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Abstract 

There is at present a worldwide effort to overcome the technological barriers to nanoelectron- 
its. Microscopic simulation can significantly enhance our understanding of the physics of 
nanoscale structures, and constitutes a valuable tool for designing nanoelectronic functional 
devices. In nanodevices, novel physics effects are used to attain logic functionality which 
conventional technology can not achieve. Therefore it is necessary to develop quantum-transport 
simulation methods which include novel physical effects. Moreover, simulation of realistic 
nanodevices require enormous computing resource, necessitating parallel supercomputing. In this 
paper, we present massively parallel algorithms for simulating large-scale nanoelectronic networks 
based on the single-electron tunneling effect, which is arguably the quantum effect of greatest 
significance to nanoelectronic technology. A MIMD implementation of our simulation algorithm 
is carried out on a 64-processor nCUBE 2, and a SIMD implementation is carried out on a 
16,384-processor MasPar MP- 1. By exploiting massive parallelism, both parallel implementations 
achieve very high parallel efficiency and nearly linear scalability. The result of this work is that 
we are able to simulate large-scale nanoelectronic network, within a reasonable time period, which 
would be impractical on conventional workstations. 
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1. Introduction 

Nanoelectronics is a revolutionary integrated circuit (IC) technology that will permit 
the down scaling of minimum circuit geometries to continue beyond the limiting length 
scales set by the conventional electron devices [25]. In nanodevices, novel physics 
effects are used to attain logic functionality which conventional technology can not 
achieve [7,21,24,14]. Recently there has been a significant increase in experimental 
activity involving the fabrication of nanoelectronic devices with feature sizes in the 
l-100 nm range [25,20.30]. In this regime the dimensions of the structure become 
comparable with electron wavelengths, and charge transport is dominated by the 
fundamental quantum properties of the electron. Therefore the physical principles 
underlying the operation of conventional devices can no longer be utilized, and new 
physical effects must be exploited. 

Along with fabricational advances, nanoelectronics will also be enabled by realistic 
quantum device modeling [26,25]. Modeling provides a natural framework for under- 
standing the physics of nanoscale structures. It also constitutes a practical tool of 
increasing significance to the design of quantum devices. Microscopic simulation is the 
most effective modeling technique, which can significantly enhance our understanding 
of the nonlinear, nonequilibrium dynamics in the nanostructures. “Computational 
Electronics” is a rapidly growing, interdisciplinary approach (including computer 
science, electrical engineering, physics and mathematics) to device simulations [15]. In 
recent years, device simulations have played a significant role in the development of 
very large-scale integrated circuit (VLSI) technology. For nanoelectronic devices, 
however, it is necessary to develop quantum-transport simulation techniques which 
include novel physical effects crucial to the operation of such devices. Furthermore, 
simulations of realistic nanoelectronic devices require enormous computing resources. It 
is thus crucial to exploit the massively parallel computing technology. This so-called 
“Parallel Computational Nanoelectronics” is the subject of this paper. 

We have been carrying out research on the design of integrated nanoelectronic 
systems with information processing capabilities [6,31,8]. Our work has been unified 
under a particular technology based on the creation of array of nanometer-sized metallic 
dots. We have studied different types of network mechanisms for the transfer of 
electrons between these quantum dots. Depending on the types of network nonlinearities 
permitted by the network links, we have shown that it is possible to generate different 
kinds of global activities in these networks. Moreover, we have shown that it is possible 
to impart computational interpretations to these global activities, and thus this class of 
networks will in effect become “artificial solids” [19] which compute [6,31,8]. 

In this paper, we present the massively parallel simulation techniques we have 
developed for understanding the underlying dynamics of such nanoelectronic networks. 
Such networks can be implemented by fabricating arrays of conductive quantum dots 
that interact with each other capacitively [6]. The basic physical concept underlying such 
networks is the single-electron tunneling effects [18], which is a discrete stochastic 
process. Monte Carlo simulation technique that mimics in detail the physics of single- 
electronics is an important tool for investigating the characteristics of such networks. 
Moreover, the computational needs for simulating these networks are very high, 
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necessitating the use of parallel supercomputers. In this paper, we present efficient 
massively parallel algorithms for simulating large-scale nanoelectronic networks. A 
MIMD implementation is described and the corresponding experiment on a 64-processor 
nCUBE 2 parallel computer is reported. A SIMD implementation is also described and 
the corresponding experiment on a 16,384-processor MasPar MP-1 parallel computer is 
reported. By exploiting massive parallelism, both parallel algorithms achieve very high 
parallel efficiency and nearly linear scalability. Our parallel simulators accomplish 
impressive speedup and make it possible to simulate large-scale nanoelectronic networks 
within reasonable time period. 

2. Single-electron threshold devices 

The class of nanometer scale electron devices, based on quantum interjkence effects 
are prone to universal conductance fluctuations [331 and therefore may not be suitable 
for consideration as a viable technology. Moreover, quantum coherence which is needed 
for interference effects will require very low operating temperatures, and low applied 
biases [33]. Another family of nanometer scale devices, known as single electron 
rrunsisfors El81 offer greater flexibility, in terms of design and operation. These are 
essentially semi-classical threshold devices in which the electrons can be thought of as 
discrete charged particles. They are therefore not subject to the interference fluctuations 
affecting other mesoscopic phenomena. Furthermore, it is believed that single-electron 
tunneling phenomena hold out the greatest promise [32] as the technology that will 
overcome the very low operating temperatures, which restrict other nanoelectronic 
concepts. 

A particular realization of single-electron tunneling experiment is based on metallic 
dots which are deposited on a thin insulating layer, which in turn is grown on a 
conductive substrate [l 11. The tip of a scanning tunneling microscope (STM) is then 
introduced as shown in Fig. 1, and the tunneling of electrons through the two potential 
barriers presented by the STM-dot gap, and the insulating layer between the dot and the 
substrate is studied. If the tunnel conductances are sufficiently small, the behavior of this 

STM tip 

llic dot 

ator 

Fig. 1. STM-grain-substrate experiment for single-electron tunneling. The insulator is approximately I nm 
thick, and dots of diameter in the range 5-20 nm are typically studied. 
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system can be described using a semi-classical model, known as the “orthodox” theory 
[2]. In the framework of this theory there are well defined integer number of electrons on 
the dot. These charges are then changed discretely when single-electron tunneling events 
occur. At the absolute zero of temperature, such tunneling events can occur only if it is 
energetically favorable with respect to the electrostatic energy of the system. Now the 
novelty of these tunnel junctions arises from their small size. The capacitances of 
ultrasmall metallic dots can be very small, in the order of C - lo- I6 F, leading to 
significant capacitive contributions to the electrostatic energy through the term e2/2C 
[l l]. So the voltage prevailing across a tunnel junction must cross the thresholds at 
k e/2C, before it can trigger a tunnel event. This threshold behavior is often referred 
to as Coulomb blockade, emphasizing the electrostatic origin of the phenomenon. As 
long as the capacitive energy E, = e2/2C, is not overshadowed by the thermal energy 
E, = kT, small tunnel junction will exhibit this threshold behavior. A recent experiment 
[32] involving dots of diameter 4.5 nm, with pertinent C - IO-l8 F, has found evidence 
that the corresponding capacitive energy E, - 70 meV, can indeed overcome the room 
temperature thermal energy E7 = 26 meV. 

While there is optimism that nanoelectronic devices will lead to novel technologies, it 
is believed that they are not large enough to drive many other devices in subsequent 
stages. There have been suggestions that technological applications should be based, 
instead, on the cooperative behavior of arrays of such devices [ 181. Indeed, there has 
been some theoretical and experimental work on arrays of laterally connected tunnel 
junctions [1,4,5]. In the next section we discuss the electron dynamics in the networks of 
such quantum dots. 

3. Electron dynamics and Monte Carlo technique for voltage-driven networks of 
nanoscale metallic dots 

3.1. Electron dynamics in voltage-driven nanoelectronic networks 

We consider arrays of metallic dots each of small diameter in the l-20 nm range, 
deposited onto an insulating layer, which has been grown on top of a conductive 
substrate [6]. The array is placed between two large electrodes - a source electrode and 
a drain electrode, as shown in Fig. 2(a). We investigate the electron transport across an 
array of such dots. We assume that an effective resistance parameter R, of the tunnel 
junctions between any two adjacent dots is much larger than the quantum of resistance 
RQ = 2rrfi/e2, and that the energy quantization within each dot is negligible compared 
to the charging energy of each dot. With these assumptions it is possible to use the 
“orthodox” theory [2] to describe the dynamics of electrons across an array of dots. The 
metallic dots are assumed to be sufficiently close to each other that lateral tunneling 
between near-neighbor occurs. Furthermore, we assume that the insulating layer of the 
substrate is sufficiently thick that vertical tunneling between an dot and the substrate 
will not occur. 
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Fig. 2. (a) An array of metallic dots placed between a source electrode and a drain electrode. Single-electron 
tunneling event can happen only between neighbor dots, or between the electrode and the dots on the edge, as 
illustrated by the arrowed lines. (b) Cross-sectional view of the circuit model of (a), in which only the near 

neighbor capacitive coupling is assumed. 

The dynamics of electrons across the array is simulated by means of an algorithm 
which carries out electron transitions between neighbor dots if that transition would in 
general minimize the total energy. At any given time, the entire array is scanned and the 
energy change associated with each electron transition is recorded. The rates of making 
those transitions are then determined, and a particular transition is picked at random with 
probability proportional to the tunneling rates. The method is due to Bakhvalov et al. [4], 
who showed that the simulation technique mimics exactly the behavior of the system as 
long as the tunnel resistance R, between any two adjacent dots is much larger than the 
quantum of resistance R,. 

Let Cij denote the mutual capacitance between dots i and j, C,, denote the 
capacitance between dot i and the source electrode, Ci, denote the capacitance between 
dot i and the drain electrode, and Cj denote the capacitance between dot i and the 
substrate. Suppose that at time t, the charge on dot i is Q,(t) and the dot voltage, 
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measured with respect to the substrate is Vi(t). Let the source and drain voltages be V, 
and V, respectively. The charge can then be written in terms of the voltage as 

Qi( t) = CiVi( t> + CC;j(Vi( r> - vj( r>) + Ci.s(Y( t) - VT) + Ci,(Y(‘) - “cl). 
i+j 

(1) 

Given a particular charge configuration ( Qi( t>} of electrons on each of the dots at time t, 
and the applied biases V, and V, at the source and drain electrodes, the corresponding 
set of voltages {Vi(t)} on the dots can be derived by inverting Eq. (1) 

vi( r, = C[ g’- ’ ]ijOj( ?) > (2) 

where the off-diagonal elements of the capacitance matrix @’ are gij = -C,,, the 
diagonal elements are gii = Ci + Cj, ;Cij + C;, + Cid, and Q is an augmented charge 
vector of the system, Qi = Qj + C,,V, + Cj,Vd. 

The free energy which is minimized during the transport analysis can be written as 

E = ;B’W- ‘e” - Q,,V, + Q,,,V,. (3) 

where the first term is the electrostatic energy stored in all of the capacitances in the 
network, the second term is the work done by the source electrode in injecting the 
charge Qin into the network, and the third term is the work done by the drain electrodes 
in pulling the charge Q,,, out of the network. (Qi, is the total charge injected into the 
network from the source electrode, and Q,,, is the total charge pulled out of the network 
to the drain electrode. Therefore the net charge in the network is Qin - Q,,,.) Now for a 
charge q tunneling from dot i to dot j, the change in the free energy is 

AEij = EU - Eb, (4) 

where the superscripts indicate whether the energies are taken before or after the 
tunneling event. 

Once the energy change associated with a tunneling event is known, the tunneling 
rate Tij corresponding to that event can be obtained by applying Fermi’s Golden rule, 

where f is the Fermi-Dirac distribution function giving the electron occupancies within 
each dot, D are densities of states within the dots, and Tij is the matrix element for 
tunneling from dot i to dot j. In most experiments the biases needed to overcome the 
Coulomb blockade are sufficiently small, so that the energy dependence of the densities 
of states and the matrix element can be neglected over the energy interval of interest. 
Under these assumptions neither a detailed model of the tunneling barrier, nor of the 



X. Wring et d/Parallel Computing 22 (1997) 1931-1963 1937 

electron gas in the metallic dots is necessary, and the tunneling rate can be approximated 
as bl, 

AEij 

‘j= q2Rlj(exp( dE,,/kT) - l} ’ 

where R,, is an effective tunnel resistance which is composed of the densities of states, 
and the tunneling matrix element, all evaluated at the Fermi energy, q is the single 
electron charge, k is the Boltzman constant, and T is the absolute temperature. For 
transport considerations at the absolute zero of temperature, (i.e., T = 0) the rate 
equation can be simplified further to yield, 

rij = AEij/q2Ri, if AEij < 0, 

0 otherwise. 
(7) 

3.2. Monte Carlo simulation technique 

3.2.1. Simulating the single electron tunneling event 
Next we will outline a Monte Carlo simulation technique [4,13] for the simulation of 

a voltage-driven network of quantum dots discussed above. The state of the system of 
quantum dots is fully described at time t by the vector of dot charges Q(t). The entire 
system is swept, and a vector of numbers { AEm} corresponding to the energy dissipated 
as a result of tunnel events (indexed by the superscript m), between each dot and its 
nearest neighbors (including the tunnel events between the edge dots and the electrodes). 
From the vector of dissipated energies, a vector of tunnel rates {Tm} is then generated 
using Eq. (6) or Eq. (7). Another vector of cumulative tunnel rates is then generated by 
replacing each element of the vector {rm} with the sum of all previous rates (prefix 
sum): 

S” = F rk. 
k= I 

(8) 

The probability that any one of these tunnel events should proceed over a very small 
time interval St is then determined by calculating 

P( t + tit) = e-6rS’. (9) 

where 1 is the total number of possible tunnel events, and the total tunnel rate S’ is the 
last element in the vector of cumulative rates {Y}. 

Now a particular tunnel event k can be selected with probability proportional to the 
tunneling rates Tk. This is numerically implemented by picking a random number r7 
distributed uniformly on the unit interval, and then selecting the tunnel event with the 
lowest index k, which meets the condition (Sk/S’> > r,. We still need to determine the 
length of the time interval between t and the time this tunnel event happens. Another 
random number T+, distributed uniformly on the unit interval is now drawn, and the time 
interval St is then, 

6t= -In r-,+/S’. (10) 
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After this time lapse St, the system is ready for the next update. We call this Monte 
Carlo process for the nano-array a SWEEP process. The entire SWEEP process is 
repeated until stationary mean values ((Q,)), corresponding to a local minimum of the 
energy set in, or until adequate numerical evidence has been accumulated. 

3.2.2. Calculating the steady state current 
The steady state current of the voltage-driven network is calculated in the following 

way. Suppose that totally v electron tunneling events are simulated, i.e., the SWEEP 
process is iterated v times. At the end of the transient period, e.g., after the v,th 
( v0 < Y) iteration of the SWEEP process, we calculate the total elapsed time and the 
charge flows at the two electrodes. The total elapsed time after the vath iteration is 
T( vO) = Ciy2, at,, where Sri is the time interval between the (i - I)th and the ith 
tunneling events, calculated by Eq. (10). The total charge flow at the source electrode 
after the Y& iteration is Q,(v,) = Q,,(u,) + CjCj,(V, - Vj(v,>>, where Q,,,(v,) is the 
total charge tunneling to quantum dots in the network from the source electrode during 
the vO SWEEP processes, and V$vO) is the voltage at dot j at the end of the vOth 
SWEEP process. Similarly the total charge flow at the drain electrode after the v,th 
iteration is Qd( vO) = Q,,,(v,) + CjCj,(V, - Vj(v,)), where Q,,,(v,) is the total charge 
tunneling from the quantum dots in the network to the drain electrode during the ~a 
SWEEP processes. At the end of the vth iteration we calculate the elapsed time and the 
charge flows at the two electrodes again: T(V) = Cy= ,Sti, Q,< V) = Qi,(v) + C,C,,(V, 
- Vj(v)), and Qd(v) = Q,,,(V) + CjCj,(V, - Vj(v>). Then the steady state current is 
calculated by 

I = Q,( ~1 - Qs( ~0) 
T(v) -T(vo) ' 

(11) 

or 

I= Q,(u) -Q,(Q) 
T(y) - Uyo) . 

(12) 

If at a particular SWEEP process during the simulation, there is no tunneling event 
feasible, then the system reaches metastable state, and the corresponding current is 0. 

4. Parallelizing the simulation of electron dynamics in nanoelectronic networks 

4.1. Structure of the simulation algorithm and domain decomposition 

We are interested in the current-voltage (I-V) characteristics of the voltage-driven 
nanoelectronic network introduced in Section 3. Based on the preceding discussions, we 
can give the structure of the simulation algorithm, as shown in Fig. 3. 

From Fig. 3 it is clear that the simulation algorithm consists of two major computa- 
tion blocks: (1) calculate the synaptic weight matrix W, and (2) carry out the electron 
dynamics in the network of quantum dots through Monte Carlo simulation. Both of these 



X. Wang et ~L/Parallel Computing 22 (1997) 1931-1963 1939 

yes 

Fig. 3. The structme of the simulation algorithm. 

two computation blocks exhibit high degree of data parallelism, i.e., parallelism 
achieved by multiple processors simultaneously processing different subsets of the data. 
Furthermore, the regularity of the data structure and the uniformity of the computation 
over the nano-array has important implications particularly for the parallel implementa- 
tion. A careful consideration of the presence and efficient use of data parallelism can 
lead to very high parallel performance. 

Our parallel simulation algorithm divides the network of n = N, X NY quantum dots 
into a number of regions equal to the number of processors p. The network is divided 
into rectangular regions by forming 9, strips in the x dimension and P, strips in the y 
dimension, where p = P, X P,, as shown in Fig. 4 for N, = NY = 12 and P, = P, = 4. 
We next present efficient parallel algorithms for the two computation blocks. 

Fig. 4. Grid partition of the network of quantum dots for parallel simulation. 
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4.2. Parallel calculation of the synaptic weight matrix 

The first computational task is calculating the synaptic weight matrix W = ‘57’ of 
the nano-array. Suppose that there are p processors, and the nano-array is of size 
n = N, X NY. Then the capacitance matrix $5’ is an n X n matrix. After partitioning the 
array each processor has n/p quantum dots and correspondingly, each processor has 
n/p rows of %Z’. Each row i is a capacitance vector consisting of the capacitances 
between dot i and all the other dots. After matrix inversion, the corresponding row i of 
W is a weight coupling vector consisting of the coupling weights between dot i and all 
the other dots j, 1 <j < n. 

Currently, the metallic dots on the nano-array under our consideration are assumed 
locally capacitively coupled. This leads to a multidiagonal structure of the synaptic 
weight matrix W, as derived below. A parallel Gauss-Seidel iterative algorithm can then 
be used for computing W approximately. Moreover, recent research on molecular 
networks [ 101 and nanotubes [9], are indicative of approaches which may lead to viable 
global coupling, i.e., any two dots on the array can be coupled with arbitrary capacitive 
strength, resulting in a dense matrix Z? and its inverse W. A parallel Gauss-Jordan 
elimination algorithm can be used for solving W in that case, which is also outlined in 
this section. 

4.2.1. Structure of the synaptic weight matrix W 
We study here the structure of the synaptic weight matrix when only local capacitive 

coupling is considered. If only near neighbor capacitive coupling is considered, then the 
capacitance matrix for an one-dimensional regular array is a tridiagonal matrix of the 
following form, 

0 0 ‘.. 
-c 0 . . 

. . . . . . 

0 ;, -‘c 

where C, is the capacitance to the substrate, and C is the inter-dot capacitance. Let us 
examine the first column of W, which satisfies 

I: c,+c -C 0 c,+2c -c 0 : -c 0 0 . . 0 0 0 . . --c ... . : . . c+c, 0 0 

4 

WII 
WI2 Id win 

1 
0 

= l-1 f . 

0 

The above matrix equation corresponds to a second-order linear difference equation of 
the following form, 

w,i=S(~,(r-,)+~,(i+,)) for i=2 ,..., (n- l), 

where 6 = C/(C, + 2C), and wIO = 1. The solution can be given as 

wli = aff (i-‘)+ba(R-i) for i= l,...,n, 
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where 

a=&(l-GF)<l, 
and the constants a and b are determined from the boundary conditions (i.e., from the 
difference equations corresponding to i = 1 and i = n>. Clearly, w, ;‘s decrease exponen- 
tially as a function of i. 

One can carry out a similar analysis for the other columns of W, and show that the 
elements in every row/column of W decrease exponentially with their distance from the 
diagonal. 

In general, if every dot is capacitively coupled to k of its neighbors, then the 
preceding analysis can again be carried out. It will involve kth-order linear difference 
equations, whose solutions will determine the entries of W. One can then use this 
correspondence to show that every element wij of the synaptic weight matrix W, 
decreases exponentially with the distance between dot i and dot j. Hence, the synaptic 
matrix W can be modeled essentially as a banded matrix with a width of O(log n>. That 
is, for any i, wij = 0 if dot j is more than c log n (where, c is determined by k) 
distance away from dot i. 

The banded structure of W corresponds to having a nano-array with O(log n) 
synaptic connectivity. Therefore, for each dot i, we can set a square window of size 
(2r + 1) X (2r + 11, centered at dot i, where r = c log n, and we assume that the 
synaptic weight between dot i and any dot inside the window is nonzero, and the weight 
between dot i and any dot outside the window is zero, as shown in Fig. 5. In this way, at 
each processor the memory requirement for storing W can be reduced to (2r + 1j2n/p 
= O((N2/p> log2 N), for an N X N network. The nonzero elements of W can be 
calculated approximately by using the Gauss-Seidel algorithm. 

4.2.2. Gauss-Seidel iteration 
We need to get the synaptic matrix W by solving the following equation 

gw=i, (‘3) 
where I is an n X n identity matrix (recall that n = N, X NY). Let W = [w,, wz, . . . , wn] 

l ooooooo.oo 

l mmooooo.oo 

..@.. 

00 l ooooo.oo 

Fig. 5. For each quantum dot i in the network, set a square window of size (2~ + l)X(2r + l), e.g., r = 2, 
centered at dot i, and we assume that the synaptic weight between dot i and any dot inside the window is 
nonzero, and the weight between dot i and any dot outside the window is zero. 
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and I=[e,,e, ,..., e,], where wi = [wli, wZi,. . . , wnilT and e, = [O,. . . , 1, . . . ,O]r, i.e., 
the ith element of ei is 1 and all the other elements are 0’s. Then we have n equations 

L?w,=e,, 1= 1,2 ,..., n. (14) 

Gauss-Seidel (GS) iteration [29] can be applied to solve w,: 

Wk+l = - 
II l (- -&ijw;+ ’ - &Tijw; + eij), 

‘ii 

i= l,..., N, k=O, l,.... (15) 
j<i j>i 

An important modification to the Gauss-Seidel iteration is the successive over-relaxation 
@OR) iteration [29]. Let Sf,’ ’ denote the right-hand side Eq. (15) and define 

w!+ ’ = wi” + o( fp+ ‘i[ - wg. rl (16) 

The introduction of the parameter o is to enhance the rate of convergence of the 
Gauss-Seidel iteration. When we assume that the quantum dots are near-neighbor 
coupled capacitively, the capacitance matrix ‘Z is a diagonally dominant sparse matrix, 
and consists of only five nonzero diagonals. Matrices of this form are called Poisson 
matrix [29]. For Poisson matrix w is chosen as 

W= 

1 +(1-p2)“2’ 

p = cos -5 
n+l’ 

(171 

(18) 

Let {w:] is the sequence of iterates for the Ith column of W, then the convergence test 
is given by 

(Iw;+’ - W/%<E, 

where II wI II Z = max l ~ ii n I wi, I is the 1, vector norm. 

(19) 

Since we assume that for each dot, the synaptic weight between this dot and any dot 
outside a (2r + 1) X (2r + 1) square window centered at this dot is zero, then each w, 
vector is of length (2r + 112 instead of II. Moreover, since we assume that there is 
capacitance coupling only between two near neighbor dots, in Eq. (15) there are at most 
four cij’s that are nonzero. These capacitances can be represented as c,, cd. cl, c,, i.e., 
the capacitance couplings between dot i and its upper, lower (down), left and right 
neighbors, respectively. Let these four neighbors be indexed as i,, i,, i,, i,, then Fq. 
(15) can be rewritten as 

Wk+’ = II ;(C,w;:l+C~w~:‘+cdw~,+C,w~,+eil). 
II 

(20) 

The data parallelism lies in the fact that the n linear equations in Fq. (14) can be 
solved independently by using equation Eq. (20) iteratively. Each processor can solve 
n/p columns of W in parallel with the other processors. Note that the parallel 
Gauss-Jordan elimination solves W among the processors by rows, while the parallel 
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Gauss-Seidel iteration solves W among the processors by columns. Since @’ is 
symmetric, so is W, the two methods actually obtain the same results. The pseudo code 
for the Gauss-Seidel iteration at each processor is as follows: 

for each dotlin the region 
for each dotiinside the square window centered at dotI 
calculate i,,, i,, i,, i, and c,, cd, c,, c,, cij 
s = l/Ci,(C,Wi , + c,wj,, + CdWi,, + c,wi , + ei,> 
s=s-wj, ” 
9, = max(q, I d I ) 
wi, = wij + w 6 

Until allq,'s<& 
Although all the processors solve the same number (i.e., n/p) equations, the 

computation load among the processors may be unbalanced, due to the different 
convergence rates of the Gauss-Seidel iterations on these equations. This load imbal- 
ance is caused by the numerical property of the problem, and it can not be predicted in 
advance. The load imbalance is determined by factors including the structure of the 
matrix, the error tolerance for convergence, and the partition of W among the proces- 
sors, etc. 

There is no communication overhead when using the parallel Gauss-Seidel iteration 
to solve the synaptic weight matrix W. All the processors calculate their shares of W 
independently, without any inter-processor communication or synchronization necessary. 

4.2.3. Gauss-Jordan elimination for computing dense synaptic weight matrix 
As mentioned earlier, research progress in molecular wiring technology may make 

the fabrication of nano-array with a dense capacitance coupling matrix ‘27 feasible. We 
next outline a parallel Gauss-Jordan (GJ) elimination algorithm [16] for computing the 
inverse of such a dense matrix %Y. By construction, the capacitance matrix E’ is 
symmetric and diagonally dominant, therefore, GJ algorithm is numerically stable for 
computing W = %Y’- ’ without using partial pivoting. The serial pseudo code for inverting 
the n x n matrix @?’ = [ cij] using GJ elimination is as follows: 

fork= 1 ton 
forj=ltonandjfk 

‘kj = ‘kj/‘kk 
fori=ltonandi#k 

cij = cij - Cik . Ckj 
fori=ltonandi#k 

‘ik = - Cik/Ckk 

‘kk = 1/ckk 

In the i loop, the same reduction operations are applied to all the rows of matrix %‘, 
this is the data parallelism in the GJ algorithm. Let each processor have n/p rows of SF. 
At the kth iteration of the reduction, all the processors get the elements of the kth row 
from the processor that has this pivot row through interprocessor communication. After 
that, all the processors can apply the reduction operations on their shares of data in 
parallel. The communication requirement for the parallel GJ elimination is a one-to-all 
broadcasting of the pivot row at every iteration. 
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4.3. Parallel Monte Carlo simulation of the electron dynamics of the nanoelectronic 
networks 

4.3.1. The local updating property 
We next derive the local updating formulae for calculating the energy differentials 

( AEii’s> and for updating the dot voltages (Vi’s). 

Fact 1 [Local calculation of AE,,]. When a charge q tunnels from dot i to dot j, the 
change in theffee energy can be written as 

where the subscript of V denote the indices of the dots involved in the transition, while 
the superscripts indicate whether the voltage are taken before or after the tunneling 
event. Eq. (21) also holds when charge q tunnels from or to an electrode. If q tunnels 
from source (or drain) electrode to dot j, then Via = Vib = V, (or Vi” = Vib = V,). If q 
tunnels to source (or drain) electrode from dot i, then V,” = Vjb = v, (or V,” = V,” = V,). 

Proof. Let 0” = [q, q2.. . q,] be the augmented charge vector of the system before the 
tunneling event. Then the augmented charge vector of the system after a single electron 
tunnel event involving the charge q tunneling from dot i to dot j has occurred can be 
represent as 

@‘=e”+AQ=[q ,,..., qi-q ,..., q,+q ,..., q,]. 

where AQ = q(ej - e,), e, is a vector where all the elements are zeros, except the ith 
element, which is one. 

Using Eqs. (3) and (4) we have 

AEij = E” - Eb 

= ;(Q”’ + AQr)?$-‘(e’b + AQ) - ;~b’C’~b 

= e”“‘K !4Q + ; AQT%Z’- ldQ 

=...- ;[~br+(~b+AQ)T]V-~Q 

= i ((jb’g- 1 + (ja’g- I) AQ 
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Now suppose that a charge q tunnels from the source electrode to dot j. In this case 
AQ = qe,. Then using Eqs. (3) and (4) we get 

AEij = E” - Eh 

Similarly we can prove the other cases involving charge q tunneling between a dot and 
the electrode. 0 

Let W = ‘CT’, we call W the synaptic weight matrix of the nanonetwork. From 
Section 3, by the construction of %T’, it is symmetric and diagonally dominant, therefore, 
its inverse W exists and is also symmetric. 

Fact 2 [Local updating of Vi]. Suppose that a tunnel event is charge q tunneling from 
dot i to j, then for any dot k, 

v,n = v; + qwkj - qWkr. (22) 

In particular, 

vtu = VLb + qwi, - qwit, (23) 

V,” = v,” + qwj, - qw,;. (24) 

Eqs. (22), (23) and (24) also hold when charge q tunnels from or to an electrode in the 
following way: If q tunnels from an electrode to dot j, then wki = 0; If q tunnels to an 
electrode fram dot i, then wkj = 0. 

Proof. From Eq. (2) 

v; = [GF-‘Q”], 

= [F-@~ + AQ)], 

= [F’Qb]I+q[F’(ej-ei)]k 

= V,” + 4[Wej] k - dW4 
= Vkb + qwk, - qwki. 

If charge q tunnels from the source electrode to dot j, then AQ = ej, therefore 

v; = [Ppq, 

= [~-‘(~b+AQ)], 
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= [B-‘(gh+ej)], 

= V,b+q[Wej], 

= Vkb + qwkj. 

Similarly we can prove other cases involving charge q tunneling between a dot and the 
electrode. q 

After substituting Eqs. (23) and (24) into (211, ‘we have 

AEij = q( 5” - Vi”) + q* wij - ;c wii + wjj) _ 
1 1 (25) 

Eqs. (22) and (25) indicate both the calculation of the energy differentials associated 
with a tunnel event and the updating of the dot voltages after a tunnel event has 
happened can be carried out locally. This local updating property makes the simulation 
suitable for implementation on parallel computers. 

4.3.2. Parallel Monte Carlo simulation 
The second computational task is the Monte Carlo simulation of the electron 

dynamics, which carries out a series of random tunnel events in a manner that minimizes 
the overall energy of the whole system. Starting from the initial state sO, the Monte 
Carlo simulation algorithm generates a sequence of states s,, s2,. . . , s,. Each state 
corresponds to a configuration of charge distribution on the nano-network. The state 

‘i+ I results from randomly choosing an energetically favorable tunneling event in state 
si. To make the transition si + si+ ,, all the possible tunneling events on the nano 
network need to be evaluated, and the corresponding energy differential and the 
transition rate of each event are calculated. 

Data parallelism can be exploited at this level by assigning a different region of the 
network to each of the processors. The simulation of each individual transition si + si+ , 
is made faster by breaking up the task of evaluating all the possible tunnel events into 
subtasks and allocating various subtasks to different processors. At each state si, each 
processor evaluates all the possible electron tunnel events in its share of the network. 
Since only the tunnel events between near neighbor quantum dots are considered, and 
from Section 4.3.1 the energy differential for each event can be evaluated locally, thus 
only near neighbor interprocessor communication is required when calculating the 
energy differentials for all the possible electron tunnel events. 

As discussed in Section 3, after calculating the transition rate of each tunnel event, 
the cumulative transition probabilities of all the events, P,, P,, . . . , P,, are calculated, 
such that O<P,<P,,< ... ,<P ,- , P, = 1, where 1 is the total number of possible 
events. Then a random number r, 0 < r < 1, is generated and a tunneling event k is 
chosen such that Pk- , < r < Pk, and the system moves from state si to state sj+ ,. When 
implemented in parallel, each processor calculates all the transition rates of me events 
within the region using Eq. (6) or (7). Based on the transition rates, the calculation of the 
cumulative transition probabilities of all the events can be done by parallel prefix 
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addition and parallel summation. Assume that processor j has a number xi, j = 
1, 2,. . . , p, then by making parallel prefix addition, processor j will get a result 
yj= c;=,x;, j= 1,2 ,..., p, and parallel summation enables each processor get the 
global sum C:= , x,. The communication requirement for the parallel prefix addition and 
parallel summation depends on the parallel architecture, and we will discuss it in the 
next two sections. After the parallel prefix addition and parallel summation, each 
processor has the global transition probabilities of all the possible tunneling events 
within its share of the network. All the processors then will generate a same random 
number, and this random number must fall into he probability ranges of the tunneling 
events at one processor. This processor will identify the tunneling event corresponding 
to this random number and then broadcast this event information to all the other 
processors, so that all processors can update their local information (i.e., charges Q(i) 
and voltages V(i)> corresponding to this selected tunneling event. This updating can be 
done locally using Eq. (22). 

5. MIMD implementation on nCUBE 2 parallel computer 

5.1. Architecture qf nCUBE 2 

The nCUBE 2 system [28] is an MIMD machine design that can support up to 8,192 
PEs. Each PE includes general-purpose 64-bit CPU with a 64-bit integer and 64-bit 
floating point execution unit, local memory, and a network of communication unit that 
includes 14 bidirectional DMA ports. Each PE operates independently. The nCUBE 2 
employs a circuit-switched, partitionable hypercube network for inter-PE communica- 
tions. 

A mesh can be embedded in a hypercube using 2-D Gray code mapping [17]. Let the 
d-bit Gray code sequence of p = 2d integers be Gray(d), i.e., Gray(d) = 

(d7 d , . . . , g:dm ,), where gd E {O, l}d is the ith Gray code. The binary-reflected Gray 
code on d bits is recursively defined as follows [ 171. Gruy(d + 1) = 
(Ogt, Og[, . . _ , Ogfd- ,, lgf~ ,, . . _ , lg:, 1 g,$. Alternatively, Gruy(d + 1) = 
(s$, g,dl, Sf’L sf’o, g;o, g:1 , . . . , gtd- ,l, gidd_ ,O>. As discussed in Section 4.1, the 
nano-network is divided into P, X Py regions, where P, = 2’ and P, = 2d- k. The 
region assignment to different processors on the hypercube is performed using 2-D Gray 
code mapping. The region (I, J) is assigned to the processor P(Z, J) = g, . 2d- k + g,, 
O<I<P,,O<J<P y, where g, is the ith Gray code. The assignment of regions in the 
partition in Fig. 4 to processors of the hypercube is shown in Fig. 6. 

5.2. Parallel Gauss-Seidel on nCiJBE 2 

As discussed in Section 4.2.2, there is no communication overhead in the parallel 
Gauss-Seidel algorithm. But due to the different convergence rates, there is computation 
imbalance among the processors. Each processor needs to compute n/p vectors w,, 
each of which is of length L = (2r + 1)’ Assume that in processor k, it takes rnf 
iterations before vector w, converges, 1= 1, 2,. . _ , n/p and k = 0, 1,. . . , p - 1. Also 
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b-9 (b) 
Fig. 6. Mapping the grid partitioning of the network on hypercube. (a) Grid partition the network. (b) Data 

distribution on the hypercube. The number inside each grid ceil represents the address of the processor on the 
hypercube. 

assume that the cost for updating one element is tO, then the total serial computation 
load is 

and the parallel execution time is 

nL 
q,( n, p) = -qnax 

P k 

Therefore the speedup is 

(26) 

(27) 

(28) 

Fig. 7 depicts the run-time node utilizations of the parallel GS on nCUBE 2. We can 
see the loads are unbalanced among the processors in the parallel GS inversion, which is 
caused by the different convergence rates at different processors. Table 1 shows the 
measured speedups. The measured speedup is calculated in the following way. By using 
the nCUBE 2 profiling software we can measure the computation time T, at each 
processor i. The sequential computation time is then T = C;7;. (because there is no 
redundant computation when implemented in parallel). We can also measure the parallel 
execution time Tp. Then the measured speedup is S = T/T, = Ci7;./Tp. Table 2 shows 
the parallel execution times of the parallel GS on nCUBE 2. 

We have also implemented parallel Gauss-Jordan algorithm for inverting the dense 
matrix C on nCUBE 2. Fig. 8 is the run-time node utilization profile for n = 32 X 32 
and p = 8. It is seen that the computation and communication loads are quite balanced 
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Lcgcnd: q Calculation Node Idle 

0 1 2 3 4 5 6 7 

Processor Number 

Fig. 7. Node utilizations profile of the parallel Gauss-Seidel inversion algorithm on nClJBE 2, n = 32 X 32, p 

= 8. Nearest neighbor capacitance coupling is assumed, and the window size parameter r = IO. convergence 
tolerance E = 10m6. 

Table I 
Speedups of the parallel Gauss-Seidel inversion algorithm on nCUBE 2, when inverting an n X n Poisson 
matrix using p processors (r = 2 log n, E = 10m6) 

n = N, X NY P 

8 I6 32 64 

32X32 6.97 13.54 26.69 52.60 

40X40 6.06 13.46 25.79 52.54 
48X48 - 13.34 26.36 52.16 
56x56 - - 26.23 51.72 
64X64 - - - 51.47 

Table 2 

Execution times of the parallel Gauss-Seidel inversion algorithm on nCUBE 2, when inverting an n X n 
Poisson matrix using p processors (r = 2 log n, E = 10e6) 

n = N, X NV P 

8 16 32 64 

32X32 5’ I” 2’ 37” 1’21” 0’ 43” 

40X40 15’12” 7’45” 3’57” 2’ 4” 

48X48 - I 9’ 0” 9’39” 5’ 0” 
56X56 - - 20’ 36” IO’ 36” 

64X64 - - 20’ 26” 
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Legend: Calculation Node Comm 
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Fig. 8. Node-utilization protile of the parallel Gauss-Jordan inversion algorithm on nCUBE 2, n = 32X 32, p 

= 8. Random capacitance coupling between any two dots is assumed. 

Table 3 
Speedups of the parallel Gauss-Jordan inversion algorithm on nCUBE 2, when inverting an n X n dense 
matrix using p processors 

n = N, X N, P 

8 16 32 64 

32X32 7.86 15.54 30.69 60.32 

40X40 7.88 15.61 30.91 61.13 

48X48 - 15.64 31.05 61.63 
56X56 - - 31.07 61 .-I4 

64X64 - - - 61.82 

Table 4 

Execution times of the parallel Gauss-Jordan inversion algorithm on nCUBE 2, when inverting an nX n 
dense matrix using p processors 

n = N, X NY P 

8 16 32 64 

32X32 15’21” 7’ 43” 3’ 54” 1’ 59’ 

40X40 58’ 3 I” 29’19” 14’ 44” 7’ 27” 

48X48 - 87’3 I” 44’ 3” 22’ I 1” 

56X56 - - 1 1 1’ 1 I” 55’51” 

64X64 - - 125’ 1 1” 
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among the processors. Table 3 shows the measured speedups and Table 4 shows the 
parallel execution times. The cases in the tables which are labeled with “-” were 
unable to be computed because of insufficient per-processor memory on nCUBE 2. 

5.3. Parallel Monte Carlo on nCUBE 2 

Usually, we need to carry out simulations of a particular network for a set of 
parameters, e.g., potential values (V,, V,, . . . , V,). For each parameter value, multiple 
simulations, say L, need to be carried out and the system performance (e.g., current 
value) over these L simulations is averaged. That is, I(V,) = (l/L)C~=,,Z(V,“‘), j = 
1, 2,... , J, where I(V,(‘)) is the current value corresponding to the potential value V, in 
the lth simulation. Thus totally m = JL simulations are needed. 

One way is to carry out these m simulations one by one, each for a specific 
parameter, that is 

forj= 1 to J 
forl=l toL 

s,(v,(')) + s,(V,"') --f s,(V,(')) -3 . . . -+ s,(v,"') 
Another way is to carry out the JL simulations in parallel, that is, to make the 

transitions si -+ si+ , for all the parameters {V/‘)}, j = 1, 2,. . . , J, I= 1, 2,. . . , L. 

s&y}) -+s,((vy}) +s*((v,(‘)}) + . . . +sv({y}) 
Essentially in the second approach, the two for loops that appeared in the first 

approach are moved inside the loop on the state transitions, i.e., within the process of 
s; + si+ ,. In terms of computation time, the two approaches are the same. However, if 
one considers the communication costs, then the two approaches have different costs. In 
the first approach there are my communications each of message length, say 1. In the 
second approach, there are v communications, each of message length m. The total 
communication overhead in the first approach is then Tc’,,,,, = my ts + mv tw; and for the 
second approach, the total communication overhead is Tc:,,, = v t, + mvt,. For a class 
of message-passing machines, such as nCUBE 2, usually ts Z+ t,, e.g., for nCUBE 2, 
t,y = 180 ps and t, = 3 ps [23]. Therefore, it is very important to avoid message startup 
time by coalescing individual messages whenever possible. Hence in the second 
approach, data structures are organized so that successive communications can be 
changed into a single communication of concatenated data, thus mitigate the communi- 
cation startup overhead. Of course, the price we paid for carrying out m simulations 
concurrently, is that we need to keep the local information on each processor (i.e., 
Q, V,AE, etc.) for all these m simulations, thus increasing the memory requirement. 

There are three main steps for each iteration in the Monte Carlo simulation algorithm, 
and these are summarized as follows. 

(1) Calculation of the energy difSerentia1 and transition rate for each possible tunnel 
event. At each dot, there are at most possible four tunnel event, i.e., a electron charge 
can tunnel toward the four neighbor dots. By Eq. (25) the energy differentials AE’s can 
be calculate locally at each processor, except for those “cross-border” tunnel events, as 
shown in Fig. 9, where nearest neighbor interprocessor communication is needed to get 
the voltage values of the dots on the other side of the border. Suppose that the & X 6 
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Fig. 9. Cross-border tunnel events for which the calculation of AE involves near-neighbor interprocessor 
communication. Each processor has 9 quantum dots in this example. 

nano-array is partitioned into 6 X fi regions, and m simulations are carried out in 
parallel, then the communication overhead at each processor for this step in each 
iteration is (t, + mm&,), since nCUBE 2 is capable of all-port two-way communica- 
tion. The transition rates r ‘s can be calculated locally at each processor using Eq. (6) or 
(7). 

(2) Calculation of the transition probability of each tunnel event. The local tunneling 
rate of each event i is calculated as S,(i) = C>=, r,< j), where I;(j) is the transition 
rate of event j at processor k. The global transition probability of this event is defined as 

p 
k 

= C:+St( f-4 + Sk(i) - sk( wk) 
(29) 

where pr is the total number of tunnel events at processor 1. Thus each processor need 
to get C:=,S,( p,) and CprO’S,( p,). For simplicity, let pr = S,( p,), then each processor 
is to get sk = Cf= 0 pI and s = CfLO’p,. sk can be calculated by using parallel prefix 
addition, and s can be calculated by using parallel summation. Both can be carried out 
in log p, where each step corresponds to a one-to-one permutation. Fig. 10 shows the 
process of parallel prefix addition and parallel summation for p = 8. Let the binary 
representation of 1, 0 < 1~ p - 1 be I,_ ,I,_ 2 . . . 1, I,, where d = log p. The pseudo 
code for calculating sk and s is as follows: 

s/=p/, s=p, 
fork=Otod-1 

t=s 
send(s) to I,-, ... 1, .. 1, 
receive(s) from I,,-, ... 1, ... 1, 
if (I,-, . . . 1, . . 1, > I,-, . . . 1, . . . 1,) s, = sj + s 
s=s+t 

Because m simulations proceed in parallel, the communication overhead for the parallel 
prefix sum and parallel summation is (t, + t,m) log p. 

(3) Determination of a tunnel event and updating of the local charge and voltage 
information at each dot. After calculating the transition probabilities of all the events, 



X. Wang et ul./Parullel Computing 22 (1997) 1931-1963 1953 

(a) 0) 

Fig. 10. Recursive doubling on a 3-cube. (a) Parallel prefix sum. (b) Parallel summation. 

for each simulation, a same random number r is generated in all the processors. One of 
the processor, say processor k, will find this r as corresponding to an event i in its 
region, i.e., P,(i - 1) Q r < P,(i). This tunnel event information needs to be broad- 
casted to all the other processors by processor k. Since there are m concurrent 
simulations, we can use the parallel summation to broadcast all the m events efficiently 
in the following manner. The processor k stores the event i information into variables 
src and dest, meaning event i corresponds to an electron tunneling from dot src to 
dot dest, where both src and dest are the global indexes of the dots. All the other 
processors set their variables src and dest for that particular simulation to 0. Since 
there are m simulations, src and dest are vectors of length m. After choosing events 
for all these m simulations, the global summation is used to get global sums of src and 
dest at each processor. In this way all the processors get all the m events information. 
The communication overhead of this step is therefore (t, + t,m) log p. Based on the 
events information src and dest, all the processors then update the dot charge and 
voltage values in the region for all the m simulations, using Eq. (22). 

Suppose m simulations are carried out and Y iterations are required for each 
simulation. Then the total serial computation load is 

T(n) = mvnt,, (30) 
where t, is the computation cost at each dot in each iteration in one simulation, 
including the time for calculating the energy differentials, the transition rates and 
updating the local potentials. The total communication overhead at each processor is 
v[t, + mfit, + 2(t, + t, m> log pl. Therefore the parallel execution time is 

Tph P) = 7 +v[(ts+twmE) +2(t,+t,m)log p]. 

The speedup is then 

(31) 

qn, p) = f = nt, P 
(32) 

P nt,+t,[(2log p+l)p/ml +L(bF+2plog Y)’ 
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Fig. 1 I. Node utilizations profile of the parallel Monte Carlo algorithm, N = 32 X32, p = 8. 

Fig. 11 depicts the run-time node utilizations of the parallel MC algorithm on nCUBE 
2. The slight computation load differences among the processors is caused by the fact 
that in some processors there are fewer possible tunnel events than in the other 
processors, e.g., in Fig. 2, for the dots on the upper border of the nano-array, there are 
no upward tunnel events. Table 5 shows the measured speedups, and Table 6 shows the 
actual parallel execution times. 

5.4. Scalability analysis 

The scalability of an algorithm on a parallel architecture is a measure of its capability 
to effectively use an increasing number of processors. IsoefJiciency is one of the metrics 
for characterizing the scalability of different parallel algorithms and architectures [23], 
which is defined as the rate of change of problem size as a function of number of 

Table 5 
Speedups of the parallel Monte-Carlo simulation algorithm on nCUBE 2 (100 simulations, 5ooO iterations for 

each simulation) 

N=NxXN, P 

8 16 32 64 

32X32 7.84 15.51 30.07 59.05 
40X40 7.90 15.62 30.09 60.11 

48X48 - 15.66 30.14 60.84 

56x56 - - 31.17 61.39 
64X64 - - - 61.42 
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Table 6 
Execution times of the parallel Monte-Carlo simulation algorithm on nCUBE 2 (100 simulations, 5000 

iterations for each simulation) 

N= NAX NY P 

8 16 32 64 

32X32 143’ 2” 74’ 24” 40’ 21” 22’38” 

40X40 2 13’42” I I 1’5 I” 61’08” 33’ 16” 

48X48 - 15 1’6” 7936” 44’59 

56x56 - - 1 10’ 22” 59’21” 

64X64 - - - 80’37” 

processors to maintain a fixed parallel efficiency. An algorithm that requires a smaller 
change in problem size to obtain fixed efficiency is considered more scalable. The 
efficiency E of a parallel algorithm is defined to be S/p. By substituting the expressions 
for speedups for the different algorithms discussed in the previous sections, we can 
derive the following statements: 

. For the parallel Gauss-Seidel algorithm on the hypercube, since there is no 
communication overhead, efficiency is determined by the numerical property of the 
data. Ideally, increasing p will not affect the parallel efficiency. 

. For the parallel Monte Carlo algorithm on the hypercube, fixed efficiency can be 
maintained if n is increased as O(p log p). 

Therefore our parallel MIMD formulation on the hypercube is highly scalable. This is 
also demonstrated by the experiment results, where near-linear speedups are obtained for 
all the cases. 

6. SIMD implementation on MasPar MP-1 parallel computer 

6.1. Architecture of MasPar MP-I 

The MasPar MP-1 [27] is a massively parallel computer with 16,384 PEs arranged in 
a 128 X 128 array. Each PE has a 4-bit ALU and 16 Kbytes of local memory. The MP-I 
supports two different networks for interprocessor communication, the met and the 
global router. Communicating with xnet is fast but a data transfer can take place only 
between PEs that lie on the same horizontal, vertical or diagonal row as shown in Fig. 
12. Communications which use the global router are slower, but the router can support 
any arbitrary PE-to-PE communication. 

We chose the MasPar MP-1 for simulating larger nanoelectronic networks, i.e., in the 
range from 100 X 100 to 1000 X 1000 quantum dots, because our parallel algorithm can 
efficiently utilize tens of thousands of PEs. In addition, our implementation benefits 
from fast scan and reduce operation, which are characteristic of the target architecture. 
Lastly, xnet communication on the MP-I is efficient for our application since most of 
the communication is restricted to near-neighbor PEs. 
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X-net grid communications Global router communications 

Fig. 12. Interprocessor communication on the MasPar MP- I. 

6.2. Mapping the Gauss-Seidel algorithm onto MasPar MP-I 

Suppose that we want to simulate a network of n = N X N quantum dots using p 
processors, then each processor has n/p dots. And for each dot 1, there is a synaptic 
weight vector wI. We assume that the synaptic weight between dot 1 and any dot outside 
a (2r + 1) X (2r + 1) window centered at dot 1 is zero. Therefore w, is of length 
(2r + I)*. 

Fig. 13 illustrates the SIMD calculation of w,‘s on MP-I. At a particular time step, all 
the processors are calculating the weight value wlj between a dot 1 in its share region of 

,__._.____..._ I nefwork of quantum dots 
I 

/ _ _ _ _ _ _ _ _ _ _ _ _ 

/ disabled processor 

~ window 

each processor ,--------- 

hasy & 

Fig. 13. SIMD implementation of Gauss-Seidel algorithm on MasPar MP-I. 
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Table 7 

Parallel execution times of the SIMD Gauss-Seidel algorithm on MP-I (6 = 10m6, r = 3) 

Problem size n = IV, X N, Execution time TD (seconds) 

128X 128 0.77 

256 X 256 2.93 

384X384 6.48 

512X512 Il.15 

640X640 17.87 

768 X 768 25.47 

896 X 896 34.62 

1024X 1024 42.74 

the network, and a dot j inside the window centered at dot 1. If the dot j is outside the 
range of the network (i.e., dot j does not exist), then the corresponding processor is 
disabled at this time step. No interprocessor data exchange is needed during the 
Gauss-Seidel iteration, as discussed in Section 4.2.2. However, at the end of each 
iteration, each processor tests if all the w,‘s in its region have met the convergence 
condition. The control unit (CU) then collects this information by using the global OR 

router. If convergence conditions are met at all the processors, then the computation of 
W is over; otherwise the iteration continues on those processors which still have 
unconverged w,‘s, and the rest of the processors are disabled. 

Suppose that the total number of iterations before all the w, vectors converge is K, 
then the algorithmic complexity of our implementation is O(K(2r + 1)2N2/p) = 
0( K(2 r + 1 >2 n/p). The only communication overhead is the global OR operation after 
each iteration, but his overhead is negligible compared with the cost of computation, 
since the global OR router on MP-1 is very fast. Table 7 shows the parallel execution 
time of the Gauss-Seidel algorithm on MP-1, where the tolerance for convergence 
E = 10e6, and window size r = 3, Fig. 14 is the corresponding plot. 

6.3. Mapping the Monte Carlo simulation algorithm onto MasPar MP-1 

Unlike in the MIMD implementation on nCUBE 2, the m simulations are carried out 
one by one for our SIMD implementation on MP-1. This is efficient because the 
communication startup cost on MP-1 is negligible, while the per-processor memory is 
very limited. 

While the three computation steps for each iteration in the SIMD Monte Carlo 
algorithm are the same as discussed in Section 5.3, the communication mechanism for 
each step on the MP-1 mesh is different from that on nCUBE 2. 

1. The calculation of the energy differentials involves near-neighbor interprocessor 
communication on the mesh, which can be done using xnet. This consists of four 
steps of near-neighbor data transfer along the four directions (east, west, north and 
south), and the data size for each transfer is Jn/p. 

2. The calculation of the transition probability of all the tunnel events involves 
parallel prefix and parallel summation on the mesh. This is done by using the 
optimized routines reduceAdd ( ) and scanAdd ( ) from MasPar’s program- 
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Fig. 14. Parallel execution times of the SIMD Gauss-Seidel algorithm on MP-1. 

ming library. The architectural complexity of summing the partial results is worse 
than the algorithmic complexity because the MP-l’s reduceAdd( ) and 
scanAdd ( ) require O(log p) addition steps but the communication cost is O(p). 
However, the experimental results indicate that communication costs are domi- 
nated by the computation costs, so that the measured complexity approximates 
algorithmic complexity. 

3. The information of the selected event is collected by the CU using the global OR 

tree and broadcast to all the processors along with the next instruction. The global 
OR tree is the fastest way on MP-1 to broadcast data from one processor to all the 
other processors. 

Table 8 
Parallel execution times of the SIMD Monte Carlo algorithm on MasPar MP-1 for one simulation (E = 
10-6, r = 3, K = 10,ooo) 

Problem size n = N, X NV Execution time T, (seconds) 

128x 128 65.6 
256 X 256 127.4 

384X 384 220.4 
512X512 342.5 
640X640 492.4 

768 X 768 681.4 
896 X 8% 894.7 

1024X 1024 1146.7 
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Fig. 15. Parallel execution times of the SIMD Monte Carlo algorithm on MasPar MP-I 

Suppose that totally K iterations are needed for one simulation, then the computation 
complexity of the parallel Monte Carlo algorithm is o( KN2/p) = O( Kn/p). Table 8 
shows the parallel execution times on MasPar MP-1 for one simulation, where the 
number of iterations K = 10,000. Fig. 15 is the corresponding plot. From the plot we 
can see that the measured complexity is close to the computation complexity because the 
communication cost is dominated by the computation cost. 

To determine how well suited our algorithm is to the architecture of the MP-1, we 
timed the various portion of our algorithm to see how much time they spent computing 
versus communicating. Our timings indicate that less than 5% of the execution time is 
spent in communication overhead, so the bandwidth of the xnet and the global router are 
not limiting factors. In fact, we spend roughly the same amount of time assigning 
variables and accessing arrays in local PE memory as communicating, in part because 
every group of 16 PEs in the MP-1 has to share a single data bus. 

7. Current-driven networks 

In this section, we consider a current-driven network of nanoscale metallic dots, as 
shown in Fig. 16(a) [6]. The systems we shall study will consist of arrays of dots, which 
have been deposited on a layer of material with non-ohmic electrical characteristics, 
which in turn has been grown on a conductive substrate. There are no electrodes at the 
boundary of the array. Instead, the interior nodes of the array can be directly contacted 
and supplied with charge and energy. We will consider networks with the steady flow of 
electrons. 

In this network, single-electron effects and resonant tunneling are allowed to coexist. 
The dynamics of the tunnel events between two neighboring dots is the same as 
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(a) Current-driven network 

(b) Substrate transport function 

Fig. 16. (a) An array of current-driven quantum dots. (b) A non-monotone substrate nonlinearity of the kind 
shown here, is the minimal condition for the realization of collective effects. 

described in the previous subsection. However, we use a nonlinear function to describe 
transport between each dot and the substrate. It has been shown that non-monotonic 
nonlinearities are necessary to obtain nontrivial collective activity in these networks [6]. 
Recently, it has been shown that novel electric field quantization effects can prevail in 
slim semiconductor superlattices when single-electron effects coexist with non-mono- 
tonic nonlinear tunnel rates between wells [22]. In the following we will use, nonlineari- 
ties of the kind shown in Fig. 16(b) to account for the discrete tunneling of electrons into 
the substrate. 

The single-electron tunnel rate through the junction is 

J( -AE/q) 

r= q[ 1 - exp( AE/kT)] ’ (33) 

where J(V) is the current-voltage characteristics of the junction, e.g., as shown in Fig. 
16(b). A strategy for analyzing this network might consist in writing a Kirchoff current 
balance condition for each dot i, 

d 
zqi= -(&i/dt)sub- C (&Jdr)j+Idi, 

jEn,n 
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where the differential terms on the right-hand side denote the discrete transfer of 
electrons to the substrate, and to the nearest neighbors. This equation is only symbolic, 
and can not be treated as a proper differential equation since the dot charges belong to 
the discrete set, 

q;(f)=/tli(T)d7+nq, rrE{H, -t2,...}, (35) 

where we have made explicit the fact that the continuous delivery of charge by a current 
source is punctuated by discrete charge transfer through tunnel junctions. Single electron 
tunneling is a stochastic process which can be described in terms of a master equation, 
written for the probability p(Q, t) that the array is in the charge state Q at the time r 

[13,121, 

where the two summations on the right-hand side take stock of the single particle tunnel 
events which will either bring, or take away the system from the charge state Q. This 
master equation [3] will require a numerical approach due to the lack of a regular 
method to solve systems of this kind which can have a very large state space even for a 
very small number of dots. The best procedure then is to develop a Monte Carlo 
technique which mimics in detail the physics of single-electronics. 

Monte Carlo simulation technique. Next we will outline a Monte Carlo simulation 
technique [4,13] for the simulation of a current biased network of dots, shown in Fig. 
16(a). The state of the system of dots is fully described at time f by the vector of dot 
charges Q(t). Over a very small time interval 6 t, each dot is now, assumed to be 
delivered with an increment of charge 6q, = Ii6r by a current source Zi. The new charge 
state then is Q(t + St) = Q(t) + 6 tl, where I = [I,, . . . , 1~1. Next, the entire system is 
swept, and a vector of numbers (AEm) corresponding to the energy dissipated as a result 
of tunnel events (indexed by the superscript m), between each dot and its nearest 
neighbors, as well as between each dot and the substrate are accumulated. From the 
vector of dissipated energies, a vector of tunnel rates (T “) is then generated. A further 
vector of cumulative tunnel rates is then generated by replacing each element of the 
vector (r “‘} with the sum of all previous rates 

m 

S”= Crk. (37) 
k= 1 

The probability that any one of these tunnel events should proceed over a very small 
time interval 6t is then determined by calculating, 

P( t + at) = e-*‘S’, (38) 

where the total tunnel rate S’ is the last element in the vector of cumulative rates {Y]. 
A random number r,, distributed uniformly on the unit interval is now drawn, and a 
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decision to carry out a tunnel is then made if the condition P < rT is met. This 
prescription conforms to the intuitive idea that the larger the total tunnel rate, the greater 
the frequency with which the events are carried out. If a decision to carry out a tunnel 
event is made, then a particular event needs to be selected from among all the events 
which were considered. This selection is made with probability proportional to the 
individual tunnel rates. This is numerically implemented by picking again a random 
number r+, distributed uniformly on the unit interval, and then selecting the tunnel event 
with the lowest index i, which meets the condition (S’/S’) > r+. The above procedure 
is then repeated until convergence, or until adequate numerical evidence has been 
accumulated. 

From the above descriptions we can see that the Monte Carlo technique for 
simulating the current-driven networks is very similar to that for the voltage-driven 
networks. Therefore the adaptation of the parallel simulation algorithms developed in 
this paper to the current-driven networks is straightforward. 

8. Concluding remarks 

Continuing advances in the miniaturization of electron devices have made possible 
the fabrication of nanoelectronic devices with feature sizes in the l-100 nm range. 
Besides providing a framework for understanding the physics of nanoscale structures, 
realistic computer modeling constitutes a valuable tool for designing quantum devices 
that enables the development of a nanoelectronic technology along with the associated 
advances in fabrication technologies. In this paper, we have presented massively parallel 
algorithms for simulating large-scale nanoelectronic networks based on the single-elec- 
tron tunneling effect, which is arguably the quantum effect of greatest significance to 
nanoelectronic technology. We have carried out a MIMD implementation on a 64- 
processor nCUBE 2, and a SIMD implementation on a l&384-processor MasPar MP- 1. 
Our theoretical performance analysis and experimental timing results indicate that the 
parallel algorithms are highly efficient and scalable. This work demonstrates the 
usefulness of massively parallel high performance computers for nanoelectronic re- 
search. Moreover, we are able to simulate large-scale nanoelectronic structures within a 
reasonable time period, which would be impractical on conventional work stations. 
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