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On Self-Organizing Algorithms and Networks
for Class-Separability Features

Chanchal Chatterjee and Vwani P. Roychowdhury

Abstract—We describe self-organizing learning algorithms and X
associated neural networks to extract features that are effective 2
for preserving class separability As a first step, an adaptive
algorithm for the computation of Q~'/2 (where @ is the cor- A e
relation or covariance matrix of a random vector sequence) is 2
described. Convergence of this algorithm with probability one is

proven by using stochastic approximation theory, and a single- e
layer linear network architecture for this algorithm is described, ‘ 7
which we call theQ*I/2 network. Using this network, we describe
feature extraction architectures for: 1) unimodal and multicluster
Gaussian data in the multiclass case; 2) multivariate linear
discriminant analysis (LDA) in the multiclass case; and 3) Bhat-
tacharyya distance measure for the two-class case. The LDA and
Bhattacharyya distance features are extracted by concatenating
the Q~'/? network with a principal component analysis (PCA)
network, and the two-layer network is proven to converge with
probability one. Every network discussed in the study considers
a flow or sequence of inputs for training, thereby eliminating the
need for a pooled data for training, and making the networks
useful for online applications. Furthermore, the training of all
layers of the networks can proceed simultaneously. Numerical
studies on the performance of the networks for multiclass random X
data are presented. 4’ 1

Index Terms—Adaptive learning, feature extraction networks,

linear discriminant analysis networks. Fig. 1. lllustration of data representation featwre and class-separability

featurees.

|. INTRODUCTION These include the principal component analysis (PCA) al-
N this study, we present self-organizing learning algorith orithms [8], [16], [22], [23], [27], [28], [30] that preserve

and associated neural networks to extract features that o o 'ce O.f the data, a_nd Sammon_s aIgonthm_[lS] that
. : . . preserves the interpattern distances. Unlike the criteria for data
are effective for preservinglass separability In particular,

. . . representation, class-separability criteria are independent of
we describe algorithms and networks for the following three . LT

o coordinate systems, and depend on the class distributions, and
features that are commonly studied in the pattern recogiji-

tion literature [10]: 1) features for unimodal and multicluste e classifier used. Fig. 1 shows a two-class two-dimensional

; ) . . L . "(2-D) classification problem in which the best feature for data
Gaussian data in the multiclass case; 2) multivariate linear Co o : .
regesentanon is the projection @n. This results in poor

discriminant analysis in the multiclass case; and 3) featur I .
) classification compared to the best feature for class separability
from the Bhattacharyya distance measure for the two-class: | . o
which is the projection ore,.

case. : .
The features obtained from the above networks are entircleéygi\rlz\r/:ei\;]v g;g:;stﬁtg of the art feature extraction networks
different from features that are used for data representation '
[9], [10]. In the literature for feature extraction with self-
organizing neural networks, there are numerous algorithlﬁs
that are optimal with respect to the representation of data.In Section I, we show that all feature extraction tasks
considered in this study involve the computation@f'/2,
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Q~1/? Algorithm and Network:Given a sequencéx(k)} to be trained fully, till convergence is obtained, before the
of random vectors, whertim;_.., E[x(k)x(k)?] = @Q, we training of the second layer can begin. Thus, in its current
provide a stochastic approximation algorithm to compufermulation, the training of the two layers can not proceed
Q~1/2. We prove that starting from an initial random sesimultaneously, which is impractical when the training input
of weights, this algorithm converges with probability onés a flow or sequence of data. The method requires a pooled
to Q~1/2. We also describe a single-layer linear networklata for network training, which may be unrealistic in many
implementation of this algorithm, which is we call tii1/2  real-time environments. Furthermore, the class and mixture
network Numerical simulations for this network as well as itsneans of the data are assumed to be known in advance.
applications are described in Section V. The new method overcomes these limitations. Due to the

Feature Extraction Algorithms and Networks&ising the adaptive nature of this algorithm, we train both layers si-
Q~1/2 algorithm and network discussed above, we derive thremltaneously, and do not requigepriori knowledge of the
feature extraction networks and their training algorithms. Firatlass means. Instead, we estimate the class means during
the optimal features founimodal and multicluster Gaussianthe learning process. In summary, we suggest a more direct
dataare extracted using a two-layer feedforward network. Tteslution to the LDA problem, that is adaptive in nature, and
first layer is a linear network trained by tkig—/2 algorithm, applicable to a sequence of inputs.
and the second layer is a quadratic network with constantLVQ and ART NetworksSince class separation is the main
weights, and does not require training. criterion, unlike traditional self-organized methods, the net-

Next, the LDA andBhattacharyya distancdeatures are works discussed in this study require training patterns from
extracted by a two-layer feedforward network where botknown classes. This is different from competitive learning
layers are linear and require training. The first layer is train@dethods such as learning vector quantization (LVQ) and
by the Q~1/2 algorithm, and the second layer by an adaptiveelf-organizing map [13], [14], and the adaptive resonance
eigenvector computation algorithm. We have used the so caltbeéory (ART) models [13], [14]. Although LVQ also uses
“Sanger’s rule” [13], [30] for this algorithm. The combineddata from known classes, both LVQ and ART models are
training procedure is proven to converge with probability onerimarily designed for clustering and data compression. The
to the desired features. updating procedures in these algorithms have been related to

An added advantage of these training algorithms is thpértitional clustering approaches in pattern recognition [21],
they are adaptive, and thus: 1) they are well-suited for onlifi@5], which are very different from the feature extraction
applications and 2) they provide good architectures which afeethods described here. For example, LVQ has been linked to
relatively easily implemented using current VLSI technologiethe sequentiak-means algorithm [25], and the ART models
Since each algorithm uses a flow or sequence of inputs, wethe sequential leader clustering algorithm [21].
do not require a pooled data for network training. Besides Supervised Networks for Feature Extractioihe feature
the computational advantages, the methods have the addgglaction ability of a supervised multilayer feedforward
benefit of requiring less storage. Furthermore, all layers of thetwork is well studied [11], [26], [29], [31], [32]. For
networks are trainedimultaneously example, Gallinariet al. [11] studied a linear multilayer

Note that, in this study, we emphasize the methods pérceptron performing a heteroassociative mapping. This work
feature extraction, and not the particulars of classification aftfiows that, for a linear network performing a oneseftone
these features are extracted. Since it is well known [2Gutput unity, all others zero) classification, the solution of the
[29], [31] that neural networks are useful in classificationweights which minimized the total mean square output error
a separate network may be used for this task. For exampiso maximized a criterion for linear discriminant analysis.
classification of a unimodal Gaussian feature may be obtaing@bb and Lowe [32] extended this result to a multilayer
by using a proper threshold and a minimum selector. The LDedforward network that performs an arbitrary nonlinear
and Bhattacharyya distance features may be classified byrgnsformation to a space spanned by the hidden units, and
linear classifier [10], and, hence, can be implemented byfigally executes a linear transform in the output layer. It
single-layer feedforward network. In this study, the classifiefs apparent from this study that a nonlinear discriminant
are used only to demonstrate that the networks estimate #iilysis is performed in the space of the hidden units by
features accurately, and preserve the classifying abilities ik minimization of the output error. Studies [2], [5] in the
the actual features. We, therefore, use simple classifiers thatoassociative case shows that the outputs from the hidden
are commonly considered in pattern recognition [10] to tegfyer are the principal components of the input vector. The
our feature extraction methods. Gaussian feature extraction network has also been studied
[35], and shown to be isomorphic to a one-layer sigma-pi
back propagation network having an increasing activation
function.

Self-Organized Networks for LDASelf-organized methods In spite of these useful results for multilayer feedforward
to train feature extraction networks with data from knownetworks, we note that they are valid only if proper conver-
classes are recent. Mao and Jain [20] have proposed a tgence is obtained, which is not guaranteed because the energy
layer network for LDA, where each layer is a PCA networkurface may have multiple local minima. Furthermore, the
due to Rubneet al.[27], [28]. Although the method is useful, minimization may be inaccurate due to incorrect network size.
there are a few problems. The first layer of the network hésing the gradient descent training procedure for minimization

B. State-of-the-Art Feature Extraction Networks
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has the added problem that it is often slow to converge, arg When the distribution is unimodal Gaussian, this feature
it does not impose any particular structure on the networkduces to the following quadratic function:
architecture or on the solution. Moreover, a feedforward . T N1 L
network, trained as above, may not satisfy the optimality filx) = (x=ma) @ (x —my) ford=1,--,m (1)
criterion for the LDA problem as described in Section 1I-Bwherem; is the class mean arg; is the class covariance for
A nonsingular transformation of the outputs will, howevery;. From (1), we obtain the optimum feature tof as
satisfy this criterion. 1l n-1/2 2 L

Mc?[/ivated by the preceding issues, several researchers have fi) =l x—my||” fori=1,.m. ()
designed networks where each layer is trained only with dataNote that for Gaussian dat#;(x) is the sufficient statistic
from the previous layer [13], [14], [30]. Such networks aréor classification with minimum Bayes error. In addition to
usually studied under the general category of unsupervis@dussian distributions; (x) is a sufficient statistic for a wide
networks. In these networks, the weights in each layer ag@ass of unimodal symmetric distributions, as indicated in the
trained not by comparing the final outputs with a knowRroposition below.
reference, but by the statistical properties of the outputs of thatProposition: For a two-class problem, define a feature
layer. The networks discussed in this study are in this categohyx) = f1(x) — f2(x). Then regardless of distribution of
The training algorithm for each layer is proven to convergee have
with probability one to the desired feature. Furthermore, the

det[Q2]

optimality criterion (see Section 1I-B) for the LDA network Efh(x) |w1] < In det[Q1] and
is satisfied. det[Q-]
In Section Il we provide the pattern recognition theory E[h(x)|ws] 2 In det[Qq] (3)

for the three feature extraction methods discussed above. In i )
Section Ill, we present the training algorithms used in thE"€ Pproof of the Proposition can be derived from a re-

feature extraction networks, including thig—/2 algorithm Sult in [6]. Equation (3) shows that the class means in
and its proof of convergence. Section IV discusses the nfie feature space may be separable by a threshold
work models for the=1/2 algorithm, and the three featureli(det[@2]/det[@1]). Thus, regardless of distribution of,
extraction methods. Section V has the numerical simulatidr(*) €&n have a significant classifying ability. Our simu-
results on multiclass multivariate random data. Section VI higdions with uniform distributions corroborate this fact (see

the concluding remarks. Section V). . .
If the data is not Gaussian, we may be able to convert it

to a Gaussian-like distribution by using nonlinear transforms.
Fukunaga [10] uses thgower transformz” for 0 < v < 1

In this section, we shall review the pattern recognitioan radar signals from a gamma distribution, and converts it to
theory for the three feature extraction methods implementadGaussian-like one.
in this study. Readers familiar with pattern recognition theory If the data is multicluster Gaussian with clusters inw;,
related to these methods can skip this section. Since, in genetfadn the featuref;; for clusterj in w; is defined as
feature extraction criteria depend on the classifier to be used, Fii (%) = exp(—hij (%))
we shall simplify the problem by assuming that we seek the " "

Il. FEATURE EXTRACTION METHODS

optimum feature set with reference to the Bayes classifier. WNere ,

Let us consider a finitem-set of pattern classes hij(x) = 1/2HQ;»1/2(X —m;)||
{wi, -, wn} with a priori probabilitiesP(w;), ¢ = 1,---,m, forj=1,---,r5, i=1,---,m. (4)
conditional probability density(x/w;), ¢ = 1,---,m, anda ,
posteriori probabilitiesp(w; /x), i = 1,---,m. Letx € R Here m;; and @,; are the cluster mean and covariance,

be a pattern vector whose mixture distribution is given HiFSPectively.

p(x). In this study, we assume that < d. Them a posteriori ] o ]

probability functions, mentioned above, are sufficient statistie; Linear Discriminant Analysis

and carries all information for classification in the Bayes The linear discriminant analysis criteria, although related to
sense. Since tha posteriori probabilities sum to one, only the Bayesian risk analysis [7], are mainly based upon a family
m — 1 of thesem functions are linearly independent, andf functions of scatter matrices. A within-class scatter matrix is
are the ideal features for classification. The Bayes classiftee scatter of the samples around their respective class means
in this feature space is a piecewise bisector classifier [1f;, and given by

which is its simplest form. m m
Sw =Y P@)E[(x-m)(x-—m;)" |w] = Pw)Q:.
A. Optimal Features from Gaussian Data i=1 i=1 (5)

Consider the featurln p(w;/x) = Inp(x/w;) +In P(w;) — The between-class scatter matrix is the scatter of the class

In p(x) for classw;, i = 1,---,m. Since in feature extraction, meansm, around the mixture meam,, and is given by
additive and multiplicative constants do not alter the subspace

onto which distributions are mapped [10], and siheg(x) is Sy = Z P(w;)(m; — mg)(m; — mg)?. (6)
common for all classedn p(x/w;) is the relevant feature for P
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Finally, the mixture scatter matrix is the covariance of ablelect features in this subspace, the scatter criterion is no longer

samples regardless of class assignments useful, and the Bhattacharyya distance criterion may be used.
- This is a convenient measure of class separability since it gives
Sm = E[(X — my)(X — my) ] = Sw + 5. (7) upper bound of the Bayes error. However, this criterion is only

oo . useful for a two-class Gaussian data.
There are several criteria [10] for feature extraction as func- . S :
For Gaussian distributions with meams; and m», and

i i ]f@%;l
tions of these scatter matrices. Some exar_“p'% S"] covariances?; and (@, for the two classes, respectively, the
anddet[S;]/det[S,,] that we wish to maximize. In the linear . .

Bhattacharyya distancg is [10]

discriminant analysis case, the optimum linear transfaris

composed of the (< d) eigenvectors oF 1S, corresponding 1 7 Q1+ Q2 -1
to its p largest eigenvalues. Siné is not full-rank and not a b= g(ml —my) 5 (m; —my)
covariance matrix, we shall usg, instead. A simple analysis 1 det, + 9
shows that botl$ 1S, andS;1S,, have the same eigenvector 5ln etl(@1 +@)/2] . (8)
matrix ®, and eigenvalue matrice’s and A + I, respectively. V/det[Q1]V/det[Qs]
Thus, S5, and S;1S,, extract the same features, and thenly the covariance part; i.e., the second term of (8) is used.
order of significance of the features are the same. We need to maximize:, defined as
The computation of the eigenvector matiix of S5,
is equivalent to the solution of the generalized eigenvalue i, =1In det[(@1 +@Q2)/2]
problem $,,® = S, ®A where A is the generalized eigen- Vdet[Q1]v/det[Qo]
value matrix. Under the assumption of a positive definite _ 1 1 -1 -1
= —|In (det + +2I|) —dln4| (9
matrix S,,, there exists a symmetriS;l/2 such that the 2[ ( [Ql @2+ @ ]) ] ®)

problem can be reduced to a symmetric eigenvalue problgered is the dimension of); and Q.. The optimum linear
S2%8,,551*0 = WA, whereU = S/?® is real, and transform [10]® is composed of they (< d) eigenvectors
Sw'/?5,,55"/% is symmetric and real. Ift’ is orthonormal, of Q71Q, (assumingQ; is positive definite) corresponding
then ¥ ¥ = ¢1'5,& = I. Thus,® is real and orthonormal to the p largestf; = \; + (1/);), where);, j = 1,---.d,
with respect toS,,. Furthermore,®?S,,,® = A which is are the eigenvalues @] *Q,. As before, the eigenvectors of
diagonal, real and positive definite. This solution is also knowR; (), are obtained from a symmetric eigenvalue problem
as the simultaneous diagonalization [10] of matricgsand Ql—l/QQQQl—l/Q\p — WA, where U = Q}/% and A =
Sm. diag(A1, -+, Aq). This method is very effective in picking
Optimality Criterion for the LDA Network:Since the LDA  features along which the variances of two classes are different.
problem consists of finding the (< d) generalized eigen-
vectors of S,, with respect toS,, corresponding to ity
largest generalized eigenvalues, we need to find network
weights that satisfy the following two conditions: 1) they
are the generalized eigenvectors %, and S,, and 2) they

Ill. TRAINING ALGORITHMS FOR THE
FEATURE EXTRACTION NETWORKS

There are two major training algorithms used in the feature

are arranged in the decreasing order of significance. \R&traction networks. ;I'gey are: 1) the new algorithm for
shall refer to this as thedbtimality criteriort for the LDA  the computation ot~ /2, where @ is the posm\(/ie definite
network. Once this criterion is satisfied by a network, thgorrelation matrix of a random sequenge(k) € 1} and 2)
significant components (for class separability) of the inpufé! @lgorithm for the computation of the eigenvectorgof

; ; ; —1/2
are represented by the first few components of the outputs. VOt that there is no unique solution fep 2, Let @
and A = diag(A, -+ -, Ay) be the eigenvector and eigenvalue

matrices, respectively, @. Then a solution fof)—1/2 is ®D,

_ o _ _ whereD = diag(+A; Y%, -+, +£A;/?). However, in general
By the two previous criteria, we obtain a maximum ofhis js not a symmetric solution, and for any orthonormal

m — 1 features for ann-class problem. However, unless the matrix R, DR is also a solution. One can show th@t!/2

posteriori probability functions are selected as features: 1 js symmetric if and only if it is of the form®D®7, and

features are suboptimal in the Bayes sense. Several approaghg® are2? symmetric solutions forQ—1/2. When D is

6], [9], [10], [24] have been proposed to solve this problemyssitive definite, we obtain the unique symmetric positive
One approach is to break up the data into more classes, therg@inite solution forQ—1/2 as ®A~1/2¢T, where A—1/2 2
artificially increasing the rank of,. In another approach, diag()\_l/Q,---,)\gl/Q).

Foley and Sammon [9] used the generalized Fisher criterion to
generate an orthonormal set of feature vectors in a two-clgss . . —1/2
case. Later Okada and Tomita [24] extended this methodﬁ?oiﬂzgg\é:gggsﬁﬁgz c}f?rooi‘ and a
a multiclass case.

In alternative approaches we consider that the scatter cri-1he algorithm for the adaptive computation @f '/ is
terion extracts features in am — 1 dimensional subspace Wk +1) = Wk +n(k)(I = WEx(Ex()TW k) (10
containing all classification information due to the scatter of ( ) (k) (k) (R)x(x(k) (k) (10)
mean vectors. The remainin—m + 1 dimensional subspacewhere W (0) € R**¢ is symmetric and nonnegative definite,
contains the information due to covariance differences. Bmd {n(k)} is a scalar gain sequence. We shall prove that

C. Bhattacharyya Distance Measure
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W(k) — Q%2 with probability one (w.p.1) as — oo, can also be postulated [18]. Herge(k)} is a uniformly
where@~1/2 = dA~1/28T is the unique symmetric positive bounded sequence of independent (not necessarily stationary
definite solution discussed above. The algorithm ¥6K0) or with zero means) random vectors. These structures are
nonpositive definite is considered later. treated at length in [3], [18], and [19]. In light of these models,

In order to prove the convergence of (10), we shall usee state the following general assumption {or(k)}.
the stochastic approximation theory due to Ljung [3], [18], Assumption (A3):Sequencdx(k)} is generated by (11) or
[19]. An alternative proof by a similar approach due t¢12) satisfying the stability and regularity conditions of Ljung
Kushner and Clark [17] can also be given. In a somewhit8].
looser language, stochastic approximation theory states th&he main assumptions of Theorem 1 of Ljung [18] are:

following: 1) W (k) can converge only to stable stationary 1,1. The functionh(W, x) £ 1 - WxxTW is continuously
points of the ordinary differential equation (ODEW/dt = differentiable with respect té andx. The derivatives are,
limy oo E[I — Wx(k)x(k)TWT; 2) if W(k) belongs to the  for fixed W andx, bounded ink.
domain of attraction of a stable stationary polft* of the L2. (W) 2 limp—oo E[h(W,x(k))] exists. The expecta-
ODE infinitely often (i.0.) w.p.1, the@V (k) converges w.p.1  tion is over the distribution 08(.).

to W* ask — oo ; and 3) the trajectories of the ODE \ye mogify the result given by Ljung [18] in Theorem 1 to
are the “asymptotic paths” of’(k) generated by (10). The g )it the present algorithm in the following Lemma.

proof requires the following steps: 1) generating a set of | o;nma 1: Let A1-A3 hold. LetW* be a locally asymp-

assumptions; 2) finding the stable stationary points of &ically stable (in the sense of Lyapunov) solution for the
ODE; and 3) an analysis showing that(k) visits the domain g

of attraction of a stable stationary point infinitely often.

Assumptions and Formulation of the ODEn  order to M =1 -WQW (13)
prove the convergence of (10), we shall use Theorem 1 of dt
Ljung [18]. The following is a general set of assumptions favith domain of attractiorD(W*). If there is a compact subset

the convergence proof of algorithm (10). A C D(W*) such thatiW (k) € A infinitely often, then we
Assumption (A1):The training sequence€x(k) € R%} haveW (k) — W* with probability one ag — oc.
consists of random vectors, where eacl{k) is uni- Proof: We shall show that we satisfy conditions L1 and

formly bounded; ie. |x(k)| < B < oo. Moreover, L2 ofLjung. Clearlyh(W,x)=I—-Wxx?W is continuously

limg— o E[x(k)x(k)T] = Q whereQ is positive definite. differentiable with respect td” andx satisfyingL1. Sequence
Assumption (A2):{n(k) € R™} is a decreasing sequence{x(k)} is bounded by Al. The boundednesd®fk) is proven

such thafy~ ;> (k) = 0o, 3 re (k)" < oo for somer > 1, in Lemmas 4 and 5 later. Thus, the derivatives are bounded

andlimy—, oo sup(n(k) ™t — nk — )71 < oc. in k. Condition L2 follows from Al. The result is a direct
Assumption Al is reasonable for most practical implemempplication of Theorem 1 of Ljung [18]. O

tations, where{x(k)} are kept bounded either by deliberate Solution of the ODE:

measures or automatically. Methods to kdeik)} bounded  Lemma 2: There exists a unique solutid (¢, W) of the

are discussed in Ljung [18]. The physical meaning of A®DE (13) which satisfies a given initial conditi®# (0, W) =

can be described as follows. Conditioffk) — 0 allows W, € R%*¢. Moreover, the solution depends continuously

the process to settle down in the limit, wheredg(k) = ont and Wy, and for anyW; € R¥*¢ if W, — W, then
oo insures that there is enough corrective action to avoldf (¢, Wo) — W(¢, W1) uniformly overt.
stopping short of the solution. Conditio®(k)? < oo and Proof: Let B(Wo;r) 2 {W : |W — W]z < 7} be a

limg— oo sup(n(k)~t — n(k — 1)~1) < oo guarantee that the open ball with cented?, and constant but arbitrary radius
variance of the accumulated noise is finite so that we can> 0. Let A(W) = I — WQW. We claim thath(W) satisfies
correct for the effect of noise. Assumption A2 holds witta Lipschitz conditiohin B(Wo;r). For anyW'’ € B(Wy;7)
n(k) o< k=° for 0 < 6§ < 1. The choice of§ = 1 is a leading and W” € B(Wy;r), we have

case. T / T "

In the literature for stochastic approximation proofs, there [A(W?) = R(W )2
are many assumptions that are usually made on the statistical = |[(W' = W")Q(W' = W")+ W"Q(W’' — W")
properties of x(k)}, such as statistically independent and i.i.d. + (W = WHOW ||

However, Ljung [3], [18] permits far less restrictive choices for < |W' —W" Wl + 3I[W"”
{x(k)}. Specifically, we can assume that(k)} is generated 3 , |,|,2[HQH2(H 2+ 31w 7)
by a linear structure < Lw" = Wl

whereL = 4r\,,,x(Q), and,,,:(Q) is the largest eigenvalue

x(k) = AW (k)x(k — 1) + B(W (k))e(k) (11) of @, which exists due to Al. This proves the claim.

x(k) = C(W(k))x(k), By the uniqueness theorem [4] for the ODE (13), there is
i i at most one solutioV (¢, W) which satisfies a given initial
or a nonlinear variant condition W (0, W,) = Wp. By the Continuity Theorem [4],
x(k) = gk, W(k), x(k — 1), e(k)) LA function s defined on a domaif is said to satisfy a Lipschitz condition,

(12) it there is a constanL such that||h(x) — h(y)|l2 < L||x — y||2 for all

x(k) = h(k, W(k), x(k)) X,y € B.
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for any Wy € B(Wy;r) if ||W1 — Woll2 <+ < r, then if Definitions: A sequence{x(k)} is said to be ingeneral
Wo — Wy thenW (¢, Wo) — W (¢, W) uniformly overt. 0 position if every matrix A = [x(k),---,x(k + d — 1)] of

In the following analyses, we shall denole(WW) as the d consecutive vectors is of ranK. This sequence is in
largest eigenvalue of¥, \,(IW) as the smallest eigenvalueuniform general positionf the smallest singular value ofl
of W, and (A1(Q), -, 4(Q®)) as the eigenvalues af in is uniformly bounded away from zero.
decreasing order. We assume the following.

Lemma 3: Let & and A, respectively, be the eigenvector Assumption (A4):The sequencéx(k)} is in uniform gen-
and eigenvalue matrices af, and let A=1/2 be positive eral position.
definite, then the pointVi = ®A~Y26T is (uniformly) Lemma 4: Let A1-A4 hold. Then there exists a uniform
asymptotically stable. The domain of attractior@f includes upper bound forA; (W (k)) for all k.
DWi) = {W € R . W = WT and \y(W) > Proof: Proof is given in the Appendix. O
- (Q)"2y. The Lemma also gives us a uniform upper bound for

Proof: Note that for W(0) symmetric, W (k) is sym- A1(W(0)) that we need to satisfy at the start of the algorithm.

metric for all k. Then the ODE (13) is a Riccati differentialFinally, in order to satisfy¥ (k) € A infinitely often, where
equation [1] with Hamiltonian matrixY shown below. An A C D(W}), we establish a uniform lower bound fov,

eigen decomposition of is (W(k)). For this, we have the following Lemma.
0 Q SAL/Z BAL/2T] [AL/2 0 Lemma 5: Let A1-A4 hold. Then there exists a uniform
H= {I 0} = [ > % } { 0 _AI/Q} upper bound fom(k) such thath,(W(k)) > 0 uniformly for
all k.
{1/21&—1/2@:-; 1/2<I>TT} (14) Proof: Proof is given in the Appendix. O
/2071207 ~1/29 Theorem 1:Let A1-A4 hold. Further assume tha¥ (0)

Defi _ o DAY2]-1[D — WodAL/2] wh .. and »(0) are within their _uniform upper bo.unds stated in
efineft = [ + WodA " | Woda 7], whereWy is Lemmas 4 and 5, respectively. W(0) is assigned random

the initial condition of the ODE at = 0. Clearly, R exists if . . . . .
[+ Wo®AL/2] is nonsingular. Using the standard solution ug:alghts such thal’(0) is symmetric and nonnegative definite,

: . ; ; - ; hen with probability one, algorithm (10) will converge, and
for the Riccati differential equation (13), we obtain a trajector (k) — WE ask — o, where W: — DA-L/207 is the

W(t,Wy) as
(t, Wo) unique symmetric positive definite solution fer1/2.
W(t, Wo) Proof: By Lemma 5,\,(W (k)) > 0 uniformly for all &.
= O[] — exp(—AY2t) Rexp(—AY?t)] By Lemma 4, (W(k)) is w.p.1 uniformly bounded above

for all k. Then there exists a compact subhdeif D(W ;) such

_AL/2 _Al/2\1-1A—-1/28T
XU+ exp(=ATE Rexp(-A T AT (19) that W (k) € A infinitely often. The theorem is now implied

In (15), W (t, Wy) exists if [ +exp(—A~'/2t)Rexp(—A~1/2 by Lemma 1. O
t)] is nonsingular for alk > 0. By Lemma 2, this solution, if  Further Remarks on Algorithm (10)tn algorithm (10) we
it exists, is the unique solution for the ODE in (13). assumeW (0) to be nonnegative definite. However, if it is

The asymptotically stable solution &* = lim, .., W necessary to havl’(0) nonpositive definite, then we modify
(t,Wo) = ®A~1/20T whereA—1/2 is positive definite. Note (10) as follows:
that this is the unique symmetric positive definite solution for
Q~1/2, An analysis of the conditions for nonsingualrity of the W (k+1) = W (k)+n(k)(W (h)x(k)x(k)" W (k)-I)  (16)
above matrices for alt > 0, gives us a domain of attraction
for Wz that includesD(W2) = {W € R4 W = W7 and
Aa(W) > =a(Q)~/2).

It is now clear that (10) will converge to an asymptoticall
stable solution} = ®A~1/2¢7 for W(0) symmetric and
nonnegative definite, provide®' (k) € A infinitely often,
where A is a compact subset dD(W7).

W (k) € A Infinitely Often: Since A is compact, we need
to establish a uniform upper bound f§iv (k)| for all .
In practical implementation, we can hard-limit the entries i
W (k) so that their magnitudes remain below a certain limit*
p and thus within a compact regioA. However, this may ) ) )
automatically happen in (10) due to the following fact. W: Adaptive Computation of the Eigenvectorspf
see from (10), that¥(k + 1) grows in each recursion by There are many algorithms to compute eigenvectors of
n(k)I, but the growth is controlled by a “forgetting” term ofthe correlation matrix@Q of a random sequencéx(k) €
(k)W (k)x(k)x(k)YW (k). As ||W (k)| gets larger so does R¢}. These include algorithms due to Oja [22], [23], Sanger
||W (k)x(k)|. Thus, we can intuitively see that there exit§30], Rubneret al. [27], [28], Foldiak [8], and Kung and
a boundp for |W(k)|| such that if ||W(k)|| > p, then Diamantaras [16] to name a few. Among these, we have
Wk + 1) < ||[W(k)|| w.p.1. To prove this fact, we needchosen the Sanger’s algorithm, for the following reasons: 1)
the following definitions and assumption. this algorithm computes the eigenvectors @f ordered by

with W (0) symmetric and nonpositive definite. The above
lemmas and theorem can be extended to (16). The ODE is
dW/dt = WQW — I, whose asymptotically stable solution is
¥v+ = —®A~1/26T, which is the unique symmetric negative
definite solution forQ—1/2. The domain of attraction of’*
includesD(W*) = {W € R™4 . W = WT and \ (W) <

A (@Q)~Y/2}. Lemma 4 is modified to state that there exists
a uniform lower bound fot\y(W (%)) for all k. The uniform

per bound for(k) in Lemma 5 remains the same such that
(W(k)) < 0 uniformly for all k.
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decreasing eigenvalue; 2) the convergence of the algorithm i,
is guaranteed for an initial random sets of weights, and for a
wide choice of learning parameteyék) [see (17) below]; and

3) the algorithm can be implemented in a network with local
operations. The modified Sanger’s algorithm is

V(k+1) = V() + (k) (x(k)x(k) TV (k)
—V(EYUTV (k) x(k)x(k)TV(E)]). (A7)

Here V (k) is the weight matrix,{y(k)} satisfy A2, and  *®e - — o
UTY] sets all entries of its matrix argument below the diagonal > nk) + wHo

to zero, thereby making the matrix upper triangular. Sanger’s
algorithm is [30] o)

.—poj(k)

C(k + 1) = C(/f) + ’y(k)(C(k)x(k)x(k)T Fig. 2. Functional block diagram illustrating tig—'/2 training algorithm
— LT[C(R)x(k)x(k)TC(k)TIC (k)  (28) (O

whereLT[-] makes the matrix lower triangular. Algorithm (17)0i(/€) denote theith component ob(k). The weight update
is obtained from (18) by taking its transpose and replaciqgr (10) can be written as

C(k)T by V (k). Due to the convergence of Sanger’s algorithm
[30], if V(0) is assigned random weighfg%) will converge Aw (k) =pn(k)(6;,~0 (K)o’ (k) for i, j|l =1,---,d  (21)
w.p.1 to a matrix whoseolumnsare the eigenvectors @b,

ordered by decreasing eigenvalue. whereé;; is the Kronecker’s delta. SincAW is symmetric,
we need to update only the lower or upper triangular block of

C. Adaptive Estimation of the Mean and AW . Fig. 2 shows a network implementation for updatirig

Correlation @ of {x(k)} fori,7 =1,---,d. The network above for algorithm (10) will

ae used as a block in the feature extraction networks described

An algorithm for the adaptive estimation of the mean vect - Lo
below. We shall refer to this network as tliE /2 network

m of a random sequencgx(k)} is

w(k) =w(k = 1) + 6(k)(x(k) — w(k = 1)). (19) B. Networks for Optimal Features from Gaussian Data
Here w(k) is the current estimate of the mean, afiik)} Unimodal Case:Recall from (2), that when the data is
satisfies A2. In order to prove its convergence, we need tHeimodal Gaussian, the featufg(x), for classw; is fi(x) =
following assumption. ||Qi_l/2(x —m,;)||? for i = 1,---,m, wherem, is the class
Assumption (A5):{x(k) € R?} are uniformly bounded mean andQ; is the class covariance. Hence, it involves the
random vectors withimy, ... E[x(k)] = m. computation oni_l/Q, and the network described in Fig. 2.

In order to prove the w.p.1 convergencewfk) to m, we The feature extraction network consists of two layers (see
use assumptions A5, A2, and A3. The ODE%S = m —w. Fig. 3): 1) The first layer is trained by th@=1/2 algorithm
The only asymptotically stable solution 1a, whose domain (10). It has weight matri¥;(k) that tends t(Qi_l/2 w.p.1 as

of attraction isR%. k — oo. 2) The second layer computes the square of the norm
An algorithm for the adaptive estimation of the correlationf the first layer outputs. The weights for the second layer are
matrix @ of {x(k)} is fixed at one. The training of the network is discussed below.
Let {x;(k)} denote a sequence of training patterns from
- _ T _ _
Ck) = Ok = 1) + 6(k)(x(k)x(k)" — C(k —1)).  (20) wi, i = 1,---,m. Note that we have assumed that the input

Using A1-A3, the ODE is2¢ = ) — C. The only asymp- patterns are @equence of dafaand we can not assume that
totically stable solution is, whose domain of attraction isthe class meam; is known. We, therefore, obtain a running
Rdxd, estimatem,; (k) of the class mean by (19) frofx,;(k)}.

Algorithm (10) is usedn parallel for each class with weight
matrix W;(k). A training sequencdy;(k)} is generated as
. ] ) ) ~ follows: {y;(k) = x;(k) — m;(k)} for eachw;. Note that if

In t_hls section, we shall use the algonthms in Section Ithe network is trained wity;(k) = x;(k) — m;}, then by
tq train net_works for feature extraction by the three criterineorem 1 (k) converges w.p.1 t@i_l/Q' However, we are
discussed in Section II. using the sequendgy; (k) = x;(k)—m;(k)} instead. Theorem
2 below proves that also foy;(k)}, W;(k) converges w.p.1
to Q;l/Q. Fig. 3 shows the network for the unimodal case.

We present an implementation of algorithm (10) where th@iven an input patterx € w;, the featuref;(x) is obtained at
weight matrixW (k) is updated by sequential update rules. Lehe output of the network. In Fig. 37 (k),s=1,---,d, is the
x(k) be a training input for (10), and le{ k) = W (k)x(k) be sth component ofy; (k). The activation function ig(z) = 2
its output. Letw® (k) denote the(i, j)th element ofi¥/ (k), and at the hidden nodes, and linear at the output node.

IV. NETWORKS FORFEATURE EXTRACTION

A. Network Implementation of Algorithm (10)
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1 1
W (kYy(k =x? W, (k) ¥y(k —x2
P — : _ D7 (k) 3,(k)l , gx=x y,»}(k)—» . . 1%, (k) 3, o)l TR
; Weight Matrix i Weight Matrix 4 poer
W (k) — Wy(k) —*
' 4 d | : g 4 : -
ylgy— BT Pyl | s Oy | (03,0 »
‘ - gn=x? v g(0)=x
% 2 " 1 2
Q" Network 7 (k) (x; () — m; ()| O Network exp| —% W,-j(k)(xl-j(k)—m,-j(k))H
Fig. 3. Network for unimodal Gaussian data for clags : =1, - -, m. Fig. 4. Network for multicluster Gaussian data for clustej = 1,- - -, r;
in Classw;, i = 1,---,m.

Convergence with Estimated Class MeaWe need to ) a—1/2 —1/2 .
prove the convergence of the network weights(k) with symmelric ma,tnxSw ST"S'“’_ by a P_CA algorithm S_UCh
estimated class means; (k) instead of the true means;. a?/tQhe Sanger’s rule, which yields the eigenvector malrix
For this proof, we need the following assumptions fief(k)}. S “®. Then the combined algorithm yields This methodol-

Assumption (B1):The training sequencgx;(k) € R4} for 09 is the basis for the following architecture. However, since
classw; consists of random vectors, where eagf(k) is the class and mixture means of the data are unknown, running

uniformly bounded. Moreovetimy,_... E[x;(k)] = m; and estimates of these means are required. The convergence of the
limy— o0 E[(x:(k) —m; )(x;(k) —m;)T] = Q. Further assume algorithm with the running estimates of the means is proven.

that {x;(k)} satisfies A3, andx;(k) — m;} satisfies A4. We give'a two-layer sqlution for the LDA prob.lem, where
Assumption (B2):Sequence{n(k)} satisfies A2, and the (1) the first layer is trained with th€~1/2 algorithm (10)
uniform upper bound in Lemma 5. whose architecture is shown in Fig. 2; and (2) the second layer

Theorem 2:Let B1 and B2 hold. IfW;(0) is assigned is tra_lined Wi_th the modified Sanger’'s algorithm (17) whose
random weights such that it is symmetric and nonnegatiféchitecture is well known [13], [30]. The convergence of the
definite, and within the uniform upper bound stated in Lemnf4/© layers trainedsimultaneouslys also given. o
4, then for the training sequenchy,(k)}, algorithm (10) Training of the First Layer: Let {x(k)} denote a training
will converge with probability one, ant¥; (k) will approach Sequence with samples from classes, - - -, wn, }. For each
the unique symmetric positive definite solution 9F /% as x(k), let o(x(k)) € {1,..-,m} denote its class, which is
E — oo knowp in ad\(ance. The training sequer{gg )} for the first

Proof: Proof given in the Appendix. layer is obtained as followsty (k) = x(k) — m.(x(i) (k) }-

Multimodal Case: If the data for each class is not unimodaf €€ mi(k) for ¢ = 1,..-,m, is the current estimate of
and consists ofr; clusters inw;, then we shall modify the the class mean fow;, obtame_d by algonthm (19)_ f_rom
above network to extract a feature for each cluster. Recé?’f(k):x(k) € wi}. The correlation of{y(k)} is the within-

from (4) that the feature;;(x) for cluster; in w; is f;(x) = class scatter matri§,,. This can be seen as follows:
—1/2

exp(—hij(x)) where hij(x) = 1/2]|Q;;"%(x — my;)|[* and

m;; and@);; are the cluster mean and covariance, respectively.

Ely(R)y(k)"1=>_ Pw)E[y(k)y®)" | w]
We have assumed that theclusters can be determined from =t

the training patterns for each class. The training procedure for - ZP(wi)E[(X(k) —m, (k) (x(k)
each cluster uses th@~1/2 algorithm (10) for the first layer, p—
with the current estimaten,;(%k) of the cluster meamn;;,. _ mi(k))T | wi].

Given an input sequencgx;;(k)}, the training sequence for

the first layer is{y;;(k) = x;;(k) — m;;(k)}, and weight Herelimx_cc E[(x(k)—m;(k))(x(k)—m;(k))* |wi] = Q;.
matrix Wi;(k) for j = 1,---,r, i = 1,---,m. Weights Thus,limy_. E[y(k)y(k)"] = 3i2, P(w;)Q; = Sw. The

for the second layer are fixed &f2. The modified network training algorithm for the first layer is (10) with weight matrix
is shown in Fig. 4. In Fig. 4y;;(k), s = 1,---,d, is the W(k). Then, by Theorem 2, a — oo, W(k) — Sot/?

sth component ofy;; (k) for cluster; in w;. The activation w.p.1. Note that this layer has a single network (irrespective
function isg(z) = z? at the hidden nodes, anglz) = ¢~ of class), for which the training sequengg(k)} is obtained

at the output node. by modifying {x(k)} by the class means.

Training of the Second Layertn order to train the second
layer, we generate a sequenggk) = x(k) — m(k)}. Note
thatx(k) is the training input irrespective of class assignments.

Recall that for linear discriminant analysis (LDA), we nee@iere m(k) is the current estimate of the mixture meam
to compute the eigenvector matrixof S;*S,,. In particular, obtained by (19) from{x(k)}. Sequence{z(k)} is passed
we need to extract the eigenvectors corresponding to theough the first layer to obtaidu(k) = W(k)z(k)}. The
p(< d) largest eigenvalues & 1S,,. second layer is trained withu(k)}. The training algorithm is

As discussed in Section Il, we can solve this problem ihe modified Sanger's rule (17) with weight matfiX k).
two-steps. The first step is thg—1/2 algorithm that estimates As k — o0, V(k) tends to the eigenvectors of the matrix
S2'/?. The second step computes the eigenvectors of they_... E[u(k)u(k)?], ordered by decreasing eigenvalue.

C. Network for Linear Discriminant Analysis
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this result, the covariance part of the Bhattacharyya distance

1
J .(k)_’ Weight Matrix ’ measure (9) is used to extract features along which the
: covariances of two classes are different. Let the two classes
Wik) be w; and w,. Like the LDA problem, the optimum linear
: y transform for the Bhattacharyya distance features consists of
) Wik)—5," the eigenvectors o)1 Q,, where@; is the class covariance

matrix for w; for ¢ = 1,2. The architecture for the two-layer
O~ Network network is similar to the one given in Fig. 5.

@ Network Training: Let {x;(k)} for ¢ = 1,2, denote the
training sequences fromy; and w», respectively. For this
network, the first layer is trained with data fram, and the

|, second layer with data frore,. We, therefore, generate two
sequencesy; (k) = x;(k) —m;(k)} for ¢ = 1, 2. Herem; (k)
is the current estimate of the class meandarThe first layer
v(k) is trained with {y,(k)} by the Q—1/2 algorithm (10) with
ud(k) (k) — S.5D weight matrix W (k). By Theorem 2W (k) — Ql_l/2 w.p.1
y ask — oc.
) Sequencdy:(k)} is passed through the first layer to obtain
(7% Network PCA Network {z(k) = W(k)y2(k)}, which is used to train the second layer
(0) by (17). By Theorem 3, the weight matrix(k) of the second
Fig. 5. Network for linear discriminant analysis. All nodes are linear: (aayer tends to the eigenvectobs= Q1/2<1> of QII/QQQQII/Q
training of the first layer; (b) training of the second layer. w.p.1 ask — oo, ordered by decreasing eigenvalue. Hére
is the eigenvector matrix c(@l_lQQ. From the convergence of
Intuitively, the operation of the two-layer network can be deéd/(k) andV (k), the combined weight matri¥ (k)V (k) — ¢
scribed as follows: aé — oo, W (k) — So'/? w.p.1 by The- w.p.1 ask — oo.
orem 2, andE[z(k)z(k)Y] — Sp. Thus, E[u(k)u(k)?] — Order of Significance of the Featuresilthough the fea-
sol2g g-1/? w.p.1, andV (k) tends to the eigenvector ma-tures are arranged in the order of decreasing eigenvalues
trix U = S%/2® of the symmetric real matrify/25,,Sgt/2  Airi = 1,---.d, of QT'Qy, unlike the LDA features, the
w.p.1, ordered by decreasing eigenvalue. A rigorous proof gignificance of the Bhattacharyya distance features depends
this intuitive argument is given in Theorem 3. on the values ob; = A; + (1/)}2‘)7_'5.: 1,---,d. However,
Simultaneous Training of Two Layer§rom the conver- for some ranges ofy;, the significance of the features
gence ofW (k) and V' (k), we obtainlimy_...{W (k)V(k)} = ¢an be readily determined from the order bf Note that
5’51/25’30/2(1) — & w.p.l. Thus, the combined two-layerei =X+ (1/N\)is a monot_omcally decreasmg_funcnon;b;c
network weight matrixW¥ (k)V (k) converges w.p.1 to the for 0 <A; <1, and increasing foA; > 1. Thus, ifallA; > 1,
generalized eigenvector matrix Note thatV (k) is obtained then the significance of the features have the same order as
from the modified Sanger’s algorithm, and its columns ar¢ for. ¢ ?,1""’d' On the other hand, if al; € (0, 1], then
arranged in the order of decreasing eigenvalues. Therefot ; §|gn|f|cance of the features have the reverse ordex; as
the first m — 1 columns of W(k)V (k) form the relevant fori=1,..d
feature extraction transform.

If, however, an estimate of; is required, we compute
Given an inputx, the output of this cascaded network tend{€ correlation matrbC'(k) of the network output for input
to ®T'x w.p.1 ask — oo. Since this is already arranged inlY?2

(k)}. Note that for input{y=(k)} the network output
— T i
decreasing eigenvalue, the first — 1 values of the output is {v(k) = V(k)"W(k)y2(k)}. By applying Theorem 3
are the relevant projections af onto them — 1 dimensional

to {v(k)}, we can show thatC(k) = E[v(k)v(k)T] —
feature subspace. The two-layer network is shown in Fig. 5.

T'(,® = A w.p.1, whereA is the eigenvalue matrix of
Fig. 5,4°(k) and z°(k), s = 1, -- -, d, are thesth component Q1 'Q,. Correlation matrixC (k) is obtained by algorithm (20)
of y(k) and z(k), respectively.

from {v(k)}, andC(k)~* can be found by using the so called
Theorem 3:Let B1 hold for {x(k)}, and let B2 hold. Let Sherman-Morrison formula [12]

{v(k)} satisfy A2. If V(0) is assigned random weights, then . . .

for the training sequencfu(k) = W (k)z(k)}, algorithm (17) ~ C(k)™ = (1 = 6(k)) <C(/f -1

will converge with probability one, fan(ﬂ’(k) will ae[/JQroach S(E)C(k — 1)~ V(BN ()T Ck — 1)1

the matrix whose columns are the eigenvectbrs: S,/ “® of T8 LSRN — D=Tv(E) )

Su%5,.52Y* ordered by decreasing eigenvalue. = 0(k) + o(k)v(R)TCk — 1)=v(k)
Proof: Proof given in the Appendix. O

1
Zl(k) — u) >
Weight Matrix
Weight Matrix

Wik)

zd(k') -

(22)
Estimates off; are obtained from the diagonal elements of

D. Network for the Bhattacharyya Distance Features O(k) = C(k) + C(k)~'. Note, however, that (22) may

From the above networks, we can extract at mast 1 be unnecessary, and the diagonal element§'@) may be
features for anm-class problem. In order to complemensufficient to estimate\;, and therefored;. The components
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Fig. 6. Convergence of th€)~'/2 Algorithm (10).

of the network output corresponding to thelargestd, are by 20 (as given in the equation shown at the bottom of the
the relevant projections of the input pattexnin the feature page) for data ink'® The ten eigenvalues ap are 117.996,

subspace. 55.644, 34.175, 20.589, 7.873, 5.878, 1.743, 1.423, 1.213, and
1.007.
V. SIMULATION RESULTS We did four experiments, respectively, with thex44, 6 x

R/ and 8x 8 principal minors, and witld). For each covariance

atrix, we generated 500 samples of zero-mean multivariate

aussian data, and estimated @e*/2 matrix with algorithm

0). We did the experiments for onfjne epoctof the data,
reone epochmeans presenting all training data once in

In this section we use the networks described in Section
to extract features, and compare them with results fro
nonadaptive methods in pattern recognition. Since the fe
tures for unimodal and multicluster Gaussian data and t

Bhattacharyya distance features have an underlying Gausi:
W ying QF1/2 (denoted by */?

assumption, and since Gaussian distributions are commor @Rdom order. The actual value f ted DY, ctual
many pattern recognition problems [6], [9], [10], [24], [35],S obtained from the sample correlation matrix using a standard

it is appropriate to generate multiclass multivariate Gaussigigenvector computation method [12]. For each experiment, at

data for our experiments. The mean vectors and the covariafida UPdate, we computed the,-norm of the error between

i —1/2 ; ;
matrices for the Gaussian distributions are chosen from i estimated and actual /2 matrices, and we denote it by
e,

experiments of Okada and Tomita [24] with the covariancék);
matrices multiplied by 20.
—1/2
o(k) = [W (k) - Qi (23)
A. Experiments oid)—1/2 Algorithm (10)
Here we do four experiments on tiig1/2 algorithm (10). For each covariance matrix, we reported the convergence of
We used the first covariance matrix in [24], and multiplied ithe Q—1/2 algorithm in Fig. 6. The final values of after 500

r 0.091
0.038 0.373
—0.053 0.018 1.430
—0.005 —0.028 0.017  0.084
0 =20 0.010 -0.011 0.055 —0.005 0.071
—-0.136 —0.367 —0.450 0.016 0.088 5.720
0.155 0.154 —-0.038 0.042 0.058 —0.544 2.750
0.030 -0.057 -0.298 -0.022 -0.069 -0.248 -0.343 1.450
0.002 -0.031 -0.041 0.001 —0.008 0.0056 -0.011 0.078 0.067
0.032 —-0.065 —0.030 0.005 0.003 0.095 -0.120 0.028 0.015 0.341]
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vectors; 2) for each patterr, use the unimodal network to

8 T T
i ' L T | extract the quadratic feature§(x) and f2(x) [see (1)] for
6k o i | classesw; andws, respectively, and show the classification
T J0=7 | results; 3) compare these features with the actual features
al _ | obtained from the sample means and covariances; 4) repeat
i ¥ a-Class 1 | these steps for a 10-D five-class Gaussian data; and 5) repeat
2| . ; «-Class 2 | these steps for 10-D five-class uniform data to show the
® g | effectiveness of these features on non-Gaussian distributions.

Note that in the following experiments, the classification
result is not of central importance. We need to demonstrate

ok ' ":?' . ] that the networks estimate the features accurately, and preserve
the classifying ability of the true features. The main goal is to
4l e i create clusters of data, that are linearly separable. We, there-
fore, used simple classifiers such as the minimum or maximum
6L ¥ selectors or simple thresholds, and used the “resubstitution
| method” [10] for testing the classification performance.
gl ) L Fig. 7 shows a two-class 2-D Gaussian data with the fol-
8 6 4 2 0 2 4 &6 8 10 12 lowing means and covariances for andw., respectively,
A _
— | e S e S B A ]
Fig. 7. Distributions of the two-class 2-D Gaussian data.

and n1 = no = 500.

50

! ' Clearly, the distributions overlap, and are not linearly sep-
a - Class 1 arable. The optimum feature is a quadratic function as shown
.-Class2 | in Fig. 7. After training the unimodal network fane epoch

we extracted the featurgs and f, from the training data. For

each training patters, the extracted feature§ (x) and f>(x)

. are classified by simply assigningto classw; if f;(x) is the

minimum of the two. We obtained a classification error of six

out of 1000 total samples. Fig. 8 shows the data in the feature
space. Clearly, the data from the two classes are two different
clusters separable by a straight line.

- The above result is compared to the actual valuef @gind

& A@®=£

Jo(x)

vt i ol fo For each patterx, let fi(x) for i = 1,2, be the actual
LT TR A '\7-3- Ve & T feature computed from the sample means and covariances, and
% T ~ so e 1w s fi(x) be the estimated feature obtained from the unimodal
£ network after one epoch. We defim@rmalized errorof the

features as follows:
Fig. 8. Display of two-class 2-D Gaussian data in the feature space.

B, = Yo [ filxy) = filxy)|

samples are = 0.0398 for d = 4, ¢ = 0.0784 for d = 6, 7 2= Jilx))
e = 0.0935 for d = &, ande = 0.0959 for d = 10.
It is clear from Fig. 6 that the error matrices are all close

fori=1,---,m (24)

wheren is the total number of samples. We obtaingg =
h o Th I diff h %0044 and Ey, = 0.0019, which are both less than 1%,
the zero matrix. The small differences compared to the actugl,ying that the estimated features are close to their true

values are due to random fluctuations in the elemen®®'0f) 5,05 “Classification with the actual features gave us the same
caused by the varying input data. Experiments with h'ghﬁfror of six samples out of 1000

epochs show an improvement in the estimation accuracy. ForNext, we repeated the experiment with a 10-D Gaussian
examplg, for the ten-dim(_ansional (10-D) data, with five gpoc%ta from five classes with 500 samples from each class.
we obtainec: = 0.0226, with ten epochs = 0.0116, and with 1o \yaans and covariances are obtained from [24] with the
20 epochse = 0.0057. Similar results as above are obtained, 4 iance matrices multiplied by 20. We trained the unimodal
for uniform distributions. network with this data, and utilized it to extract features
) , , from the training data. We computed the normalized error

B. Experiments on Optimal Features from Gaussian Data given in (24), and obtained;, = 0.0218, E;, = 0.0396,

Here we use the unimodal network described in IV-B1 t&y, = 0.0290, E, = 0.0431, andEy, = 0.0479, which show
extract the optimal features for the Gaussian data. We do that the estimates are close to their true values. Using a simple
following: 1) generate 500 samples of 2-D Gaussian data, eatassification rule as above, we obtained one misclassification
from two classes with different covariance matrices and meant of 2500 samples.
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g e : : : : of the training data, we used a simple threshole: 0.009

o- Class 11 in the fgature space. Classification performgnce vyi_th the true

6l @ n - Class 2- and estimated features are same at two misclassifications out
| of 1000 samples.

4 Next, we repeated this experiment with the 10-D five-class

_ Gaussian data, with 500 samples from each class. The means
2L 4 and covariances are obtained from [24] with the covariance
I . matrices multiplied by 20. The eigenvalues 8f;'S, are
0 - 10.84, 7.01, 0.98, 0.34, 0, 0, 0, O, O, 0. Thus, the data has
i | intrinsic dimensionality of four for classification, of which only
al 4 two features are significant. The LDA network is trained with
| this data for one epoch. Let the two significant feature vectors
al 4 be denotedA byf; apd f>, and their estimates from the LDA
I . network bef; andf,, respectively. The normalized errors at
6| i the end of 2500 samples (i.eane epoch are Ef, = 0.0806
. ] and E¢, = 0.0292, suggesting an accurate estimation by the
3 . . Loat . ! LDA network.
€ 4 4 2 0 2 4 6 8 In Fig. 10, we show the convergence of feature vecfors

andf, for the LDA network by computing the normalized error
at each update. We observe that both feature vectors converge
close to their true values in a finite number of samples.
Fig. 11 shows the projection of the training datafprand
Finally, we repeated the above simulation for unifornf,. Although four features are necessary for complete class
distributions. We generated uniform data with the above megaparation (as shown by the eigenvalueSpfS;), we see that
vectors, trained the unimodal network with this data, anfle data is separated into five clusters (although overlapping)
extracted the features for the training data. We obtained zggfih just the two significant feature vectofs and f,. Note

Fig. 9. Distributions of the two-class 2-D Gaussian data for LDA feature:

misclassification, andsy, = 0.0316, Ey, = 0.0327, Ex, = that these clusters are not apparent in the original 10-D data.
0.0315, £y, = 0.0443, and Ly, = 0.0419. Clearly, this feature
can also be effective for non-Gaussian data. D. Experiments on Features from Bhattacharyya

Distance Measure

) _ ] Here we test the Bhattacharyya distance network described
Here we test the LDA network described in Section IV-Gp section IV-D to extract features along which the variances
We do the following: 1) generate 500 samples of 2-D Gaussigfwo classes are different. We do the following: 1) generate
data, each from two classes with different mean vectors aggg samples each of 2-D two-class Gaussian data with same
same covariance matrix; 2) use the LDA network to extract thean and different covariances: 2) use the Bhattacharyya
relevant features for classification, and show the classificatiganyork to extract feature vectos and f, from w; and
results; 3) compare these features with their actual valugs respectively; 3) compare these feature vectors with their
computed from the sample scatter matrices; and 4) repeat §¢gual values computed from the sample covariance matrices;
experiment for a 10-D five-class Gaussian data. and 4) repeat this experiment for a 10-D two-class Gaussian

Fig. 9 shows a 2-D two-class Gaussian data with the fikata, Fig. 12 shows a two-class 2-D Gaussian data with the
lowing means and covariances fof andw,, respectively,  following means and covariances:

—2 3 2 2 3 2
ml:[ 2}’631:{2 3}’“‘2:[—2}%:[2 3} m1:m2=m,Q1=E H,Cb:[_? _H

and n1 = ne = 500.

C. Experiments on Linear Discriminant Analysis Features

and n; = ny = 500.

Here,S, =[5 2] S, = [*, ~}]. and the eigenvector matrix ,
. T . . N hatS,, = 31, an = 0. Thus, h eigenval f
® of S;1Syis [ 4ot 02102 1, corresponding to eigenvalues ote that,, = 3/, and5, = 0. Thus, both eigenvalues o

; —0.7071  0.3162 ; S LS, are zero, leading to nbDA features The eigenvector
eight and zero. Thus, the first colunfnof ¢ is the relevant matrix of QleQ s @ = [ 0.5 0,3536] corresponding to

. . . . . —0.5 0.3536
feature vector. Projections ofi contain all information for )\(% — 2 and A, = 0.5 with 6, — 6 = 2.5. Thus, both features

classification. Note that the above numbers are exact V8.|Lé8 important, as is also clear from Fig. 12. We trained the

and not the sample estimates. - 0.5042 0.1984
. . network for one epoch, and obtaindd = [ 2= oo
After training the LDA network for justone epoch we with normalized errorsEy, = 0.0199, and Eg, = 0.3296.

estimatedf :”f[_()f.”7018—0.693_6]T. Define normalized error Estimation off; is accurate, whereas the estimation fof
Ey as By = Sy, wheref is computed from the samplejs rejatively poor. Note that the corresponding eigenvalue
scatter matrices, anfl is estimated from the LDA network. A, = 0.5 is smaller compared ta; = 2, giving us a slower
We obtainedEr = 0.0027. Clearly, the network estimated theconvergence, and resulting in a poorer estimation. Hence, we
feature vector accurately in just one epoch. For classificatiozpeated the experiment for higher epochs. With five epochs,




CHATTERJEE AND ROYCHOWDHURY: SELF-ORGANIZING ALGORITHMS AND NETWORKS 675

1.1 T T T T T T o T '

1O = »
0.9 5 — FEATURE VECTOR f; n
08} v FEATURE VECTOR f, 2
0.7+
0.6 -
0.5+
0.4+

NORMALIZED ERROR

03+
0.2+
0.1

0.0 1 t x ! L 1 et
0 500 1000 1500 2000 2500

NUMBER OF SAMPLES

Fig. 10. Convergence of the LDA network.

Lg, = 0.1202, Fy, = 0.0237, and E¢, = 0.0168. Once, again,
‘. ) the estimation accuracy keeps on evolving for higher epochs.

. VI. CONCLUDING REMARKS

In this study, we discussed a class of feature extraction prob-
lems that can be implemented with artificial neural networks
by two sets of stochastic approximation algorithms: 1) the
Q~1/2 algorithm in (10) and 2) the PCA algorithm in (17).

o - Class 2

af *g::: i_ Note that in this study, we emphasized the methods of feature

v - Class 5 extraction, and not the techniques of classification with these

sk 1 features. Since neural networks are useful in classification, a

. separate network may be used for this task. We, therefore,

3 ! ! ! : L L . used simple classifiers that are commonly used in pattern
€ -4 -2 0 ,\; 4 ¢ 8 10" recognition [10], to test the feature extraction methods.

fix Our experiments (see Section V) indicate that the estimates

Fi i ) . . converge “close” to their actual values in a finite number of
ig. 11. Display of five-class 10-D Gaussian data projected on featufe .
vectorsf; and f. samples, and the convergence plot (see Fig. 6) resembles an
exponential rate. Although stochastic approximation theory
] ) gives us the asymptotic convergence results (as described
we obtainedEy, = 0.0076, and Ey, = 0.2030, with 10 5 gection III), we ask a more practical question, on how
epochsEy, = 0.0046, and Ey, = 0.1513, and with 20 epochs t5st does algorithm (10) converge for finite samples? The
Ey, = 0.0027, and Ex, = 0.1041. Clearly, the estimation of nerformance of stochastic approximation algorithms, such as
f; reaches high accuracy much faster tfanwhereas the (10), for finite samples is a subject of ongoing research
estimation off; keeps on evolving for higher epochs. [3], [19], and is beyond the scope of this study. However,
Next, we used the 10-D five-class Gaussian data with 58fychastic approximation literature [3], [19] states that the
samples from each class. We used the first two classes in [g4}mptotic errors of the estimates have a zero-mean Gaussian
with the covariance matrices multiplied by 20. The eigenvaluggstribution. Our ongoing research into this area shows that
of QT'Q, are \; = 66.03, \, = 34.28, A\3 = 22.53, the variance of the Gaussian distribution is small for most
Ay = 1152, A5 = 6.07, A¢ = 0.72, Az = 0.31, As = 0.14, practical pattern recognition applications. The related results
Ag = 0.09, Ay = 0.05, with §; = 66.04, ; = 34.31, will appear in a later publication.
03 = 22.58, 0, = 11.60, 05 = 6.24, g = 2.11, 6; = 3.54, The algorithms discussed here can be easily applied to a
fs = 7.56, 6y = 11.80, and #;p = 21.84. We trained number of other criteria for feature extraction. Examples are
the network for three epochs. The estimation errors for thiee Chernoff and divergence criteria [10] for class separability.
first five feature vectors aré&y, = 0.0632, £y, = 0.1113, Most properties of these criteria can be discussed in terms
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Fig. 12. Distributions of the two-class 2-D Gaussian data for Bhattacharyya distance features.

similar to those used for the Bhattacharyya distance criteridor eachk, there existsn(k) € [0, 1] such that
For a two-class Gaussian distribution, the covariance term of
the divergence criterion is[Q71 Q.+ Q5 * Q1 —21] similar to 2 2
(9). Feature extraction Wi'[L tlhis criteri20n can btl implemented\l(kJrl):Al(k)w(k)_n(k)m(k) Z ci(k)"Ai(k)". (25)
by the methods discussed in Section IV-C. =t

Another application of theQ~'/2 algorithm is feature By A4, for any set ofd training vectors{x(k), - -, x(k +
extraction by a combination of the Karhunen-Loeve transforch— 1)}, at least onex(p), p € {k,---,k + d — 1}, has
(KLT) and LDA [33]. In some applications, due to the higha nonzero projection on the eigenvector corresponding to
dimension of the input patterns,, may become singular and \ (k). Furthermore, the projection is bounded away from zero.
the LDA method fails. In such cases, a KLT of the inputherefore, from (25), for training vectofs(k), - - -, x(k+d—
is first performed. Components of the transformed inpulg}, for at least one vectax(p), we have
corresponding to nonzero eigenvalues of the input correlation
matrix are selected. This transformed data is used as inputél(k"‘ d)

to the LDA network. This new transform, known as the kpdol ) )
discriminant Karhunen—Loeve (DKL) transform [33], can be =A1(k)+ > (i) —n(p)m(p) > ci(p)*Xi(p)*.  (26)
realized by cascading an LDA network at the end of a PCA i=k i=1

network. ForS,, to be nonsingular in the projected space, #afine an index sef — {i:m(i)er(i)2 > 0}. Then by A4,
mostn — m components of the KLT are considered. Here there exists am? > 0, such thata? = inf,c; {m(i)e. ()2},
is the number of training samples from classes. ’ me_ln(i)

From (26),\; (k+d) < A (k) if A (p)? > &=t Using

n(p)a?
the common choice of(k) oc £~° for 0 < § < 1, we obtain
APPENDIX SEHE ) - :
. L=k’ < 2, Similar bounds can be obtained for other
Proof of Lemma 4:We write (10) as ()

choices ofy(k). Therefore \; (k + d) < A (k) if A(p) > <.
Note that ifA; (k) < £, then the maximum value fox (k-+d),
from (26), is Ay (k) + S5  n(4). Therefore, ifA;(0) < £,
then we have

W(k+1) = W(k) +n(k)I — n(k)y(k)y (k)"
where

A (k) < dn(0) + d for all & > 0. (27)
We use the following identity [12]: Suppose = A + rec?, @
where A € R¥*¢ is symmetric,c € R? andr € R, then O
Xi(B) = M(A) + mmy|c||?, whererzjL m; = 1 and each Proof of Lemma 5:We shall prove by induction. We
m; > 0. Moreover, if ¢ has a nonzero projection on thestart (10) with W(0) symmetric and nonnegative definite.
eigenvector corresponding t(A) thenm; > 0. Clearly, W (k) remains symmetric for alk. Define G(k) =

For simplicity of notation, we shall usg; (k) instead of W (k)x(k)x(k)*W (k). If for some k, W(k) > 0 and I —
A1(W(k)) for the rest of this analysis. Lex(k) have the G(k) > 0thenW(k + 1) € D(W3). However, if for some
projections(c; (k), - - -, cq(k)) on thed eigenvectors oV (k) &, W (k) > 0 andl— G(k) is indefinite, then we need to make
in the order of decreasing eigenvalues. By the above identisyre thatW (k + 1) = W (k) + n(k)(I — G(k)) > 0.
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Let us consider the case whet¥k) has the maximum Since0 < é(k) < 1, we see thafy(k)} is stable and regular if
effect on\,(k). This happens wher(k) is oriented along the {x(k)} is stable and regular (which is assumed in A3). Thus,
eigenvector corresponding tay(k). Then, ||[W(k)x(k)||? = {y(k)} satisfies (11) and assumption A3. A similar result can

IIx(k)||* a(k)?. By the identity in Lemma 4 be shown for{x(k)} generated by (12). The result follows
from Theorem 1. O
— 2
Aa(k 4+ 1) = Ag(k) + n(k) (1 — [Ix(k)[I* Aa(k)?) Proof of Theorem 3:The proof of this theorem can be
where ||x(k)||?Aq(k)2 > 1 by hypothesis. From the aboveconsidered as an application of the bounded convergence
equation,A\g(k + 1) > 0 if theorem [34]. By Theorem 2, under assumptions B1 and B2,

ok Wk) — S Y2 wpl ask — cc. Therefore, W (k) =
a(k) Sat/? + F(k), where the random matrix'(k) — 0 w.p.1

k Aa(k)), wh Aa(k)) = 2 2_7"
(k) < Fa(k), - where (k) = sz s g Ak — . Thus,

Let p be the uniform upper bound ohk;(k) in Lemma u(k)u(k)?

4. In (28), a tighter upper bound foy(k) is obtained by 172 _1/2

minimizing f(A\4) under constraintC:||x(k)||?A4(k)? > 1. = (8672 + F(R)2(R2(R)" (S1/2 + F (k)

Within €, f()\q) is a monotonically decreasing function &f, = S, %2(k)z(k)"' S, 1/2 + F(k)z(k)z(k)T F (k)

whose minimum is reached fok; = p. Further note that + S 22(k)2(k)T F(k) + F(k)z(k)z(k)T S5/,

Ix(k)||? < 82 by Assumption Al. Therefore, a uniform upper

bound for n(k) is We shall prove thaE[F'(k)z(k)z(k)T F (k)] — 0 ask — oc.

SinceW (k) is uniformly bounded by Lemma 4, I§#'(k)|| <

n(k) < 2/35 dﬁ? for all k. (29) p. Sincex(k) is bounded, letjz(k)|| < . For anye > 0

O ElFERzB)|P]<splreP(|FE)|<e)+rpP(| (k)] >e))-

Proof of Theorem 2:For simplicity, we shall drop the b6 (5 the w.p.1 convergence Bf(k), there exists a positive

subscripti in the proof. We see thaly(k)|| < |[x(k)|l + integer K(e). such that whenevek > K(e). P(ILE ()| >
(k)| < 28, where|lx(k)|| < 4. Therefore {y(k)} is el afrfé (&), PAE®EI

uniformly bounded. Notice that

E[(x(k) — m(k))(x(k) — m(k))"]

E[||F(k)z(k)||’] < kp(ke + rpe) — 0 sincee is arbitrary

= E[(x(k) — m)(x(k) — m)”] This implies that E[F(k)z(k)z(k)TF(k)] — 0 w.p.l as
+ E[(x(k) — m)(m — m(k))7] k — oc. Similar analysis for the remaining terms gives us
+ E[(m — m(k))(x(k) — m)7] Jim Efu(k)u(k)’] = 55" lim Efz(k)z(k)"]S;,'/?
+ [(m — m(k))(m — m(k))]. _ g2, 5o
Since by seoumpton B s bounded, e have) 400 et i laa)") = 5. Fuvr e
m m
P g @Bl = IWEz®I < IWEIE] < pr. Ths,
lim E[(x(k) — m)(m — m(k))¥] =0 {u(k)} satisfies Al. By the convergence proof of Sanger’s
koo T algorithm [30], V(k) tends to the matrix whose columns are
Jim El(m —m(k))(x(k) —m)*] =0 the eigenvectors of5;'/%S,,S5/? ordered by decreasing
lim E[(m - m(k))(m - m(k))"] = 0. eigenvalue. O
By B, limy_eo E[(x(k) — m)(x(k) — m)T] = Q. Thus, REFERENCES
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