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Abstract: Routing channels in a field-programmable
gate array contain predefined wiring segments of vari-
ous lengths. These may be connected to the pins of the
gates or joined end-to-end to form longer segments by
programmable switches. The segmented channel routing
problem is formulated, and polynomial time algorithms
are given for certain special cases. The general prob-
lem is NP-complete, but it can be adequately solved in
practice. Experiments indicate that a segmented channel
with judiciously chosen segment lengths may near the
efficiency of a conventional channel.

1. Introduction

In the classic channel routing problem (see [11),
the channel may be freely customized (by the appropri-
ate mask) to route the desired connections. This paper
considers the more restricted case where the routing is
constrained to use fixed wiring segments of predeter-
mined lengths and locations within the channel. The
segments may be interconnected by programmable
switches, which provide the only means of customiza-
tion. This segmented channel routing problem arises in
the context of field-programmable gate arrays (FPGAs)
[2] [3], and possibly in other contexts as well. (E.g., the
"channel” may be a bus connecting processors.)

In particular, our model is motivated by the Actel
FPGA [3], which has an architecture similar to conven-
tional (mask-programmed) channeled gate arrays: rows
of cells (logic modules) separated by routing channels
(Fig. 1). The tracks in the routing channels contain wir-
ing segments of various lengths. The inputs and outputs
of the modules each connect to a dedicated vertical
segment. Programmable switches are implemented by
"anti-fuses” [4] located at each crossing of vertical and
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Fig. 1: FPGA Routing Architecture. denotes a programmed
anti-fuse. Unprogrammed anti-fuses are omitted for clarity.

horizontal segments and also between pairs of adjacent
horizontal segments in the same track. By programming
an anti-fuse, a low resistance path is created between
the two crossing or adjoining segments. A typical net
routing is shown in Fig. 1. The vertical segment con-
nected to the output of module 3 is connected by a pro-
grammed anti-fuse to a horizontal segment, which in
turn is connected to the input of module 4 through
another programmed anti-fuse. In order to reach the
inputs of modules 1 and 2, two adjacent horizontal seg-
ments are connected to form a longer one.

The process of automatically mapping a design
into such an FPGA is similar to that for a gate array:
placement, global routing to subdivide each net into
connections to be routed in each channel, and finally
channel routing.

The choice of the wiring segment lengths in a
segmented channel is driven by tradeoffs involving the
number of tracks, the resistance of the switches, and
the capacitances of the segments. Fig. 2 illustrates this.

Fig. 2A shows a set of connections to be routed.
With the complete freedom to configure the wiring
afforded by mask programming, the "left edge algo-
rithm" [5] will always find a routing using a number of
tracks equal to the density of the connections (Fig. 2B).
This occurs since there are no "vertical constraints” [1]
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(A) set of connections to be routed.
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(B) routing in unconstrained channel.

(C) routing in fully segmented channel.
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(F) segmented for 2-segment routing.

Fig. 2: examples of channel routing.
O denotes open switch, @closed switch.

in the problems we consider.

In an FPGA, achieving this complete freedom
would require switches at every cross point. Further-
more, switches would be needed between each two
cross points along a wiring track so that the track could
be subdivided into segments of arbitrary length (Fig.
2C). Since all present technologies offer switches with
significant resistance and capacitance, this would cause
unacceptable delays through the routing. Another alter-
native would be to provide a number of continuous
tracks large enough to accommodate all nets (Fig. 2D).
Though the resistance is limited, the capacitance prob-
lem is only compounded, and the area is excessive.

A segmented routing channel offers an intermedi-
ate approach. The tracks are divided into segments of
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varying lengths (Fig. 2E), allowing each connection to
be routed using a single segment of the appropriate
size. Greater routing flexibility is obtained by allowing
limited numbers of adjacent segments in the same track
to be joined end-to-end by switches (Fig. 2F). Enforce-
ment of simple limits on the number of segments
joined or their total length guarantees that the delay
will not be unduly increased.

Succeeding sections of the paper discuss the seg-
mented routing problem for the models of Figs. 2E and
2F. The problem is defined precisely in Section 2.
Polynomial time routing algorithms are given for two
special cases: (a) where each connection occupies only
one segment (Fig. 2E); and (b) where all tracks are seg-
mented identically. The general segmented routing
problem is NP-complete. Section 3 describes a general
algorithm that is linear in the number of connections,
though exponential in the number of tracks. If there
are many tracks, but they are segmented in a fixed
number of ways, the algorithm becomes polynomial in
the number of tracks as well. Section 4 gives experi-
mental results. Surprisingly, we find that the consider-
able restrictions of segmented routing do not greatly
increase the number of tracks required.

2. Definitions and Special Cases

A segmented channel routing problem, as dep-
icted in Fig. 3, consists of a set of M connections and
a set of T tracks. The tracks are numbered from 1 to
T. Each track extends from column 1 to column N,
and is divided into a set of contiguous segments
separated by switches. The switches are placed
between two consecutive columns.

For each segment s, we define left(s) and
right(s) to be the leftmost and rightmost column in
which the segment is present. 1 < left(s) < right(s) <
N. Each connection ¢;, 1<i<M, is characterized by its
leftmost and rightmost column: left(c;) and right(c;).
Without loss of generality, we assume throughout that
the connections have been sorted so left(c;)<left(c;)
fori<j.

A connection ¢ may be assigned to a track ¢, in
which case the segments in track ¢ that are present in
the columns spanned by the connection are considered
occupied. More precisely, a segment s in track ¢ is
occupied by the connection ¢ if right(s)2left(c) and
left(s)<right(c). In Fig. 3 for example, connection c 1
would occupy segments s11 and 512 in track 1 or seg-
ment s21 in track 2. A routing of a set of connections
consists of an assignment of each connection to a track
such that no segment is occupied by more than one
connection. A K-segment routing is a routing that
satisfies the additional requirement that each connection
occupies at most K segments. Define the following
problems:



Problem 1: Unlimited Segment Routing. Given a set of
connections and a segmented channel, find a routing.

Problem 2: K-Segment Routing. Given a set of connec-
tions and a segmented channel, find a K-segment rout-
ing.

It is often desirable to determine a routing that is
optimal with respect to some criterion such as delay.
We may thus specify a weight w(c, t) for the assign-
ment of connection ¢ to track ¢, and define:

Problem 3: Routing Optimization. Given a set of con-
nections and a segmented channel, find a routing which
agsigns each connection ¢; to a track ¢ such that
Y, w(c;, &) is minimized.

i=1

For example, a reasonable choice for w(c, ¢) would be
the sum of the lengths of the segments occupied when
connection ¢ is assigned to track t. Note also that
with appropriate choice of w(c, ¢), Problem 3 sub-
sumes Problem 2.

Special Case 1: 1-Segment Routing

If we restrict consideration to 1-segment routings,
Problem 2 may be solved by the following greedy algo-
rithm. The connections are assigned in order of increas-
ing left ends as follows. For each connection, find the
set of tracks in which the connection would occupy one
segment. Eliminate any tracks where this segment is
already occupied. From among the remaining tracks,
choose one where the occupied segment’s right end is
farthest to the left, and assign the connection to it. In
the example of Fig. 3, the algorithm assigns c1 to 521,
c21tos31,c3tos512, c41tos13,and ¢5tos23. Itis
easily shown that if some connection cannot be
assigned to any track, then no complete routing is pos-
sible. The time required is O (MT).

Problem 3 may be solved efficiently by bipartite
matching for 1-segment routing. Fig. 4 shows the graph
corresponding to the routing problem in Fig. 3. The
left side has a node for each connection and the right
side a node for each segment. An edge is present
between a connection and a segment if the connection
can be assigned to the segment’s track. The weight
w(c, t) is assigned to the edge between connection ¢
and a segment in track ¢. A minimum-weight matching
indicates an optimal routing. The time required using
the best known matching algorithm (see [6]) is O (V?),
where V<M +NT is the number of nodes.

Special Case 2: All Tracks Identically Segmented

If all tracks are identically segmented (i.e., the
locations of the switches are the same in every track),
then Problems 1 and 2 can be solved by the left edge
algorithm in time O(MT). Assign the connections in
order of increasing left ends as follows. For each con-
nection, assign the connection to the first track in

which none of the segments it would occupy are yet
occupied.

Note that the density of the connections does not
provide an upper bound on the number of tracks
required for routing (as is the case for conventional
routing when the left edge algorithm is used in the
absence of vertical constraints). However if, prior to
computing the density, each connection is extended at
both ends until a column adjacent to a switch is
reached, then the density will be a valid upper bound.

3. An Algorithm for Segmented Routing

Unfortunately, the general segmented routing
problem is computationally quite difficult.

Theorem 1: Problem 1, and Problem 2 for K>1, are
NP-complete.

Segmented routing can be shown to be equivalent
to the NP-complete problem of "numerical matching
with targeted sums." (See [7] for a description of this
problem). Details of the proof are omitted; they will
appear in a subsequent paper.

Although segmented routing is NP-complete, we
describe below an algorithm that finds a routing in time
linear in M (the number of connections) when T (the
number of tracks) is fixed. This is of interest since T is
often substantially less than M. The algorithm may also
be quite efficient when there are many tracks, but they
are segmented in a limited number of ways (see
Theorem 4 below). The algorithm first constructs a
data structure called an assignment tree and then reads
a valid routing from it. The same algorithm applies to
both Problem 1 and 2, though with different time and
memory bounds. It can also be extended to Problem 3.

3.1. Frontiers and the Assignment Tree

Given a valid routing for connections ¢, through
c;, it is possible to define a frontier which constitutes
sufficient information to determine how the routing of
¢ * - - ¢; may be extended to include an assignment of
¢;+1 1o a track such that no segment occupied by any of
¢, through ¢; will also be occupied by c;,,. Figure 5
shows an example of a frontier. It will be apparent
that ¢;,; may be assigned to any track ¢ in which the
frontier has not advanced past the left end of ¢;,;. This
is the case for ¢ 3 in the figure.

More precisely, given a valid routing of
¢y - ci, 1<i<M, define the frontier x to be a T-tuple
(x[1], x[2],..., x [T']) where x[t] is the leftmost unoc-
cupied column in track ¢ at or to the right of column
left(cis1). (A column in track ¢ is considered unoccu-
pied if the segment present in the column is not occu-
pied) The frontier is thus a function x =
F:(ty, ..., 4) of the tracks ;- 10 which
¢y -+ - c; are respectively assigned. For i=0, let x =
Fo, where Folt] = left(c,) for all t. For i=M,letx =
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Fy, where Fy [t]1 = N+1 for all ¢.

Next, we describe a graph called the assignment
tree which is used to keep track of partial routings and
the corresponding frontiers. A node at level i, 1<i<M,
of the assignment tree corresponds to a frontier result-
ing from some valid routing of ¢, through ¢;. Level 0
of the tree contains the root node, which corresponds to
Fq. If a complete valid routing for ¢, - - - ¢y exists,
then level M of the tree contains a single node
corresponding to F,. Otherwise, level M is empty.

The assignment tree is constructed inductively.
Given level {20 of the tree, construct level i+1 as fol-
lows. (For convenience, we identify the node by the
corresponding frontier.)

For each node x; in level i {
For each track ¢, 1<t<T {
If x; [r)=left(cisy) {
/* ¢4 can be assigned to track ¢. */
Let x;,; be the new fronticr after
;41 is assigned to track ¢.
If x ;4 is not yet in level i +1 {
Add node x;,; to level i+1.
Add an edge from node x; to
node x;,;. Label it with ¢.

}
Else {
f* x;[t]>left(ci,) SO ¢;4; cannot be
assigned to track t. */
Continue to next track f.

If there are no nodes added at level i+1, then
there is no valid assignment of ¢, through c;,,.

Searching for the node x;,; in level i+1 can be
done in O(T) time using a hash table. Insertion of a
new node in the table likewise requires time O (T).

If there are a maximum of L nodes at each level,
then construction of the entire assignment tree requires
time O (MLT?. Once the assignment tree has been
constructed, a valid routing may be found by tracing a
path from the node at level M back to the root, reading
the track assignment from the edge labels. (If there is
no node at level M, then no complete valid assignment
exists.) This takes only O (M) time, so the overall time
for the algorithm is O (MLT?). The memory required
1o store the assignment tree is O (MLT).

A minor change allows us to solve the optimiza-
tion problem as well. Each edge is labeled with the
weight w(c, t) of the corresponding assignment. Each
node is labeled with the weight of its parent node plus
the weight of the incoming edge. The algorithm is
modified as follows. If a search in level i+1 finds that
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the new node x;,; already exists, we examine its
weight relative to the weight of node x; plus
w(cis1, t). If the latter is smaller, we replace the edge
entering x,,; with one from x; and update the weights
accordingly. Thus the path traced back from the node
at level M will correspond to a minimal weight rout-
ing. The order of growth of the algorithm’s time
remains the same, as does that of its memory.

3.2. Analysis for K-Segment Routing

The following theorem shows that for K-segment
routing, L<(K+1)7, so that the time to construct the
assignment tree and find an optimal routing is
OMTXK+1)T) and the memory required is
O (MT (K +1)T).

Theorem 2: for K-segment routing, the number of dis-
tinct frontiers that may occur for some valid routing of
¢y through ¢; is at most (K+1)7.

Proof: Let 1=left(c;4;) and consider track t. Since the
connections are sorted by increasing left edge, at most
one connection from among c; ... ¢; may occupy track
¢t in columns at or to the right of column /. Such a
connection may occupy track ¢ rightward through the
segment appearing in column [/, or through that seg-
ment plus the next one, or possibly as far as the K™
segment at or to the right of column /. Of course it is
also possible that no connection from among c,
through ¢; occupies the segment in column !/ of track t.
Thus there are only K+1 possible locations for the
frontier x[¢] in track ¢, and at most (K+1)T possible
values for the frontier x overall. O

3.3. Analysis for Unlimited Segment Routing

The following theorem shows that for unlimited
segment routing, L < 2 T!, so that the time to construct
the assignment tree and find an optimal routing is
OM T?T!) and the memory required is OM T T!).

Theorem 3: for unlimited segment routing, the number
of distinct frontiers that may occur for some valid
assignment of ¢, through c; is at most 2 T'!.

Proof: Let I=left(c;;;). Let d be the number of con-
nections among ¢, through ¢; that are present in
column /. Since the assignment of ¢, through c; deter-
mining the frontier must be a valid one, we know that
d<T. The d connections can be assigned to d of the
T tracks in T!/(T~d)! ways. Once we have assigned a
connection to a track ¢, the value of x[¢] in that track
is determined. For each of the remaining (T~d) tracks,
there are only two alternatives:

e The track ¢+ may be unoccupied in column !/, in
which case x[¢]=l.

e The track may be occupied in column / by some
connection ¢ with right (c)<I, up to the first switch
to the right of column /. In this case, x[¢] is the



column just to the right of this switch, regardless of
which such connection ¢ is involved.

Thus the number of possible frontiers is at most
WD TYT-d) <2T!.O

3.4. Case of Many Tracks of a Few Types

Suppose the T tracks fall into two types, with all
tracks of each type segmented identically. Then two
frontiers that differ only by a permutation among the
tracks of each type may be considered equivalent for
our purposes in that one frontier can be a precursor of
a complete routing if and only if the other can. Thus
we can restrict consideration to only one of each set of
equivalent frontiers, and strengthen the result of
Theorem 2 as follows.

Theorem 4: Suppose there are T, tracks segmented in
one way, and T,=T-T, segmented another way. The
number of distinct frontiers x that may occur for some
valid K-segment routing of ¢, through ¢;, and that
satisfy x[t]J<x[¢t’] for all r<¢’ with tracks ¢ and ¢’ of
the same type, is O (T;T)¥).

Proof: As in theorem 2, there are at most K41 possible
values for x [¢]. Due to the inequality restriction (which
eliminates all but one member of each set of equivalent
frontiers), the number of possible frontiers is at most:

T+K T,+K
T, | *| 1,
which, for large T, and T,, is O (T,T)X). O
It follows that a K-segment routing may be found
in time O (M (T,T»)XT?), and memory O (M (T, T)XT).
The result of Theorem 4 may easily be general-
ized to the case of j types of tracks, in which case the
time is OM(T;---T;*T?, and the memory is
OM(T, - T)XT).

4. Experimental Results

In this section we report the results of some
experiments with segmented channel routing.

Channel segmentations were designed by a com-
bination of trial-and-error and human judgement. (We
have no analytic procedure at this time). Two segmen-
tations, each with 32 tracks and 40 columns, were
created. "Segmentation 1" and "Segmentation 2" are
intended for one- and two-segment routing, respec-
tively. They were each tuned to achieve the greatest
likelihood of complete routing of randomly chosen sets
of connections under the corresponding segment limita-
tion. The distribution of connections was derived from
actual placements of 510 channels from 34 designs, and
gives the probability of occurrence as a function of the
length and starting point of the connection.

The one-segment routing problem was solved by
the algorithm described for Special Case 1. For the

two-segment case, various heuristics were used to prune
the assignment tree. In either case, computation of a
routing for one channel takes under three seconds on a
three-MIPs workstation. Although the design of the
segmentations and the two-segment routing methods are
probably not optimal, they do provide valid lower
bounds on what can be achieved with segmented rout-
ing.

For each segmentation, a series of trials were
made as follows. First, a set of connections was
chosen from the distribution, and the density of the set
was determined. (The number of connections in each
set is varied so as to obtain a range of densities.) Then
an attempt was made to route the connections in Seg-
mentation 1 or Segmentation 2. We also attempted
one-segment routings in Segmentation 2. The results
are shown in Fig. 6.

In a conventional channel, any set of connections
can be routed in a number of tracks equal to the den-
sity by the left edge algorithm. Thus problems with
densities not exceeding the 32 tracks provided would
always route. For the one-segment case (using Seg-
mentation 1), a high probability of successful routing is
achieved when the density is about 12 less than the
number of tracks. However, allowing 2-segment rout-
ing (using Segmentation 2) approaches within 3-4
tracks of the conventional case.

The rather poor results for one-segment routing
using Segmentation 2 as opposed to Segmentation 1
demonstrate the importance of tuning the segmentation
for the routing algorithm. Our experience shows the
importance of tuning for the statistics of the connection
lengths, as well.

5. Conclusions

The experiments of Section 4 show that a seg-
mented channel can generally accommodate connec-
tions using only a few more tracks than a conventional
channel would. Polynomial time segmented routing
algorithms have been presented for certain special
cases. The general problem is NP-complete, but it can
be adequately solved in practice with reasonable CPU
time by heuristics. Segmented channel routing has thus
found practical use in FPGAs, and it is possible that it
will play as important a role there as conventional
channel routing has in mask-programmable arrays.

Our results were obtained using ad-hoc designs
for the channel segmentation. More analytic solutions
to the design problem would be of interest.
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Fig. 4: Bipartite graph for 1-segment
routing of the problem in Fig. 3.
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Fig. 3: An instance of the segmented routing problem.
M=5, T=3, N=8. Connections: c1, ¢2, ¢3, c4, c5.
Segments: s11,s12,513, 521, s22, 523, 531, s32.
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Fig. 5: a frontier for the example of Fig. 3.
Shaded area marks the position of the frontier in each track after
assignment of cl to s11 and s12, and of c2 to s21. The frontier is
x=[6,4,2]. The switch between s11 and s12 is considered programmed.

60

40

30 = l-segment routing with segmentation-1
B ]-segment routing with segmentation-2

20_] . . -
® 2-segment routing with segmentation-2

rTr171r17r7iTTTTrT T T TTTTTOTT
8§ 10 12 14 16 18 20 22 24 26 28 30 32

Density

Fig. 6: Probability of Routing Success vs. Density



