Theorem 1 If N is the mazimum of the bounds on the indices in the indez-space of a systolic
RIA, then the I/O latency of the algorithm is O(N).

A proof of this can be found in [22], however one conversant in systolic arrays can easily relate
to it because all the known systolic algorithms have linear schedules and hence satisfies the above
theorem. As a counter example, one can show that the simple RIA in example 1 has a directed
path of length N? connecting all (i, j). Thus, a linear schedule is not possible and the algorithm
is non-systolic.

A simple analysis will point to the difficulties that appear in implementing pivoting algorithms
on systolic arrays. A characteristic feature of all pivoting algorithms applied to an N x N matrix
is that there are N steps and that each step has two distinct phases: (i) determining the maximum
of O(N) elements; (ii) performing operations that are dependent on the result of (i). Note that the
operations in the next step of the algorithm cannot begin until and unless phase (i) of the present
step has been completed. Since there are N steps in the algorithm, the dependence graph of the al-
gorithm has a path of length Q(N x (The path length required to compute the maximum of O(N)
elements)). The minimum path length in any dependence graph (when the in-degree of nodes is
restricted to be bounded) for computing the maximum of ©(N) elements is Q(log N). Hence the
I/0 latency of the matrix pivoting algorithms is Q(N log N). Thus systolic array implementation
(with size parameter N) is not possible because the I/O latency of a systolic algorithm is O(N)
whereas the I/O latency of the pivoting algorithms is (N log N). We should remark that the
present analysis is valid for the algorithms that are known; it does not rule out the possibility that
faster algorithms for performing pivoting operation, with lower I/O latency can exist.

3 Gaussian Elimination with Partial Pivoting

The Gaussian elimination algorithm with partial pivoting is the most widely used procedure for
solving systems of linear equations and factorizing matrices. We showed in section 2 that it cannot
be implemented on systolic arrays. However, Rao et al. have shown that if the pivoting algorithms
can be expressed as RIAs, then they can be implemented on regular processor arrays with register
pipelines and LIFO buffers. Such architectures have almost all the advantages, such as spatial
locality, modularity, and easy programmability, that make systolic arrays so appealing for VLS. In
this section we shall show that the partial pivoting algorithms can indeed be written as RIAs. In
particular, we shall show that for an N x N matrix the algorithm can be implemented on a linear
array of processors with O(N) memory at each processor and in O(N?) time (we should note here
that some of the results of this section were presented by the authors in [21]). The linear arrays
ingeniously derived in [2] can be shown to be particular instances of the family of architectures that
can be generated by our procedure. Also we can show that the two-dimensional arrays reported in
(1] can be naturally generated from arrays that can be derived from our systematic procedure.

3.1 RIA Representation

In order to come up with an RIA for the gaussian elimination algorithm with partial pivoting
problem we first analyze the sequential method of executing it. A sequential representation of the
algorithm is as follows:

Fork := 1to(m—-1)do

begin
Determine pe{k, k+1, ..., n} so |ap| = max |a;|;
T = p;
For { := ktondo
begin

Swap ag; and ap;;

Algorithms 241

end
wj = agj;
For i := k+1tomdo
begin
N = @ix/akk;
ik =15
For j = k+1tondo
begin
aij = e — N5
end
end

end

The permutation of rows performed at each step of the algorithm is data-dependent and cannot
be predicted prior to its execution. This makes the dependence graph of this algorithm data-
dependent and appears to have been the main stumbling block in previous attempts to obtain
systolic array implementations. However, if we temporarily relax the restriction that the final
output has to be in triangular form, then we can select the pivot element at each step and use
the corresponding row for elimination, except that we do not need to swap rows at each step. We
can then output for each column the row number of the pivot element and this information can
easily be used to triangularize the output matrix in O(N) time (for details see {22]). This modified
version has a data-independent dependence graph and can be divided into M — 1 steps, one for
every value of k. Let af‘j denote the value of a;; at the k** step. Also, let c{»‘j be an one-bit tag such
that if c§; = 1 then it implies that the corresponding element belongs to a row which has been used

for elimination at some step ko < k. The k** step of the algorithm consists of two distinct passes
over the matrix elements and the passes can be enumerated as follows:

e The first pass determines the pivotal row, that is the row with the maximum element in
the k** column (note we will be careful in not considering the rows that have already been
selected as pivotal rows in previous steps). This will be done by sequentially examining all
the elements of the k* column. Let "fi—l)k be the row with the maximum value in the k"

column among the first ¢ — 1 rows and let sfi-—l)j denote the j®* element of the row Tﬁ'-l)k'

Then we can define a boolean variable ¥ as follows:
k k —
ik = S(ienyk < laix X G|

where the bar denotes the logical complement operation. Thus, the variable is set to 1 if
c{-‘k = 0 and ‘afk| > sf,._l)k, otherwise it is set to 0. Note that the requirement cfk =0
insures that the rows that have already participated as pivotal rows are not considered. The
candidate for the pivotal row (i.e., rfk and its contents can now be updated as follows:

k k vy -k
i = (o X th) + (Ex th);
k

[
|

ho= (th x sfi-l)j) +(t5 x ak)

Hence, at the end of first pass rﬁ“ is the row-number of the pivotal row and the contents of
the pivotal row are in s'fwj Vji=k...N.

o The second pass uses the pivotal row to update the untagged elements (i.e., af‘j for which
c{Fj = 0) and also tags the elements of the pivotal row. The updating for the i row can be
easily done by defining a multiplier pfk as follows:

k

k a; V7R Y

P = () x v (i =rhp)
S Mk

242 International Conference on Systolic Arrays

where V is the logical or operation. Notice that if c{-‘k =1 (i.e., the i row was chosen as a
pivotal row in an earlier update) or i = 7%, (i.e., the i** row is the pivotal row as determined
in the previous step) then the multiplier is set to 0, so that these rows are not modified again.
The elements and the corresponding tags of the i** row can now be updated as follows:
k+1 . _k k ok
a5 = G5 — PiSM;
k+1
<
Once this updating is completed one can start the k + 1 step.

=k V(i =ry)

The purpose of introducing the subscripts and superscripts in the description of the variables was
to avoid overwriting on variables. In fact, from the description of the modified algorithm so far,
one can directly code it in single assignment form as follows:

For all triples (¢,7,k), 1<i<M;k<j<Nand1<k<M-1do
ik, k) = s(i=1,kk) < [a(i,k,k) x (i, K, F)|
r(i,k,k) = (r(i — 1,k,k) x t(3,k, k) + (i x (i, k, k))
(i, 5,k) = (t(i,k, k) x s(i = 1,5, k)) + (43, k, k) X a(4, 5, k))
, o ali k), — —
(i, k, k) = (m) x (i, k, k) V (i = r(i,k, k)
a(i,j,k +1) = a(3,5,k) — p(i, k, k)s(M, j, k)
e(iyik +1) = c(i,d,k) V (i = (M, k, k))

where the necessary initializations are

a(iy],0) = aij; C(i,j, O) =0; S(O,k,k) =0.

3.1.1 An RIA for Gaussian Elimination with Partial Pivoting

An RIA can be derived from the single assignment form of the algorithm by introducing propagating
variables, in the same manner as was done for the Gaussian elimination algorithm without pivoting.
For example, s(3, j, k) uses ¢(4,k,k) and this leads to a global dependence. The global dependence

can be removed by propagating (i, j,k) along the j** coordinate as follows:

s(i~1, 4, k) < a(i, j, k) x 25, 7, B)|
Ui, J k) = ifi=k
(i, j~1, k) ifj>k

Similarly, a(3, j, k) depends on s(M, j, k) and to localize this dependence we define a new variable
w(i, j,k) that propagates s(M, j, k) along the negative ¢ direction. Using such techniques one can
localize all the dependences and an RIA for performing Gaussian elimination with partial pivoting
is:

For all triples (i,j,k), 1<i{< M;k<j<Nand1<k<M_1do
(i, 4, k) = (s, j, Ky x s(i - 1, j, k) + (i, j, k) x a(i, j, k)
o pi=1, 4, k) < |aGi, j, k) x o 7 F)|
Wi, J, k) = ifj=k
(G, j—1, k) ifj >k
r(i=1, jk)x Ui, j, k) + i x t(4, j, k)
T(i, Js k) = ifj=k

null otherwise

. _ [s(5 k) ifi=M
w(i, 4, k) = { w(i+1, 5, k) ifi<n

Algorithms 243
2(i+1,], k) ifj=k
(i, j~1, k) if j> k
a(i, J, &)
i g by = 4 R R)
o, 5~ 1, k) if5>k
i, §y k+1) = (i, 4, k) V(i =z(i, J, k))
a(i, 4, k+1) = a(s, 3, k) — p(4, 4, k) x w(i, j, k)

The necessary initializations are

r(i, j, k) ifi=Mand j=k
(i, J, k) =

)X c(i7 J k)V(z(i, Js k) = i)
ifj=k

a(i, 4, 0) = aij; €(4,5,0) = 0; s(0,4,k) = 0.

3.2 Implementation on Processor arrays

An optimal implementation of a given algorithm minimizes the time required for completion of the
algorithm and maximizes the utilization of the processors. The minimum time required to solve an
algorithm is determined by the longest path in its dependence graph. It is quite simple to observe
that the minimum 1/O latency for the RIA in Section 5.1 is O(M?) for an M x N matrix (i.e. for
every value of k there is a path of O(M) and k ranges from 1 to M — 1) and the total number of
computations (i.e. the number of nodes in the index space of the RIA) is O(M2N). Hence, an
optimal implementation can be realized by an array of processors consisting of O(N) processors
and requiring O(M?) time.

In order to implement the algorithm on processor arrays we have to partition the tasks in the
dependence graph in an efficient among the processors. To keep the problem of scheduling easy
and tractable one can restrict attention to linear (linear sub-spaces e.g., hyper-planes) partitions.
Here, a set of parallel lines (planes, hyper-planes; called the iteration space) are drawn through
the index-space of the RIA, so that all computations that correspond to the index-points that lie
on the same line (plane, hyper-plane) are assigned to the same processor. It can be shown that
there is always at least one choice of the iteration space such that the resulting allocation will
lead to asymptotically optimal scheduling. The processor array can be obtained by projecting the
dependence graph along the sub-spaces defined by the iteration space.

Algebraically, the iteration space U is a § X P integral matrix where § is the dimension of
the index-space of the RIA and P < §. Computations corresponding to index-points I and J are
mapped on to the same processor if and only if] = J = Uca where a is a P x 1 vector. For
example, a possible choice of the iteration space in the case of the RIA for gaussian elimination

with pivoting is:
v - [Lo0]”
- 011 :

The parallel planes along which the projections are done are shown in Fig. 1. This results in
a processor array with N processors and is shown in Fig. 2. Often an algebraic approach for
obtaining the processor array is useful. Let P be any (S — P) x S-dimensional integer matrix of
rank (S — P) that is orthogonal to U, i.e.,PU = 0. Then, the processor array is defined by the
lattice of points obtained by mapping the index space according to p = PI, VI € index space. p
defines the location of the processor that carries out the computation at the index point I. The
necessary interprocessor communication links are then defined by the vector weights on the edges:
if z(I) is dependent on y(I — D), then there must be a directed link in the processor array from
P(I - D) — PI for all I. In our example, a possible choice of P for the given choice of U is
P = [01 - 1]. This readily gives us the interprocessor communications (as shown in Fig 2) and
also tells us about the computations that each processor performs. For example,

2]=[01_1][2]=o.
k k

for all ¢ and k. This brings out a major feature of this architecture, viz., the computations required
to determine the pivot and the multipliers (which occur at index points where j = k) have been

P

244 International Conference on Systolic Arrays

mapped to the 0% processor; the rest of the processors need to perform only elimination operations.
In fact it is readily apparent from the mapping technique that at the k** step of the algorithm the
columns k through N are stored in processors 0 through N — k — 1. Then at the end of kt* step
the columns are shifted one processor to the left to start the (k + 1)* step. The partitioning of the
computations to individual processors has to be followed by efficient scheduling of the computations.
A general scheduling technique for RIAs, which achieves the lower bound on the I/0 latency of
the algorithm is discussed in [16] [17]. The scheduling and exact operation of each processor in the
linear array has been worked out in [22].
A second interesting array can be obtained by choosing the iteration space as

v - foto]T
~ 1001

The size of the array (shown in Fig. 3) is M, and will have less number of processors than the
previous architecture if M < N. However, unlike the first array, the reader can verify that every
processor in this array takes part in computing the pivot element and the multipliers. In fact, the
ith processor has the §** row stored in it and this architecture is referred to in [2] as the row-oriented
architecture. Another architecture discussed in the same paper where the 7™ processor contains
the j** column is obtained by choosing

U - [100]T
- 0 01 :
If we have p processors instead of N processors (p < N), then one can map multiple columns to
the same processor and one obtains a block-column scheme for implementing the algorithm.
Several two dimensional architectures can be obtained by choosing the iteration space to be one
dimensional. A triangular processor array is obtained by choosing U = [100]T. This array can be
pipelined with pipelining period of O(N) (thus dependent on the problem size). However, we can
now solve N problems simultaneously in O(N?) time. If we choose U = [0 0 1}7 then we obtain a
N x N (assuming M = N) 2-D array that corresponds to the case where every element of the matrix
resides in a single processor. Now, if we assign a block of p X p elements to the same processor then
we obtain a square array with N?/p? processors (i.e., an array of size N /px N/p) which yields the
architectures discussed in [1]. It is however quite remarkable that by thus partitioning the array
one can obtain an improvement in the processing time. In particular, if p = N'/3 then it is shown
in (1] that the processing time can be as small as O(N/3),

4 Concluding Remarks

In this paper we have shown how the concept of Regular Iterative Algorithms can be used to
systematically map pivoting algorithms on regular iterative arrays that generalize the concept of
systolic arrays. The regular processor arrays that we can design includes the linear arrays designed
by several other researchers for pivoting algorithms. A fair treatment of several related issues which
could not be dealt with in detail in this paper can be found in [22].

5 Acknowledgements

The authors would like to thank Dr. S. K. Rao for his helpful comments and inspiration.

References

[1] Peter R. Capello. A mesh automaton for solving dense linear systems. Proc. Of International
Conference on Parallel Processing, St. Charles, IL,, August 1985.

[2] T. Ipsen, Y. Saad, and H. M. Schultz. Complexity of dense linear system solution on a multi-
processor ring. Linear Algebra Appl., 77, 1986.

(3] H. V. Jagadish. Techniques for the Design of Parallel and Pipelined VLSI Systems for Nu-
merical Computations. PhD thesis, Stanford University, Stanford, California, Dec. 1985.

Algorithms 245

[4] H. V. Jagadish, S. K. Rao, and T. Kailath. Multi-processor architectures for iterative algo-
rithms. Proceedings of the IEEE, Sept. 1987.

[5] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform
recurrence equations. Journal of the ACM, 14:563-590, 1967.

(6] H. T. Kung. Let’s design algorithms for VLSI systems. In Proc. Caltech Conf. on VLSI,
pages 65-90, Jan. 1979.

[7] H. T. Kung. Why systolic architectures? IEEE Computer, 25:37-46, Jan. 1980.

[8] H. T. Kung and C. E. Leiserson. Systolic arrays for VLSL In Sparse Matriz Proceedings,
pages 245-282, Philadelphia:Society of Industrial and Applied Mathematicians, 1978.

[9] S. Y. Kung. On supercomputing with Systolic/ Wavefront array processors. Proceedings of the
IEEE, 39-46, July 1984.

[10] S. Y. Kung. VLSI Array Processors. Prentic Hall Series, 1987.

[11] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous circuitry by retiming.
Proc. Third CalTech Conf. on VLSI, Jan. 1983.

[12] R. G. Melhem and W. C. Rheinboldt. A mathematical model for the verification of systolic
networks. SIAM J. Computing, 13:541-565, Aug. 1984.

[13] D. L Moldovan. On the analysis and synthesis of VLS algorithms. IEEE Trans. on Computers,
C-31:1121-1126, Nov. 1982.

[14] D. I Moldovan. On the design of algorithms for VLSI systolic arrays. Proceedings of the IEEE,
113-120, Jan. 1983.

[15) P. Quinton. The Systematic Design of Systolic Arrays. Technical Report, INRIA Report,
Paris, 1983.

[16] S. K. Rao. Regular Iterative Algorithms and their Implementation on Processor Arrays. PhD
thesis, Stanford University, Stanford, California, 1985.

[17] S. K. Rao. Systolic Arrays and their Eztensions. Prentice Hall Series, (to appear), 1988.

[18] S. K. Raoand T. Kailath. Regular iterative algorithms and their implementations on processor
arrays. Proceedings of the IEEE, To appear in 1988.

[19] S. K. Rao and T. Kailath. What is a Systolic Algorithm? In SPIE Proceedings, Real-Time
Signal Processing, 1986.

[20] V. P. Roychowdhury and T. Kailath. Analysis and optimal imlementation of regular iterative
algorithms with semi-infinite index spaces. 1987. Manuscript under preparation, ISL, Stanford
University, Stanford, CA 94305.

[21] V. P. Roychowdhury and T. Kailath. A Nonsystolic Algorithm Implementable on Regular
Processor Arrays. Proc. International Symposium on Circuits and Systems, San Jose, CA,,
May 1986.

[22] V. P. Roychowdhury and T. Kailath. Regular Processor Arrays for Matrix Pivoting Algo-
rithms. Submitted to Communications of ACM, Feb. 1988.

246 International Conference on Systolic Arrays

/
| 7
L

Figure 1: Planes along which projections are done in the index-Space of the RIA for Gaussian
elimination with partial pivoting. The architecture derived is shown in 2.

P, S, W, r P, S, w p, s, w p, s, w p, s, w
t, x t, x t, x t, x
? FP P [
output ? a c f a, c f a c a, ¢
column column column column column
1 2 3 4 5

Figure 2: A linear processor array for performing Gaussian elimination with partial pivoting

p.s P, s p,s , 8
f f f Ft g
row row row row row
1 2 3 4 5

Figure 3: A row-oriented linear processor array for performing Gaussian elimination with partial
pivoting.

