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On Self-Organizing Algorithms and Networks
for Class-Separability Features

Chanchal Chatterjee and Vwani P. Roychowdhury

Abstract—We describe self-organizing learning algorithms and
associated neural networks to extract features that are effective
for preserving class separability. As a first step, an adaptive
algorithm for the computation of Q�1=2 (where Q is the cor-
relation or covariance matrix of a random vector sequence) is
described. Convergence of this algorithm with probability one is
proven by using stochastic approximation theory, and a single-
layer linear network architecture for this algorithm is described,
which we call theQ�1=2 network. Using this network, we describe
feature extraction architectures for: 1) unimodal and multicluster
Gaussian data in the multiclass case; 2) multivariate linear
discriminant analysis (LDA) in the multiclass case; and 3) Bhat-
tacharyya distance measure for the two-class case. The LDA and
Bhattacharyya distance features are extracted by concatenating
the Q�1=2 network with a principal component analysis (PCA)
network, and the two-layer network is proven to converge with
probability one. Every network discussed in the study considers
a flow or sequence of inputs for training, thereby eliminating the
need for a pooled data for training, and making the networks
useful for online applications. Furthermore, the training of all
layers of the networks can proceed simultaneously. Numerical
studies on the performance of the networks for multiclass random
data are presented.

Index Terms—Adaptive learning, feature extraction networks,
linear discriminant analysis networks.

I. INTRODUCTION

I N this study, we present self-organizing learning algorithms
and associated neural networks to extract features that

are effective for preservingclass separability. In particular,
we describe algorithms and networks for the following three
features that are commonly studied in the pattern recogni-
tion literature [10]: 1) features for unimodal and multicluster
Gaussian data in the multiclass case; 2) multivariate linear
discriminant analysis in the multiclass case; and 3) features
from the Bhattacharyya distance measure for the two-class
case.

The features obtained from the above networks are entirely
different from features that are used for data representation
[9], [10]. In the literature for feature extraction with self-
organizing neural networks, there are numerous algorithms
that are optimal with respect to the representation of data.
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Fig. 1. Illustration of data representation featuree1 and class-separability
featuree2.

These include the principal component analysis (PCA) al-
gorithms [8], [16], [22], [23], [27], [28], [30] that preserve
the variance of the data, and Sammon’s algorithm [15] that
preserves the interpattern distances. Unlike the criteria for data
representation, class-separability criteria are independent of
coordinate systems, and depend on the class distributions, and
the classifier used. Fig. 1 shows a two-class two-dimensional
(2-D) classification problem in which the best feature for data
representation is the projection on. This results in poor
classification compared to the best feature for class separability
which is the projection on .

A review of the state of the art feature extraction networks
is given in Section I-B.

A. Algorithms and Architectures Discussed in this Study

In Section II, we show that all feature extraction tasks
considered in this study involve the computation of ,
where is the positive definite correlation matrix of a random
vector sequence. Since we are training the networks with
a sequence of data, we require an online (i.e., adaptive)
algorithm for this computation. Hence, we first present a novel
algorithm and network for the adaptive computation of
from a sequence of data, and then we outline the three feature
extraction networks discussed in this study.
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Algorithm and Network:Given a sequence
of random vectors, where , we
provide a stochastic approximation algorithm to compute

. We prove that starting from an initial random set
of weights, this algorithm converges with probability one
to . We also describe a single-layer linear network
implementation of this algorithm, which is we call the
network. Numerical simulations for this network as well as its
applications are described in Section V.

Feature Extraction Algorithms and Networks:Using the
algorithm and network discussed above, we derive three

feature extraction networks and their training algorithms. First,
the optimal features forunimodal and multicluster Gaussian
dataare extracted using a two-layer feedforward network. The
first layer is a linear network trained by the algorithm,
and the second layer is a quadratic network with constant
weights, and does not require training.

Next, the LDA andBhattacharyya distancefeatures are
extracted by a two-layer feedforward network where both
layers are linear and require training. The first layer is trained
by the algorithm, and the second layer by an adaptive
eigenvector computation algorithm. We have used the so called
“Sanger’s rule” [13], [30] for this algorithm. The combined
training procedure is proven to converge with probability one
to the desired features.

An added advantage of these training algorithms is that
they are adaptive, and thus: 1) they are well-suited for online
applications and 2) they provide good architectures which are
relatively easily implemented using current VLSI technologies.
Since each algorithm uses a flow or sequence of inputs, we
do not require a pooled data for network training. Besides
the computational advantages, the methods have the added
benefit of requiring less storage. Furthermore, all layers of the
networks are trainedsimultaneously.

Note that, in this study, we emphasize the methods of
feature extraction, and not the particulars of classification after
these features are extracted. Since it is well known [26],
[29], [31] that neural networks are useful in classification,
a separate network may be used for this task. For example,
classification of a unimodal Gaussian feature may be obtained
by using a proper threshold and a minimum selector. The LDA
and Bhattacharyya distance features may be classified by a
linear classifier [10], and, hence, can be implemented by a
single-layer feedforward network. In this study, the classifiers
are used only to demonstrate that the networks estimate the
features accurately, and preserve the classifying abilities of
the actual features. We, therefore, use simple classifiers that
are commonly considered in pattern recognition [10] to test
our feature extraction methods.

B. State-of-the-Art Feature Extraction Networks

Self-Organized Networks for LDA:Self-organized methods
to train feature extraction networks with data from known
classes are recent. Mao and Jain [20] have proposed a two-
layer network for LDA, where each layer is a PCA network
due to Rubneret al. [27], [28]. Although the method is useful,
there are a few problems. The first layer of the network has

to be trained fully, till convergence is obtained, before the
training of the second layer can begin. Thus, in its current
formulation, the training of the two layers can not proceed
simultaneously, which is impractical when the training input
is a flow or sequence of data. The method requires a pooled
data for network training, which may be unrealistic in many
real-time environments. Furthermore, the class and mixture
means of the data are assumed to be known in advance.

The new method overcomes these limitations. Due to the
adaptive nature of this algorithm, we train both layers si-
multaneously, and do not requirea priori knowledge of the
class means. Instead, we estimate the class means during
the learning process. In summary, we suggest a more direct
solution to the LDA problem, that is adaptive in nature, and
applicable to a sequence of inputs.

LVQ and ART Networks:Since class separation is the main
criterion, unlike traditional self-organized methods, the net-
works discussed in this study require training patterns from
known classes. This is different from competitive learning
methods such as learning vector quantization (LVQ) and
self-organizing map [13], [14], and the adaptive resonance
theory (ART) models [13], [14]. Although LVQ also uses
data from known classes, both LVQ and ART models are
primarily designed for clustering and data compression. The
updating procedures in these algorithms have been related to
partitional clustering approaches in pattern recognition [21],
[25], which are very different from the feature extraction
methods described here. For example, LVQ has been linked to
the sequential -means algorithm [25], and the ART models
to the sequential leader clustering algorithm [21].

Supervised Networks for Feature Extraction:The feature
extraction ability of a supervised multilayer feedforward
network is well studied [11], [26], [29], [31], [32]. For
example, Gallinariet al. [11] studied a linear multilayer
perceptron performing a heteroassociative mapping. This work
shows that, for a linear network performing a one-of-(one
output unity, all others zero) classification, the solution of the
weights which minimized the total mean square output error
also maximized a criterion for linear discriminant analysis.
Webb and Lowe [32] extended this result to a multilayer
feedforward network that performs an arbitrary nonlinear
transformation to a space spanned by the hidden units, and
finally executes a linear transform in the output layer. It
is apparent from this study that a nonlinear discriminant
analysis is performed in the space of the hidden units by
the minimization of the output error. Studies [2], [5] in the
autoassociative case shows that the outputs from the hidden
layer are the principal components of the input vector. The
Gaussian feature extraction network has also been studied
[35], and shown to be isomorphic to a one-layer sigma-pi
back propagation network having an increasing activation
function.

In spite of these useful results for multilayer feedforward
networks, we note that they are valid only if proper conver-
gence is obtained, which is not guaranteed because the energy
surface may have multiple local minima. Furthermore, the
minimization may be inaccurate due to incorrect network size.
Using the gradient descent training procedure for minimization



CHATTERJEE AND ROYCHOWDHURY: SELF-ORGANIZING ALGORITHMS AND NETWORKS 665

has the added problem that it is often slow to converge, and
it does not impose any particular structure on the network
architecture or on the solution. Moreover, a feedforward
network, trained as above, may not satisfy the optimality
criterion for the LDA problem as described in Section II-B.
A nonsingular transformation of the outputs will, however,
satisfy this criterion.

Motivated by the preceding issues, several researchers have
designed networks where each layer is trained only with data
from the previous layer [13], [14], [30]. Such networks are
usually studied under the general category of unsupervised
networks. In these networks, the weights in each layer are
trained not by comparing the final outputs with a known
reference, but by the statistical properties of the outputs of that
layer. The networks discussed in this study are in this category.
The training algorithm for each layer is proven to converge
with probability one to the desired feature. Furthermore, the
optimality criterion (see Section II-B) for the LDA network
is satisfied.

In Section II we provide the pattern recognition theory
for the three feature extraction methods discussed above. In
Section III, we present the training algorithms used in the
feature extraction networks, including the algorithm
and its proof of convergence. Section IV discusses the net-
work models for the algorithm, and the three feature
extraction methods. Section V has the numerical simulation
results on multiclass multivariate random data. Section VI has
the concluding remarks.

II. FEATURE EXTRACTION METHODS

In this section, we shall review the pattern recognition
theory for the three feature extraction methods implemented
in this study. Readers familiar with pattern recognition theory
related to these methods can skip this section. Since, in general,
feature extraction criteria depend on the classifier to be used,
we shall simplify the problem by assuming that we seek the
optimum feature set with reference to the Bayes classifier.

Let us consider a finite -set of pattern classes
with a priori probabilities ,

conditional probability density , anda
posteriori probabilities . Let
be a pattern vector whose mixture distribution is given by

. In this study, we assume that . The a posteriori
probability functions, mentioned above, are sufficient statistic,
and carries all information for classification in the Bayes
sense. Since thea posteriori probabilities sum to one, only

of these functions are linearly independent, and
are the ideal features for classification. The Bayes classifier
in this feature space is a piecewise bisector classifier [10]
which is its simplest form.

A. Optimal Features from Gaussian Data

Consider the feature
for class . Since in feature extraction,

additive and multiplicative constants do not alter the subspace
onto which distributions are mapped [10], and since is
common for all classes, is the relevant feature for

. When the distribution is unimodal Gaussian, this feature
reduces to the following quadratic function:

for (1)

where is the class mean and is the class covariance for
. From (1), we obtain the optimum feature for as

for (2)

Note that for Gaussian data, is the sufficient statistic
for classification with minimum Bayes error. In addition to
Gaussian distributions, is a sufficient statistic for a wide
class of unimodal symmetric distributions, as indicated in the
Proposition below.

Proposition: For a two-class problem, define a feature
. Then regardless of distribution of

we have

and

(3)

The proof of the Proposition can be derived from a re-
sult in [6]. Equation (3) shows that the class means in
the feature space may be separable by a threshold

. Thus, regardless of distribution of,
can have a significant classifying ability. Our simu-

lations with uniform distributions corroborate this fact (see
Section V).

If the data is not Gaussian, we may be able to convert it
to a Gaussian-like distribution by using nonlinear transforms.
Fukunaga [10] uses thepower transform for
on radar signals from a gamma distribution, and converts it to
a Gaussian-like one.

If the data is multicluster Gaussian with clusters in ,
then the feature for cluster in is defined as

where

for (4)

Here and are the cluster mean and covariance,
respectively.

B. Linear Discriminant Analysis

The linear discriminant analysis criteria, although related to
the Bayesian risk analysis [7], are mainly based upon a family
of functions of scatter matrices. A within-class scatter matrix is
the scatter of the samples around their respective class means

, and given by

(5)
The between-class scatter matrix is the scatter of the class
means around the mixture mean , and is given by

(6)
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Finally, the mixture scatter matrix is the covariance of all
samples regardless of class assignments

(7)

There are several criteria [10] for feature extraction as func-
tions of these scatter matrices. Some examples are
and that we wish to maximize. In the linear
discriminant analysis case, the optimum linear transformis
composed of the eigenvectors of corresponding
to its largest eigenvalues. Since is not full-rank and not a
covariance matrix, we shall use instead. A simple analysis
shows that both and have the same eigenvector
matrix , and eigenvalue matrices and , respectively.
Thus, and extract the same features, and the
order of significance of the features are the same.

The computation of the eigenvector matrix of
is equivalent to the solution of the generalized eigenvalue
problem where is the generalized eigen-
value matrix. Under the assumption of a positive definite
matrix , there exists a symmetric such that the
problem can be reduced to a symmetric eigenvalue problem

, where is real, and
is symmetric and real. If is orthonormal,

then . Thus, is real and orthonormal
with respect to . Furthermore, which is
diagonal, real and positive definite. This solution is also known
as the simultaneous diagonalization [10] of matricesand

.
Optimality Criterion for the LDA Network:Since the LDA

problem consists of finding the generalized eigen-
vectors of with respect to corresponding to its
largest generalized eigenvalues, we need to find network
weights that satisfy the following two conditions: 1) they
are the generalized eigenvectors of and and 2) they
are arranged in the decreasing order of significance. We
shall refer to this as the “optimality criterion” for the LDA
network. Once this criterion is satisfied by a network, the
significant components (for class separability) of the inputs
are represented by the first few components of the outputs.

C. Bhattacharyya Distance Measure

By the two previous criteria, we obtain a maximum of
features for an -class problem. However, unless thea

posterioriprobability functions are selected as features,
features are suboptimal in the Bayes sense. Several approaches
[6], [9], [10], [24] have been proposed to solve this problem.
One approach is to break up the data into more classes, thereby
artificially increasing the rank of . In another approach,
Foley and Sammon [9] used the generalized Fisher criterion to
generate an orthonormal set of feature vectors in a two-class
case. Later Okada and Tomita [24] extended this method to
a multiclass case.

In alternative approaches we consider that the scatter cri-
terion extracts features in an dimensional subspace
containing all classification information due to the scatter of
mean vectors. The remaining dimensional subspace
contains the information due to covariance differences. To

select features in this subspace, the scatter criterion is no longer
useful, and the Bhattacharyya distance criterion may be used.
This is a convenient measure of class separability since it gives
upper bound of the Bayes error. However, this criterion is only
useful for a two-class Gaussian data.

For Gaussian distributions with means and and
covariances and , for the two classes, respectively, the
Bhattacharyya distance is [10]

(8)

Only the covariance part; i.e., the second term of (8) is used.
We need to maximize defined as

(9)

where is the dimension of and . The optimum linear
transform [10] is composed of the eigenvectors
of (assuming is positive definite) corresponding
to the largest , where ,
are the eigenvalues of . As before, the eigenvectors of

are obtained from a symmetric eigenvalue problem
, where and

. This method is very effective in picking
features along which the variances of two classes are different.

III. T RAINING ALGORITHMS FOR THE

FEATURE EXTRACTION NETWORKS

There are two major training algorithms used in the feature
extraction networks. They are: 1) the new algorithm for
the computation of , where is the positive definite
correlation matrix of a random sequence and 2)
an algorithm for the computation of the eigenvectors of.

Note that there is no unique solution for . Let
and be the eigenvector and eigenvalue
matrices, respectively, of . Then a solution for is ,
where . However, in general
this is not a symmetric solution, and for any orthonormal
matrix is also a solution. One can show that
is symmetric if and only if it is of the form , and
there are symmetric solutions for . When is
positive definite, we obtain the unique symmetric positive
definite solution for as , where

.

A. Adaptive Computation of and a
Stochastic Approximation Proof

The algorithm for the adaptive computation of is

(10)

where is symmetric and nonnegative definite,
and is a scalar gain sequence. We shall prove that
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with probability one (w.p.1) as ,
where is the unique symmetric positive
definite solution discussed above. The algorithm for
nonpositive definite is considered later.

In order to prove the convergence of (10), we shall use
the stochastic approximation theory due to Ljung [3], [18],
[19]. An alternative proof by a similar approach due to
Kushner and Clark [17] can also be given. In a somewhat
looser language, stochastic approximation theory states the
following: 1) can converge only to stable stationary
points of the ordinary differential equation (ODE)

; 2) if belongs to the
domain of attraction of a stable stationary point of the
ODE infinitely often (i.o.) w.p.1, then converges w.p.1
to as ; and 3) the trajectories of the ODE
are the “asymptotic paths” of generated by (10). The
proof requires the following steps: 1) generating a set of
assumptions; 2) finding the stable stationary points of the
ODE; and 3) an analysis showing that visits the domain
of attraction of a stable stationary point infinitely often.

Assumptions and Formulation of the ODE:In order to
prove the convergence of (10), we shall use Theorem 1 of
Ljung [18]. The following is a general set of assumptions for
the convergence proof of algorithm (10).

Assumption (A1):The training sequence
consists of random vectors, where each is uni-
formly bounded; i.e., . Moreover,

where is positive definite.
Assumption (A2): is a decreasing sequence

such that for some ,
and .

Assumption A1 is reasonable for most practical implemen-
tations, where are kept bounded either by deliberate
measures or automatically. Methods to keep bounded
are discussed in Ljung [18]. The physical meaning of A2
can be described as follows. Condition allows
the process to settle down in the limit, whereas

insures that there is enough corrective action to avoid
stopping short of the solution. Conditions and

guarantee that the
variance of the accumulated noise is finite so that we can
correct for the effect of noise. Assumption A2 holds with

for . The choice of is a leading
case.

In the literature for stochastic approximation proofs, there
are many assumptions that are usually made on the statistical
properties of , such as statistically independent and i.i.d.
However, Ljung [3], [18] permits far less restrictive choices for

. Specifically, we can assume that is generated
by a linear structure

(11)

or a nonlinear variant

(12)

can also be postulated [18]. Here is a uniformly
bounded sequence of independent (not necessarily stationary
or with zero means) random vectors. These structures are
treated at length in [3], [18], and [19]. In light of these models,
we state the following general assumption for .

Assumption (A3):Sequence is generated by (11) or
(12) satisfying the stability and regularity conditions of Ljung
[18].

The main assumptions of Theorem 1 of Ljung [18] are:

The function is continuously
differentiable with respect to and . The derivatives are,
for fixed and , bounded in .

exists. The expecta-
tion is over the distribution of .

We modify the result given by Ljung [18] in Theorem 1 to
suit the present algorithm in the following Lemma.

Lemma 1: Let A1–A3 hold. Let be a locally asymp-
totically stable (in the sense of Lyapunov) solution for the
ODE

(13)

with domain of attraction . If there is a compact subset
such that infinitely often, then we

have with probability one as .
Proof: We shall show that we satisfy conditions L1 and

L2 of Ljung. Clearly is continuously
differentiable with respect to and satisfying . Sequence

is bounded by A1. The boundedness of is proven
in Lemmas 4 and 5 later. Thus, the derivatives are bounded
in . Condition L2 follows from A1. The result is a direct
application of Theorem 1 of Ljung [18].

Solution of the ODE:
Lemma 2: There exists a unique solution of the

ODE (13) which satisfies a given initial condition
. Moreover, the solution depends continuously

on and , and for any if then
uniformly over .

Proof: Let be a
open ball with center and constant but arbitrary radius

. Let . We claim that satisfies
a Lipschitz condition1 in . For any
and , we have

where , and is the largest eigenvalue
of , which exists due to A1. This proves the claim.

By the uniqueness theorem [4] for the ODE (13), there is
at most one solution which satisfies a given initial
condition . By the Continuity Theorem [4],

1A functionh defined on a domainB is said to satisfy a Lipschitz condition,
if there is a constantL such thatkh(x) � h(y)k2 � Lkx � yk2 for all
x;y 2 B.
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for any if , then if
then uniformly over .

In the following analyses, we shall denote as the
largest eigenvalue of as the smallest eigenvalue
of , and as the eigenvalues of in
decreasing order.

Lemma 3: Let and , respectively, be the eigenvector
and eigenvalue matrices of , and let be positive
definite, then the point is (uniformly)
asymptotically stable. The domain of attraction of includes

and
.

Proof: Note that for symmetric, is sym-
metric for all . Then the ODE (13) is a Riccati differential
equation [1] with Hamiltonian matrix shown below. An
eigen decomposition of is

(14)

Define , where is
the initial condition of the ODE at . Clearly, exists if

is nonsingular. Using the standard solution [1]
for the Riccati differential equation (13), we obtain a trajectory

as

(15)

In (15), exists if
is nonsingular for all . By Lemma 2, this solution, if

it exists, is the unique solution for the ODE in (13).
The asymptotically stable solution is

where is positive definite. Note
that this is the unique symmetric positive definite solution for

. An analysis of the conditions for nonsingualrity of the
above matrices for all , gives us a domain of attraction
for that includes and

.
It is now clear that (10) will converge to an asymptotically

stable solution for symmetric and
nonnegative definite, provided infinitely often,
where is a compact subset of .

Infinitely Often: Since is compact, we need
to establish a uniform upper bound for for all .
In practical implementation, we can hard-limit the entries of

so that their magnitudes remain below a certain limit
and thus within a compact region. However, this may

automatically happen in (10) due to the following fact. We
see from (10), that grows in each recursion by

, but the growth is controlled by a “forgetting” term of
. As gets larger so does

. Thus, we can intuitively see that there exits
a bound for such that if , then

w.p.1. To prove this fact, we need
the following definitions and assumption.

Definitions: A sequence is said to be ingeneral
position if every matrix of

consecutive vectors is of rank. This sequence is in
uniform general positionif the smallest singular value of
is uniformly bounded away from zero.
We assume the following.

Assumption (A4):The sequence is in uniform gen-
eral position.

Lemma 4: Let A1–A4 hold. Then there exists a uniform
upper bound for for all .

Proof: Proof is given in the Appendix.
The Lemma also gives us a uniform upper bound for

that we need to satisfy at the start of the algorithm.
Finally, in order to satisfy infinitely often, where

, we establish a uniform lower bound for
. For this, we have the following Lemma.

Lemma 5: Let A1–A4 hold. Then there exists a uniform
upper bound for such that uniformly for
all .

Proof: Proof is given in the Appendix.
Theorem 1: Let A1–A4 hold. Further assume that

and are within their uniform upper bounds stated in
Lemmas 4 and 5, respectively. If is assigned random
weights such that is symmetric and nonnegative definite,
then with probability one, algorithm (10) will converge, and

as , where is the
unique symmetric positive definite solution for .

Proof: By Lemma 5, uniformly for all .
By Lemma 4, is w.p.1 uniformly bounded above
for all . Then there exists a compact subsetof such
that infinitely often. The theorem is now implied
by Lemma 1.

Further Remarks on Algorithm (10):In algorithm (10) we
assume to be nonnegative definite. However, if it is
necessary to have nonpositive definite, then we modify
(10) as follows:

(16)

with symmetric and nonpositive definite. The above
lemmas and theorem can be extended to (16). The ODE is

, whose asymptotically stable solution is
, which is the unique symmetric negative

definite solution for . The domain of attraction of
includes and

. Lemma 4 is modified to state that there exists
a uniform lower bound for for all . The uniform
upper bound for in Lemma 5 remains the same such that

uniformly for all .

B. Adaptive Computation of the Eigenvectors of

There are many algorithms to compute eigenvectors of
the correlation matrix of a random sequence

. These include algorithms due to Oja [22], [23], Sanger
[30], Rubner et al. [27], [28], Foldiak [8], and Kung and
Diamantaras [16] to name a few. Among these, we have
chosen the Sanger’s algorithm, for the following reasons: 1)
this algorithm computes the eigenvectors of ordered by
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decreasing eigenvalue; 2) the convergence of the algorithm
is guaranteed for an initial random sets of weights, and for a
wide choice of learning parameters [see (17) below]; and
3) the algorithm can be implemented in a network with local
operations. The modified Sanger’s algorithm is

(17)

Here is the weight matrix, satisfy A2, and
sets all entries of its matrix argument below the diagonal

to zero, thereby making the matrix upper triangular. Sanger’s
algorithm is [30]

(18)

where makes the matrix lower triangular. Algorithm (17)
is obtained from (18) by taking its transpose and replacing

by . Due to the convergence of Sanger’s algorithm
[30], if is assigned random weights, will converge
w.p.1 to a matrix whosecolumnsare the eigenvectors of ,
ordered by decreasing eigenvalue.

C. Adaptive Estimation of the Mean and
Correlation of

An algorithm for the adaptive estimation of the mean vector
of a random sequence is

(19)

Here is the current estimate of the mean, and
satisfies A2. In order to prove its convergence, we need the
following assumption.

Assumption (A5): are uniformly bounded
random vectors with .

In order to prove the w.p.1 convergence of to , we
use assumptions A5, A2, and A3. The ODE is .
The only asymptotically stable solution is, whose domain
of attraction is .

An algorithm for the adaptive estimation of the correlation
matrix of is

(20)

Using A1–A3, the ODE is . The only asymp-
totically stable solution is , whose domain of attraction is

.

IV. NETWORKS FORFEATURE EXTRACTION

In this section, we shall use the algorithms in Section III
to train networks for feature extraction by the three criteria
discussed in Section II.

A. Network Implementation of Algorithm (10)

We present an implementation of algorithm (10) where the
weight matrix is updated by sequential update rules. Let

be a training input for (10), and let be
its output. Let denote the th element of , and

Fig. 2. Functional block diagram illustrating theQ�1=2 training algorithm
(10).

denote the th component of . The weight update
for (10) can be written as

for (21)

where is the Kronecker’s delta. Since is symmetric,
we need to update only the lower or upper triangular block of

. Fig. 2 shows a network implementation for updating
for . The network above for algorithm (10) will
be used as a block in the feature extraction networks described
below. We shall refer to this network as the network.

B. Networks for Optimal Features from Gaussian Data

Unimodal Case:Recall from (2), that when the data is
unimodal Gaussian, the feature , for class is

for , where is the class
mean and is the class covariance. Hence, it involves the
computation of , and the network described in Fig. 2.
The feature extraction network consists of two layers (see
Fig. 3): 1) The first layer is trained by the algorithm
(10). It has weight matrix that tends to w.p.1 as

. 2) The second layer computes the square of the norm
of the first layer outputs. The weights for the second layer are
fixed at one. The training of the network is discussed below.

Let denote a sequence of training patterns from
. Note that we have assumed that the input

patterns are asequence of data, and we can not assume that
the class mean is known. We, therefore, obtain a running
estimate of the class mean by (19) from .

Algorithm (10) is usedin parallel for each class with weight
matrix . A training sequence is generated as
follows: for each . Note that if
the network is trained with , then by
Theorem 1, converges w.p.1 to . However, we are
using the sequence instead. Theorem
2 below proves that also for converges w.p.1
to . Fig. 3 shows the network for the unimodal case.
Given an input pattern , the feature is obtained at
the output of the network. In Fig. 3, , is the
th component of . The activation function is

at the hidden nodes, and linear at the output node.
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Fig. 3. Network for unimodal Gaussian data for class!i; i = 1; � � � ;m.

Convergence with Estimated Class Means:We need to
prove the convergence of the network weights with
estimated class means instead of the true means .
For this proof, we need the following assumptions for .

Assumption (B1):The training sequence for
class consists of random vectors, where each is
uniformly bounded. Moreover, and

. Further assume
that satisfies A3, and satisfies A4.

Assumption (B2):Sequence satisfies A2, and the
uniform upper bound in Lemma 5.

Theorem 2: Let B1 and B2 hold. If is assigned
random weights such that it is symmetric and nonnegative
definite, and within the uniform upper bound stated in Lemma
4, then for the training sequence , algorithm (10)
will converge with probability one, and will approach
the unique symmetric positive definite solution for as

.
Proof: Proof given in the Appendix.

Multimodal Case: If the data for each class is not unimodal
and consists of clusters in , then we shall modify the
above network to extract a feature for each cluster. Recall
from (4) that the feature for cluster in is

where and
and are the cluster mean and covariance, respectively.

We have assumed that theclusters can be determined from
the training patterns for each class. The training procedure for
each cluster uses the algorithm (10) for the first layer,
with the current estimate of the cluster mean .
Given an input sequence , the training sequence for
the first layer is , and weight
matrix for . Weights
for the second layer are fixed at . The modified network
is shown in Fig. 4. In Fig. 4, , is the
th component of for cluster in . The activation

function is at the hidden nodes, and
at the output node.

C. Network for Linear Discriminant Analysis

Recall that for linear discriminant analysis (LDA), we need
to compute the eigenvector matrixof . In particular,
we need to extract the eigenvectors corresponding to the

largest eigenvalues of .
As discussed in Section II, we can solve this problem in

two-steps. The first step is the algorithm that estimates
. The second step computes the eigenvectors of the

Fig. 4. Network for multicluster Gaussian data for clusterj; j = 1; � � � ; ri

in Class!i; i = 1; � � � ;m.

symmetric matrix by a PCA algorithm such
as the Sanger’s rule, which yields the eigenvector matrix

. Then the combined algorithm yields. This methodol-
ogy is the basis for the following architecture. However, since
the class and mixture means of the data are unknown, running
estimates of these means are required. The convergence of the
algorithm with the running estimates of the means is proven.
We give a two-layer solution for the LDA problem, where
(1) the first layer is trained with the algorithm (10)
whose architecture is shown in Fig. 2; and (2) the second layer
is trained with the modified Sanger’s algorithm (17) whose
architecture is well known [13], [30]. The convergence of the
two layers trainedsimultaneouslyis also given.

Training of the First Layer: Let denote a training
sequence with samples from classes . For each

, let denote its class, which is
known in advance. The training sequence for the first
layer is obtained as follows: .
Here for , is the current estimate of
the class mean for , obtained by algorithm (19) from

. The correlation of is the within-
class scatter matrix . This can be seen as follows:

Here, .
Thus, . The
training algorithm for the first layer is (10) with weight matrix

. Then, by Theorem 2, as
w.p.1. Note that this layer has a single network (irrespective
of class), for which the training sequence is obtained
by modifying by the class means.

Training of the Second Layer:In order to train the second
layer, we generate a sequence . Note
that is the training input irrespective of class assignments.
Here is the current estimate of the mixture mean
obtained by (19) from . Sequence is passed
through the first layer to obtain . The
second layer is trained with . The training algorithm is
the modified Sanger’s rule (17) with weight matrix .

As tends to the eigenvectors of the matrix
, ordered by decreasing eigenvalue.
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(a)

(b)

Fig. 5. Network for linear discriminant analysis. All nodes are linear: (a)
training of the first layer; (b) training of the second layer.

Intuitively, the operation of the two-layer network can be de-
scribed as follows: as w.p.1 by The-
orem 2, and . Thus,

w.p.1, and tends to the eigenvector ma-
trix of the symmetric real matrix
w.p.1, ordered by decreasing eigenvalue. A rigorous proof of
this intuitive argument is given in Theorem 3.

Simultaneous Training of Two Layers:From the conver-
gence of and , we obtain

w.p.1. Thus, the combined two-layer
network weight matrix converges w.p.1 to the
generalized eigenvector matrix. Note that is obtained
from the modified Sanger’s algorithm, and its columns are
arranged in the order of decreasing eigenvalues. Therefore,
the first columns of form the relevant
feature extraction transform.

Given an input , the output of this cascaded network tends
to w.p.1 as . Since this is already arranged in
decreasing eigenvalue, the first values of the output
are the relevant projections of onto the dimensional
feature subspace. The two-layer network is shown in Fig. 5. In
Fig. 5, and , are the th component
of and , respectively.

Theorem 3: Let B1 hold for , and let B2 hold. Let
satisfy A2. If is assigned random weights, then

for the training sequence , algorithm (17)
will converge with probability one, and will approach
the matrix whose columns are the eigenvectors of

ordered by decreasing eigenvalue.
Proof: Proof given in the Appendix.

D. Network for the Bhattacharyya Distance Features

From the above networks, we can extract at most
features for an -class problem. In order to complement

this result, the covariance part of the Bhattacharyya distance
measure (9) is used to extract features along which the
covariances of two classes are different. Let the two classes
be and . Like the LDA problem, the optimum linear
transform for the Bhattacharyya distance features consists of
the eigenvectors of , where is the class covariance
matrix for for . The architecture for the two-layer
network is similar to the one given in Fig. 5.

Network Training: Let for , denote the
training sequences from and , respectively. For this
network, the first layer is trained with data from, and the
second layer with data from . We, therefore, generate two
sequences for . Here
is the current estimate of the class mean for. The first layer
is trained with by the algorithm (10) with
weight matrix . By Theorem 2, w.p.1
as .

Sequence is passed through the first layer to obtain
, which is used to train the second layer

by (17). By Theorem 3, the weight matrix of the second
layer tends to the eigenvectors of
w.p.1 as , ordered by decreasing eigenvalue. Here
is the eigenvector matrix of . From the convergence of

and , the combined weight matrix
w.p.1 as .

Order of Significance of the Features:Although the fea-
tures are arranged in the order of decreasing eigenvalues

, of , unlike the LDA features, the
significance of the Bhattacharyya distance features depends
on the values of . However,
for some ranges of , the significance of the features
can be readily determined from the order of. Note that

is a monotonically decreasing function of
for , and increasing for . Thus, if all ,
then the significance of the features have the same order as

for . On the other hand, if all , then
the significance of the features have the reverse order as
for .

If, however, an estimate of is required, we compute
the correlation matrix of the network output for input

. Note that for input the network output
is . By applying Theorem 3
to , we can show that

w.p.1, where is the eigenvalue matrix of
. Correlation matrix is obtained by algorithm (20)

from , and can be found by using the so called
Sherman–Morrison formula [12]

(22)

Estimates of are obtained from the diagonal elements of
. Note, however, that (22) may

be unnecessary, and the diagonal elements of may be
sufficient to estimate , and therefore . The components
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Fig. 6. Convergence of theQ�1=2 Algorithm (10).

of the network output corresponding to thelargest are
the relevant projections of the input patternin the feature
subspace.

V. SIMULATION RESULTS

In this section we use the networks described in Section IV
to extract features, and compare them with results from
nonadaptive methods in pattern recognition. Since the fea-
tures for unimodal and multicluster Gaussian data and the
Bhattacharyya distance features have an underlying Gaussian
assumption, and since Gaussian distributions are common in
many pattern recognition problems [6], [9], [10], [24], [35],
it is appropriate to generate multiclass multivariate Gaussian
data for our experiments. The mean vectors and the covariance
matrices for the Gaussian distributions are chosen from the
experiments of Okada and Tomita [24] with the covariance
matrices multiplied by 20.

A. Experiments on Algorithm (10)

Here we do four experiments on the algorithm (10).
We used the first covariance matrix in [24], and multiplied it

by 20 (as given in the equation shown at the bottom of the
page) for data in The ten eigenvalues of are 117.996,
55.644, 34.175, 20.589, 7.873, 5.878, 1.743, 1.423, 1.213, and
1.007.

We did four experiments, respectively, with the 44, 6
6, and 8 8 principal minors, and with . For each covariance
matrix, we generated 500 samples of zero-mean multivariate
Gaussian data, and estimated the matrix with algorithm
(10). We did the experiments for onlyone epochof the data,
where one epochmeans presenting all training data once in
random order. The actual value of (denoted by )
is obtained from the sample correlation matrix using a standard
eigenvector computation method [12]. For each experiment, at
th update, we computed the -norm of the error between

the estimated and actual matrices, and we denote it by
; i.e.,

(23)

For each covariance matrix, we reported the convergence of
the algorithm in Fig. 6. The final values of after 500
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Fig. 7. Distributions of the two-class 2–D Gaussian data.

Fig. 8. Display of two-class 2-D Gaussian data in the feature space.

samples are for for
for and for .

It is clear from Fig. 6 that the error matrices are all close to
the zero matrix. The small differences compared to the actual
values are due to random fluctuations in the elements of
caused by the varying input data. Experiments with higher
epochs show an improvement in the estimation accuracy. For
example, for the ten-dimensional (10-D) data, with five epochs
we obtained , with ten epochs , and with
20 epochs . Similar results as above are obtained
for uniform distributions.

B. Experiments on Optimal Features from Gaussian Data

Here we use the unimodal network described in IV-B1 to
extract the optimal features for the Gaussian data. We do the
following: 1) generate 500 samples of 2-D Gaussian data, each
from two classes with different covariance matrices and mean

vectors; 2) for each pattern, use the unimodal network to
extract the quadratic features and [see (1)] for
classes and , respectively, and show the classification
results; 3) compare these features with the actual features
obtained from the sample means and covariances; 4) repeat
these steps for a 10-D five-class Gaussian data; and 5) repeat
these steps for 10-D five-class uniform data to show the
effectiveness of these features on non-Gaussian distributions.

Note that in the following experiments, the classification
result is not of central importance. We need to demonstrate
that the networks estimate the features accurately, and preserve
the classifying ability of the true features. The main goal is to
create clusters of data, that are linearly separable. We, there-
fore, used simple classifiers such as the minimum or maximum
selectors or simple thresholds, and used the “resubstitution
method” [10] for testing the classification performance.

Fig. 7 shows a two-class 2-D Gaussian data with the fol-
lowing means and covariances for and , respectively,

and

Clearly, the distributions overlap, and are not linearly sep-
arable. The optimum feature is a quadratic function as shown
in Fig. 7. After training the unimodal network forone epoch,
we extracted the features and from the training data. For
each training pattern, the extracted features and
are classified by simply assigningto class if is the
minimum of the two. We obtained a classification error of six
out of 1000 total samples. Fig. 8 shows the data in the feature
space. Clearly, the data from the two classes are two different
clusters separable by a straight line.

The above result is compared to the actual values ofand
. For each pattern , let for be the actual

feature computed from the sample means and covariances, and
be the estimated feature obtained from the unimodal

network after one epoch. We definenormalized errorof the
features as follows:

for (24)

where is the total number of samples. We obtained
and , which are both less than 1%,

showing that the estimated features are close to their true
values. Classification with the actual features gave us the same
error of six samples out of 1000.

Next, we repeated the experiment with a 10-D Gaussian
data from five classes with 500 samples from each class.
The means and covariances are obtained from [24] with the
covariance matrices multiplied by 20. We trained the unimodal
network with this data, and utilized it to extract features
from the training data. We computed the normalized error
given in (24), and obtained

, and , which show
that the estimates are close to their true values. Using a simple
classification rule as above, we obtained one misclassification
out of 2500 samples.
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Fig. 9. Distributions of the two-class 2–D Gaussian data for LDA features.

Finally, we repeated the above simulation for uniform
distributions. We generated uniform data with the above mean
vectors, trained the unimodal network with this data, and
extracted the features for the training data. We obtained zero
misclassification, and

and . Clearly, this feature
can also be effective for non-Gaussian data.

C. Experiments on Linear Discriminant Analysis Features

Here we test the LDA network described in Section IV-C.
We do the following: 1) generate 500 samples of 2-D Gaussian
data, each from two classes with different mean vectors and
same covariance matrix; 2) use the LDA network to extract the
relevant features for classification, and show the classification
results; 3) compare these features with their actual values
computed from the sample scatter matrices; and 4) repeat this
experiment for a 10-D five-class Gaussian data.

Fig. 9 shows a 2-D two-class Gaussian data with the fol-
lowing means and covariances for and , respectively,

and

Here, , and the eigenvector matrix
of is , corresponding to eigenvalues

eight and zero. Thus, the first columnof is the relevant
feature vector. Projections on contain all information for
classification. Note that the above numbers are exact values
and not the sample estimates.

After training the LDA network for justone epoch, we
estimated . Define normalized error

as , where is computed from the sample

scatter matrices, and is estimated from the LDA network.
We obtained . Clearly, the network estimated the
feature vector accurately in just one epoch. For classification

of the training data, we used a simple threshold
in the feature space. Classification performance with the true
and estimated features are same at two misclassifications out
of 1000 samples.

Next, we repeated this experiment with the 10-D five-class
Gaussian data, with 500 samples from each class. The means
and covariances are obtained from [24] with the covariance
matrices multiplied by 20. The eigenvalues of are
10.84, 7.01, 0.98, 0.34, 0, 0, 0, 0, 0, 0. Thus, the data has
intrinsic dimensionality of four for classification, of which only
two features are significant. The LDA network is trained with
this data for one epoch. Let the two significant feature vectors
be denoted by and , and their estimates from the LDA
network be and , respectively. The normalized errors at
the end of 2500 samples (i.e.,one epoch) are
and , suggesting an accurate estimation by the
LDA network.

In Fig. 10, we show the convergence of feature vectors
and for the LDA network by computing the normalized error
at each update. We observe that both feature vectors converge
close to their true values in a finite number of samples.

Fig. 11 shows the projection of the training data onand
. Although four features are necessary for complete class

separation (as shown by the eigenvalues of ), we see that
the data is separated into five clusters (although overlapping)
with just the two significant feature vectors and . Note
that these clusters are not apparent in the original 10-D data.

D. Experiments on Features from Bhattacharyya
Distance Measure

Here we test the Bhattacharyya distance network described
in Section IV-D to extract features along which the variances
of two classes are different. We do the following: 1) generate
500 samples each of 2-D two-class Gaussian data with same
mean and different covariances; 2) use the Bhattacharyya
network to extract feature vectors and from and

, respectively; 3) compare these feature vectors with their
actual values computed from the sample covariance matrices;
and 4) repeat this experiment for a 10-D two-class Gaussian
data. Fig. 12 shows a two-class 2-D Gaussian data with the
following means and covariances:

and

Note that , and . Thus, both eigenvalues of
are zero, leading to noLDA features. The eigenvector

matrix of is corresponding to
and with . Thus, both features

are important, as is also clear from Fig. 12. We trained the
network for one epoch, and obtained
with normalized errors and .
Estimation of is accurate, whereas the estimation of
is relatively poor. Note that the corresponding eigenvalue

is smaller compared to , giving us a slower
convergence, and resulting in a poorer estimation. Hence, we
repeated the experiment for higher epochs. With five epochs,
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Fig. 10. Convergence of the LDA network.

Fig. 11. Display of five-class 10–D Gaussian data projected on feature
vectors^f1 and ^f2.

we obtained , and , with 10
epochs , and , and with 20 epochs

, and . Clearly, the estimation of
reaches high accuracy much faster than, whereas the

estimation of keeps on evolving for higher epochs.
Next, we used the 10-D five-class Gaussian data with 500

samples from each class. We used the first two classes in [24]
with the covariance matrices multiplied by 20. The eigenvalues
of are

with

and . We trained
the network for three epochs. The estimation errors for the
first five feature vectors are

and . Once, again,
the estimation accuracy keeps on evolving for higher epochs.

VI. CONCLUDING REMARKS

In this study, we discussed a class of feature extraction prob-
lems that can be implemented with artificial neural networks
by two sets of stochastic approximation algorithms: 1) the

algorithm in (10) and 2) the PCA algorithm in (17).
Note that in this study, we emphasized the methods of feature
extraction, and not the techniques of classification with these
features. Since neural networks are useful in classification, a
separate network may be used for this task. We, therefore,
used simple classifiers that are commonly used in pattern
recognition [10], to test the feature extraction methods.

Our experiments (see Section V) indicate that the estimates
converge “close” to their actual values in a finite number of
samples, and the convergence plot (see Fig. 6) resembles an
exponential rate. Although stochastic approximation theory
gives us the asymptotic convergence results (as described
in Section III), we ask a more practical question, on how
fast does algorithm (10) converge for finite samples? The
performance of stochastic approximation algorithms, such as
(10), for finite samples is a subject of ongoing research
[3], [19], and is beyond the scope of this study. However,
stochastic approximation literature [3], [19] states that the
asymptotic errors of the estimates have a zero-mean Gaussian
distribution. Our ongoing research into this area shows that
the variance of the Gaussian distribution is small for most
practical pattern recognition applications. The related results
will appear in a later publication.

The algorithms discussed here can be easily applied to a
number of other criteria for feature extraction. Examples are
the Chernoff and divergence criteria [10] for class separability.
Most properties of these criteria can be discussed in terms
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Fig. 12. Distributions of the two-class 2–D Gaussian data for Bhattacharyya distance features.

similar to those used for the Bhattacharyya distance criterion.
For a two-class Gaussian distribution, the covariance term of
the divergence criterion is similar to
(9). Feature extraction with this criterion can be implemented
by the methods discussed in Section IV-C.

Another application of the algorithm is feature
extraction by a combination of the Karhunen-Loeve transform
(KLT) and LDA [33]. In some applications, due to the high
dimension of the input patterns, may become singular and
the LDA method fails. In such cases, a KLT of the inputs
is first performed. Components of the transformed inputs
corresponding to nonzero eigenvalues of the input correlation
matrix are selected. This transformed data is used as inputs
to the LDA network. This new transform, known as the
discriminant Karhunen–Loeve (DKL) transform [33], can be
realized by cascading an LDA network at the end of a PCA
network. For to be nonsingular in the projected space, at
most components of the KLT are considered. Here
is the number of training samples from classes.

APPENDIX

Proof of Lemma 4:We write (10) as

where

We use the following identity [12]: Suppose ,
where is symmetric, and , then

, where and each
. Moreover, if has a nonzero projection on the

eigenvector corresponding to then .
For simplicity of notation, we shall use instead of

for the rest of this analysis. Let have the
projections on the eigenvectors of
in the order of decreasing eigenvalues. By the above identity,

for each , there exists such that

(25)

By A4, for any set of training vectors
, at least one , has

a nonzero projection on the eigenvector corresponding to
. Furthermore, the projection is bounded away from zero.

Therefore, from (25), for training vectors
, for at least one vector , we have

(26)

Define an index set . Then by A4,
there exists an , such that .

From (26), if . Using

the common choice of for , we obtain

. Similar bounds can be obtained for other

choices of . Therefore, if .
Note that if , then the maximum value for ,
from (26), is . Therefore, if ,
then we have

for all (27)

Proof of Lemma 5:We shall prove by induction. We
start (10) with symmetric and nonnegative definite.
Clearly, remains symmetric for all . Define

. If for some and
then . However, if for some

and is indefinite, then we need to make
sure that .
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Let us consider the case where has the maximum
effect on . This happens when is oriented along the
eigenvector corresponding to . Then,

. By the identity in Lemma 4

where by hypothesis. From the above
equation, if

where

(28)
Let be the uniform upper bound of in Lemma
4. In (28), a tighter upper bound for is obtained by
minimizing under constraint .
Within is a monotonically decreasing function of,
whose minimum is reached for . Further note that

by Assumption A1. Therefore, a uniform upper
bound for is

for all (29)

Proof of Theorem 2:For simplicity, we shall drop the
subscript in the proof. We see that

, where . Therefore, is
uniformly bounded. Notice that

Since by assumption B1 is bounded, we have and
bounded. Due to w.p.1 convergence of ) to , we have

By B1, . Thus,
satisfies assumption A1.

Next, we need to show that satisfies A3. Note that
is generated by the following linear process:

(30)

If is generated by (11), then is generated by
the following linear processes:

(31)

Since , we see that is stable and regular if
is stable and regular (which is assumed in A3). Thus,
satisfies (11) and assumption A3. A similar result can

be shown for generated by (12). The result follows
from Theorem 1.

Proof of Theorem 3:The proof of this theorem can be
considered as an application of the bounded convergence
theorem [34]. By Theorem 2, under assumptions B1 and B2,

w.p.1 as . Therefore,
, where the random matrix w.p.1

as . Thus,

We shall prove that as .
Since is uniformly bounded by Lemma 4, let
. Since is bounded, let . For any

Due to the w.p.1 convergence of , there exists a positive
integer , such that whenever

, and

since is arbitrary

This implies that w.p.1 as
. Similar analysis for the remaining terms gives us

where . Further note that
. Thus,

satisfies A1. By the convergence proof of Sanger’s
algorithm [30], tends to the matrix whose columns are
the eigenvectors of ordered by decreasing
eigenvalue.
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