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Abstract

We consider the min-cost multicast problem (under network coding) with multiple correlated sources
where each terminal wants to losslessly reconstruct all thesources. This can be considered as the net-
work generalization of the classical distributed source coding (Slepian-Wolf) problem. We study the
inefficiency brought forth by the selfish behavior of the terminals in this scenario by modeling it as a
noncooperative game among the terminals. The solution concept that we adopt for this game is the pop-
ular local Nash equilibrium (Wardrop equilibrium) adaptedfor the scenario with multiple sources. The
degradation in performance due to the lack of regulation is measured by thePrice of Anarchy(POA),
which is defined as the ratio between the cost of the worst possible Wardrop equilibrium and the socially
optimum cost. Our main result is that in contrast with the case of independent sources, the presence of
source correlations can significantly increase the price ofanarchy. Towards establishing this result we
make several contributions. We characterize the socially optimal flow and rate allocation in terms of
four intuitive conditions. This result is a key technical contribution of this paper and is of independent
interest as well. Next, we show that the Wardrop equilibriumis a socially optimal solution for a different
set of (related) cost functions. Using this, we construct explicit examples that demonstrate that the POA
> 1 and determine near-tight upper bounds on the POA as well. Themain techniques in our analysis
are Lagrangian duality theory and the usage of the supermodularity of conditional entropy. Finally, all
the techniques and results in this paper will naturally extend to a large class of network information flow
problems where the Slepian-Wolf polytope is replaced by anycontra-polymatroid (or more generally
polymatroid-like set), leading to a nice class of succinct multi-player games and allow the investigation
of other practical and meaningful scenarios beyond networkcoding as well.

1 Introduction

In large scale networks such as the Internet, the agents involved in producing and transmitting information
often exhibit selfish behavior e.g. if a packet needs to traverse the network of various ISP’s, each ISP will
behave in a greedy manner and ensure that the packet spends the minimum time on its network. While this
minimizes the ISP’s cost it may not be the best strategy from aoverall network cost perspective. Selfish
routing, that deals with the question of network performance under a lack of regulation has been studied
extensively (see [20, 25]) and has developed as an area of intense research activity. However, by and large
most of these studies have considered the network traffic injected into the network at various sources to be
independent.
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From an information theoretic perspective there is no need to consider the sources involved in the trans-
mission to be independent. In this work we initiate the studyof network optimization issues related to the
transmission of correlated sources over a network when the agents involved are selfish. In particular, we
concentrate on the problem of multicasting correlated sources over a network to different terminals, where
each terminal is interested in losslessly reconstructing all the sources. We assume that the network is capable
of network coding. Under this scenario, a generalization ofthe classical Slepian-Wolf theorem of distributed
source coding [14] holds for arbitrary networks. In particular, when the network performs random linear
network coding each terminal can recover the sources under appropriate conditions on the Slepian-Wolf re-
gion and the capacity region of the terminals with respect tothe sources, thereby allowing distributed source
coding over networks. The selfish agents in our set-up are theterminals who pay for the resources. Each
terminal aims to minimize her own cost while ensuring that she can satisfy her demands. It is important to
note that this is a generalization of the problem of minimum cost selfish multicast of independent sources
considered by Bhadra et al. [5].

1.1 Our Results

In this work, we model the scenario as a noncooperative game amongst the selfish terminals who request
rates from sources and flows over network paths such that their individual cost is minimized (i.e. with no
regard for social welfare) while allowing for reconstruction of all the sources. We investigate properties
of the socially optimal solution and define appropriate solution concepts (Nash equilibrium and Wardrop
equilibrium) for this game and investigate properties of the flow-rates at equilibrium. We briefly describe
our contributions below.

i) Characterization of social-optimality conditions.The problem of computing the socially optimal cost
is a convex program. We present a precise characterization of the optimality conditions of this con-
vex program in terms of four intuitive conditions, using Lagrangian duality theory and by judiciously
exploiting the super-modularity of conditional entropy. This result is a key technical contribution of
this paper and is of independent interest as well.

ii) Demonstrating the equivalence of flow-rates at equilibriumwith social-optimal solutions for alter-
native instances.We consider certain meaningful market models that split resource costs amongst
the different terminals and show that the flows and rates under the game-theoretic equilibriums are in
fact socially optimal solutions for a different set of cost functions. This characterization allows us to
quantify the degradation caused by the lack of regulation. The measure of performance degradation
due to such loss in regulation that we adopt is thePrice of Anarchy(POA), which is defined as the
ratio between the cost of the worst possible equilibrium andthe socially optimum cost [15, 22, 26, 25].

iii) Showing that source correlation induces anarchy.The main result of this work is that the presence
of source correlations can significantly increase the POA under reasonable cost-splitting mechanisms.
This is in stark contrast to the case of multicast with independent sources, where for a large class of
cost functions, cost-splitting mechanisms can be designedthat ensure that the price of anarchy is one.
We construct explicit examples where the POA is greater thanone and also obtain an upper bound on
the POA which is near tight.

Finally, we expect that the techniques developed in the present work will be applicable to a large class
of network information flow problems with correlated sources where the Slepian-Wolf polytope is replaced
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by polymatroid-like objects. These include multi-terminal source coding with high resolution [28] and the
CEO problem [23].

1.2 Background and Related Work

Distributed source coding (or distributed compression) (see [7], Ch. 14 for an overview) considers the prob-
lem of compressing multiple discrete memoryless sources that are observing correlated random variables.
The landmark result of Slepian and Wolf [27] characterizes the feasible rate region for the recovery of the
sources. However, the problem of Slepian and Wolf considersa direct link between the sources and the
terminal. More generally one would expect that the sources communicate with the terminal over a network.
Different aspects of the Slepian-Wolf problem over networks have been considered in ([2, 8, 24]). Network
coding (first introduced in the seminal work of Ahlswede et al. [1]) for correlated sources was studied by Ho
et al. [14]. They considered a network with a set of sources and a set of terminals and showed that as long as
the minimum cuts between all non-empty subsets of sources and a particular terminal were sufficiently large
(essentially as long as the Slepian-Wolf region of the sources has an intersection with the capacity region of
a given terminal), random linear network coding over the network followed by appropriate decoding at the
terminals achieves the Slepian-Wolf bounds.

The problem of minimum cost multicast under network coding has been addressed in the work of [19,
18]. The multicast problem has also been examined by considering selfish agents [5, 16, 17]. Our work is
closest in spirit to the analysis of Bhadra et al. [5] that considers selfish terminals. In this scenario, for a
large class of edge cost functions, they develop a pricing mechanism for allocating the edge costs among the
different terminals and show that it leads to a globally optimal solution to the original optimization problem,
i.e. the price of anarchy is one. Their POA analysis is similar to that in the case of selfish routing [26, 25].
Our model is more general and our results do not generalize from theirs in a straightforward manner. In
particular, we need to judiciously exploit several non-trivial properties of the Slepian-Wolf polytope in our
analysis.

Further, motivated by the need to deal with selfish users, particularly in network setting, there has been
a large body of recent work at the intersection of networking, game theory, economics, and theoretical
computer science [20, 4, 13]. This work adds another interesting dimension to this interdisciplinary area.

2 The Model

Consider a directed graphG = (S∪T ∪V,E). There is a set of source nodesS that may be correlated and a
set of sinksT that are the terminals (i.e. receivers). Each source node observes a discrete memoryless source
Xi. The Slepian-Wolf region of the sources is assumed to be known and is denotedRSW. For notational
simplicity, letNS = |S|, NT = |T |, S = {1, 2, . . . , NS}, andT = {t1, t2, . . . , tNT

}. The set of paths from
sources to terminalt is denoted byPs,t. Further, definePt = ∪s∈SPs,t i.e. the set of all possible paths
going to terminalt, andP = ∪t∈T Pt, the set of all possible paths. Aflow is an assignment of non-negative
reals to each pathP ∈ P. The flow onP is denotedfP . A rate is a functionR : S × T −→ R+, i.e. the
rate requested by the terminalt from the sources is Rs,t. We will refer to a flow and rate pair(f,R) as
flow-rate. Also, let us denote the rate vector for terminalt by Rt and the vector of requested rates at source
s by ρs i.e. Rt = (R1,t, R2,t, . . . , RNS ,t) andρs = (Rs,t1 , Rs,t2 , . . . , Rs,tNT

).
Associated with each edgee ∈ E is a costce, which takes as argument a scalar variableze that depends

on the flows to various terminals passing throughe. Similarly, letds be the cost function corresponding to the
sources, which takes as argument a scalar variableys that depends on the rates that various terminals request
from s. These functionsce’s andds’s are assumed to beconvex, positive, differentiable and monotonically
increasing. Further, the functions

∫ ce(x)
x dx are also convex, positive, differentiable and monotonically
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increasing. In particular, these conditions are satisfied by functions likexa, a > 1 andxebx, b > 0 among
others.

The network connection we are interested in supporting is one where each terminal can reconstruct all
the sources. i.e. we need to jointly allocate rates and flows for each terminal so that it can reconstruct the
sources. We now present a formal description of the optimization problem under consideration.

2.1 Min-Cost Multicast with Multiple Sources

Let us call the quadruple(G, c, d,RSW) an instance. The problem of minimizing the total cost for the
instance(G, c, d,RSW) can be formulated as

minimize C(f,R) =
∑

e∈E

ce(ze) +
∑

s∈S

ds(ys)

subject to fP ≥ 0 ∀P ∈ P

(NIF − CP )
∑

P∈Ps,t

fP ≥ Rs,t ∀s ∈ S,∀t ∈ T (1)

Rt ∈ RSW ∀t ∈ T

whereze,∀e ∈ E is a function ofxe,t1, xe,t2 , . . . , xe,tNT
, that we denoteze(xe,t1, xe,t2 , . . . , xe,tNT

) with
xe,t =

∑

P∈Pt:e∈P fP ∀e ∈ E, ∀t ∈ T , andys,∀s ∈ S is a function ofρs that we will denoteys(ρs).
The formulation above is similar to the one presented in [5].However since we consider source cor-

relations as well, their formulation is a specific case of ourformulation. Since network coding allows the
sharing of edges, the penalty at an edge is only the maximum and not the sum i.e.ze is the maximum flow
(among the different terminals) across the edgee. Similarly, the penalty at the sources for higher resolution
quantization is also driven by the maximum level requested by each terminal i.e.ys is also maximum. In
this work, for differentiability requirements the maximumfunction will be approximated asLp norm with a
largep. Nevertheless, most of our analysis is done whereze andys are non-decreasing functions partially
differentiable with respect to their arguments, such thatce(ze) andds(ys) are convex, positive, differentiable
and monotonically increasing. Note that in the formulationabove, the objective function is convex and all
constraints are linear which implies that this is a convex optimization problem.

The constraint (1) above models the fact that the total flow from the sources to a terminalt needs to
be at leastRs,t. Finally, the rate point of each terminalRt needs to be within the Slepian-Wolf polytope.
A flow-rate (f,R) satisfying all the conditions in the above optimization problem (i.e. (NIF-CP) ) will be
called a feasibleflow-rate for the instance(G, c, d,RSW) and the costC(f,R) will be referred to as the
social costcorresponding to this flow-rate. Also, we will call a solution (f∗, R∗) of the above problem as
anOPT flow-rate for the instance(G, c, d,RSW).

Consider a feasible flow-rate(f,R) for the above optimization problem. It can be seen that the value of
the flow fromA ⊆ S to a terminalt ∈ T is

∑

P∈∪s∈APs,t
fP ≥

∑

s∈A Rs,t. SinceRt ∈ RSW the result of
[14] shows that random linear network coding followed by appropriate decoding at the terminals can recover
the sources with high probability. Conversely the result of[12, 2] shows the necessity of the existence of
such a flow.

2.2 Terminals’ Incentives and the Distributed CompressionGame

The above formulation for social cost minimization for the instance(G, c, d,RSW) disregards the fact that
the agents who pay for the costs incurred at the edges and the sources may not be cooperative and may have
incentives for strategic manipulation. In this work we consider the scenario where the terminals pay for
the network resources they are being provided. The terminals are noncooperative and will behave selfishly
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trying to minimize their own respective costs without regard to the social cost, while ensuring that they can
reconstruct all the sources. We have the following assumptions.

(i) Let (f,R) denote a feasible flow rate for the instance(G, c, d,RSW). The network operates via
random linear network coding (or some practical linear network coding scheme) over the subgraph of
G induced by the corresponding{ze} for e ∈ E. The terminals are capable of performing appropriate
decoding to recover the sources.

(ii) Each terminalt ∈ T can request for any specific set of flows on the pathsP ∈ Pt and ratesRt as
long as such a request allows reconstruction of the sources at t. There is a mechanism in the network
by means of which this request is accommodated i.e. the subgraph over which random linear network
coding is performed is adjusted appropriately.

In this work we wish to characterize flow-rates that represent an equilibrium among selfish terminals
who act strategically to minimize their own costs. Furthermore, we shall systematically study the loss that
occurs due to the mismatch between the social goals and terminal’s selfish goals.

Towards this end, we now formally model the game originatingfrom the selfish behavior of the ter-
minals. We model this game as anormal formal gameor strategic game[21] , which we refer to as the
Distributed Compression Game(DCG).

A normal form game, denoted(N, {Ai}i∈N, {�i}i∈N), consists of the set ofplayersN, the tuple ofset
of strategiesAi for each playeri ∈ N, and the tuple ofpreference relations�i for each playeri ∈ N on the
setA = ×i∈NAi. Fora, b ∈ A, a �i b means that the playeri prefers the tuple of strategiesa to the tuple
of strategiesb. In the context ofDistributed Compression Game, given an instance(G, c, d,RSW), these
parameters are defined as follows.

2.2.1 The Distributed Compression Game

• Players: N = T , i.e. the terminals are the players. This is because, as mentioned above, the terminals
are the users and they are the ones who pay for the network resources they are being provided.

• Strategies:The strategy set of a playert ∈ T consists of tuples(ft,Rt) where

– ft is the vector of flows on paths going tot, i.e. the vector of valuesfP for all P ∈ Pt, and recall
thatRt denotes the rate vector for terminalt;

– fP ≥ 0 ∀P ∈ Pt,
∑

P∈Ps,t
fP ≥ Rs,t ∀s ∈ S andRt ∈ RSW.

Therefore,

At =







(ft,Rt) :

fP ≥ 0 ∀P ∈ Pt,
∑

P∈Ps,t
fP ≥ Rs,t ∀s ∈ S,

Rt ∈ RSW







. (2)

Note that a feasible flow-rate(f,R) for the instance(G, c, d,RSW) is an element of the setA =
×t∈T At defined for the same instance.

• Preference Relations:To specify the preference relation of terminalt ∈ T , we need to know how
much does she pay given a feasible flow-rate(f,R) i.e. what fractions of the costs at various edges
and sources are being paid byt? To this end, we need market models, i.e. mechanisms for splitting
the costs among various terminals.
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– Edge Costs:At a flow f , the cost of an edgee ∈ E is ce(ze). It is split among the terminals
t ∈ T , each paying a fraction of this cost. Let us say that the fraction paid by the playert
is Ψe,t(xe) i.e. the playert paysce(ze)Ψe,t(xe) for the edgee wherexe denotes the vector
(xe,t1 , xe,t2 , . . . , xe,tNT

). Of course,
∑

t∈T Ψe,t(xe) = 1 to ensure that the total cost is borne
by someone or the other. The total cost borne byt across all the edges is

∑

e∈E ce(ze)Ψe,t(xe),

denotedC(t)
E (f).

– Source Costs:At a rateR, the cost for the sources is ds(ys), which is split among the terminals
t ∈ T , such thatt pays a fractionΦs,t(ρs) i.e. the playert paysds(ys)Φs,t(ρs) for the source
s. Of course,

∑

t∈T Φs,t(ρs) = 1. Therefore, the total cost borne byt for all sources, denoted

C
(t)
S (R), is

∑

s∈S ds(ys)Φs,t(ρs).

Thus, with theedge-cost-splitting mechanismΨ and thesource-cost-splitting mechanismΦ, the total
cost incurred by the playert ∈ T at flow-rate(f,R) denotedC(t)(f,R) is

C(t)(f,R) = C
(t)
E (f) + C

(t)
S (R)

=
∑

e∈E

ce(ze)Ψe,t(xe) +
∑

s∈S

ds(ys)Φs,t(ρs).

Now, each terminalt would like to minimize its own cost i.e. the functionC(t)(f,R) and therefore the
preference relations{�t} are as follows. For two flow-rates(f,R) ∈ A and(f̃ , R̃) ∈ A, (f,R) �t

(f̃ , R̃) if and only if C(t)(f,R) ≤ C(t)(f̃ , R̃). Also, (f,R) ≻t (f̃ , R̃) iff C(t)(f,R) < C(t)(f̃ , R̃).

Note that for specifying a Distributed Compression Game, inaddition to the parametersG, c, d andRSW

we also need the cost-splitting mechanismsΨ andΦ. We will call (G, c, d,RSW,Ψ,Φ) as an instance of the
Distributed Compression Game.

2.2.2 Solution Concepts for the Distributed Compression Game

We now outline the possible solution concepts in our scenario. These are essentially dictated by the level
of sophistication of the terminals. Sophistication refersto the amount of information and computational
resources available to a terminal. In this work we shall workwith two different solution concepts that we
now discuss.

a) Nash Equilibrium.The solution concept of Nash equlibrium requires the complete information setting
and requires each terminal to compute her best response to any given tuple of strategies of the other players.
For notational simplicity, letf−t be the vector of flows on paths not going to terminalt i.e. the vector of
valuesfP for all P ∈ P−Pt, thereforef = (f−t, ft). Similarly,R−t is the vector of rates corresponding to
all players other thant, thereforeR = (R−t,Rt). In our setting, the best response problem of a terminalt
is to minimize her cost functionC(t)(f−t, ft,R−t,Rt) over(ft,Rt) ∈ At given any(f−t,R−t). Therefore
a Nash flow-rate is defined as follows.

Definition 1 (Nash flow-rate)A flow-rate(f,R) feasible for the instance(G, c, d,RSW) is at Nash equi-
librium, or is a Nash flow-rate for instance(G, c, d,RSW,Ψ,Φ), if ∀t ∈ T ,

C(t)(f,R) ≤ C(t)(f−t, f̃t,R−t, R̃t) ∀(f̃t, R̃t) ∈ At.

We note that computing the best response will in general require a given terminal to know flow assignments
on all possible paths and rate vectors for all the terminals.Moreover, convexity of the objective function
in NIF − CP (i.e. social costC(f,R)) does not imply convexity ofC(t)(f−t, ft,R−t,Rt) in the vari-
ables(ft,Rt) ∈ At in general. Therefore the computational requirements at the terminals may be large.
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Consequently Nash equilibrium does not seem to be an appropriate solution concept for the Distributed
Compression Game when viewed through the algorithmic lens.

b) Wardrop Equilibrium. From a practical standpoint, a terminal may only have partial knowledge
of the system and may be computationally constrained. A solution concept more appropriate under such
situations is that of local Nash equilibrium or Wardrop equilibrium that is widely adopted in selfish routing
and transportation literature [25, 3, 9]. We note that this solution concept has also been utilized in [5] and
is further justified in [11]. We first present the precise definition of the Wardrop equilibrium in our case and
then provide an intuitive justification. Towards this end, we need to define the marginal cost of a path.

Definition 2 (Marginal Cost of a Path) For a P ∈ Pt its marginal cost is

CP (f) =
∑

e∈P

ce(ze)Ψe,t(xe)

xe,t
.

Therefore, for the terminalt, the total cost for the edges,C
(t)
E , can be equivalently written as

C
(t)
E (f) =

∑

P∈Pt

CP (f)fP .

Definition 3 (Wardrop flow-rate) A flow-rate(f,R) feasible for the instance(G, c, d,RSW) is at local
Nash equilibrium, or is a Wardrop flow-rate for instance(G, c, d,RSW,Ψ,Φ), if it satisfies the following
conditions.

1. ∀t ∈ T, ∀s ∈ S, we have
∑

P∈Ps,t

fP = Rs,t.

2. ∀t ∈ T , we have
∑

s∈S

Rs,t = H(XS).

3. ∀t ∈ T, ∀s ∈ S, P,Q ∈ Ps,t with fP > 0,

CP (f) ≤ CQ(f).

4. For t ∈ T , let j ∈ S participates inall tight rate inequalities involvingi ∈ S (i.e. if A ⊆ S, such that
i ∈ A and

∑

l∈A Rl,t = H(XA|X−A)1, thenj ∈ A) and letP ∈ Pi,t, Q ∈ Pj,t with fP > 0 then we
have

CP (f) +
∂C

(t)
S (R)

∂Ri,t
≤ CQ(f) +

∂C
(t)
S (R)

∂Rj,t
.

Intuitively, conditions (1) and (2) require that each terminal requests as little rate and flow as possible.
Condition (3) ensures that an infitesimally small change in flow allocations from pathP (wherefP > 0) to
pathQ whereP,Q ∈ Ps,t, will increase the sum cost along paths inPt. Now, consider an infitesimally small
change in flow allocation fromP ∈ Pi,t (wherefP > 0) to Q ∈ Pj,t. This also requires a corresponding
change in the rates requested from sourcesi andj by terminalt. Under certain constraints on the source
j, Condition (4) ensures that the overall effect of this change will serve to increase terminalt’s cost. The

1We useH(XA|X−A) andH(XA|XAc ) interchangeably in the text to denote the joint entropy of the sources in setA given
the remaining sources.
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conditions on the sourcej are well-motivated in light of the characterization of Nashflow-rate in section 5
in the case when the best response problem of every terminal is convex.

We remark that a Nash flow-rate may not always be a Wardrop flow-rate and vice versa. When sources
are independent, condition (2) implies thatRs,t = H(Xs) for all s ∈ S, t ∈ T and it is not required to
check the condition (4). Also we can recover condition (3) bysettingi = j in condition (4). They are stated
separately for the sake of clarity.

As we discussed earlier, the solution concept based on Wardrop equilibrium seems more suitable to our
scenario and consequently we define the price of anarchy [15,22, 25] in terms of Wardrop flow-rate instead
of Nash flow-rate.

Definition 4 Price of Anarchy(POA): Let C be a class of edge cost functions,D be a class of source
cost functions,G be a class of networks/graphs,Ψ be an edge cost splitting mechanism,Φ be a source
cost splitting mechanism, andM be a set of Slepian-Wolf polytopes. We will refer to(G,C,D,Ψ,Φ,M)
as ascenario. The price of anarchy for the scenario(G,C,D,Ψ,Φ,M), denotedρ(G,C,D,Ψ,Φ,M), is
defined as maximum over all instances(G, c, d,RSW) with G ∈ G, c ∈ C, d ∈ D,RSW ∈ M, of the ratio
between the cost of worst possible Wardrop flow-rate for the instance(G, c, d,RSW,Ψ,Φ) and the cost of
OPT flow-rate (i.e. the socially optimal cost) for the instance(G, c, d,RSW). That is,

ρ(G,C,D,Ψ,Φ,M) = max
G∈G,c∈C,d∈D,RSW∈M

(

max(f, R) is a Wardrop flow-rate for(G, c, d, RSW ,Ψ,Φ) C(f,R)

COPT (G, c, d,RSW)

)

,

whereCOPT (G, c, d,RSW) refers to the optimal cost ofNIF − CP for the instance(G, c, d,RSW).

Let us denote the set of Slepian-Wolf polytopes corresponding to the case where there are no source
correlations (i.e.H(XA|X−A) = H(XA) for all A ∈ S) by Mind (subscriptind denotes - independent)
and the set of Slepian-Wolf polytopes corresponding to the case where sources are correlated (i.e. there
existsA ⊆ S with H(XA|X−A) < H(XA)) by Mc. Also, we useGall to denote the class of all graphs
where everyt ∈ T is connected to everys ∈ S, and Gdsw (subscriptdsw denotes - direct Slepian-
Wolf) to denote the class of complete bipartite graphs between the set of sources and the set of terminals.
Note thatGdsw corresponds to the case where every terminals is directly connected to every source by
an edge and no network coding is required. A question we will be most concerned with in this work is
whetherρ(G,C,D,Ψ,Φ,Mc) > ρ(G,C,D,Ψ,Φ,Mind), and in particular whetherρ(G,C,D,Ψ,Φ,Mc) >
1 but ρ(G,C,D,Ψ,Φ,Mind) = 1 for meaningful classes of cost functionsC,D and reasonable splitting
mechanismsΨ andΦ i.e. does correlation induce anarchy?

3 Some Properties of Slepian-Wolf Polytope

In this section, we establish two properties of Slepian-Wolf polytope that will be useful in the latter sections.

Lemma 5 LetRt ∈ RSW i.e.
∑

l∈A Rl,t ≥ H(XA|X−A) for all A ⊆ S. If S1, S2 ⊆ S satisfy

∑

l∈S1

Rl,t = H(XS1 |X−S1)

and
∑

l∈S2

Rl,t = H(XS2 |X−S2)
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then we have
∑

l∈S1∩S2

Rl,t = H(XS1∩S2 |X−(S1∩S2))

and
∑

l∈S1∪S2

Rl,t = H(XS1∪S2 |X−(S1∪S2)).

Proof: We have,
∑

l∈S1∩S2

Rl,t +
∑

l∈S1∪S2

Rl,t =
∑

l∈S1

Rl,t +
∑

l∈S2

Rl,t

= H(XS1 |X−S1) + H(XS2 |X−S2)

≤ H(XS1∩S2 |X−(S1∩S2)) + H(XS1∪S2 |X−(S1∪S2))

where in the second step we have used the supermodularity property of conditional entropy. Now we are
also given that

∑

l∈S1∩S2

Rl,t ≥ H(XS1∩S2 |X−(S1∩S2))

and
∑

l∈S1∪S2

Rl,t ≥ H(XS1∪S2 |X−(S1∪S2)).

Therefore we can conclude that
∑

l∈S1∪S2

Rl,t = H(XS1∪S2 |X−(S1∪S2))

and
∑

l∈S1∩S2

Rl,t = H(XS1∩S2 |X−(S1∩S2)).

Theorem 6 Consider a vector(R1, R2, . . . , Rn) such that

∑

i∈A

Ri ≥ H(XA|XAc), for all A ⊂ {1, 2, . . . , n}, and

n
∑

i=1

Ri > H(X1,X2, . . . ,Xn).

Then there exists another vector(R
′

1, R
′

2, . . . , R
′

n) such thatR
′

i ≤ Ri for all i = 1, 2, . . . n and

∑

i∈A

R
′

i ≥ H(XA|XAc), for all A ⊂ {1, 2, . . . , n}, and

n
∑

i=1

R
′

i = H(X1,X2, . . . ,Xn).

Proof. We claim that there exists aRj∗ ∈ {R1, R2, . . . , Rn} such that all inequalities in whichRj∗ partici-
pates are loose. The proof of this claim follows.
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Suppose that the above claim is not true. Then for allRi wherei ∈ {1, 2, . . . , n}, there exists at least
one subsetSi ⊂ {1, 2, . . . , n} such that,

∑

k∈Si

Rk = H(XSi
|XSc

i
).

i.e. eachRi participates in at least one inequality that is tight.
Now by applying Lemma 5 on the setsS1, S2, . . . , Sn, sinceS1 ∪ S2 · · · ∪ Sn = {1, 2, . . . , n}, we

get
∑n

i=1 Ri =
∑

i∈S1∪S2···∪Sn
Ri = H(XS1∪S2···∪Sn |X−(S1∪S2···∪Sn)) = H(X1,X2, . . . ,Xn), which is a

contradiction.
The above argument shows that there exists somej∗ such that all inequalities in whichRj∗ participates

are loose. Therefore we can reduceRj∗ to a new valueRred
j∗ until one of the inequalities in which it

participates is tight. If the sum-rate constraint is met with equality then we can setR
′

j∗ = Rred
j∗ otherwise

we can recursively apply the above procedure to arrive at a new vector that is component-wise smaller that
the original vector(R1, R2, . . . , Rn).

4 Characterizing the Optimal Flows and Rates

In this section, we investigate the properties of anOPT flow-rate via Lagrangian duality theory [6]. Since
the optimization problem(NIF-CP) is convex and the constraints are such that the strong duality holds,
the Karush-Kuhn-Tucker(KKT)conditions exactly characterize optimality [6]. Therefore, we start out by
writing the Lagrangian dual ofNIF-CP,

L =
∑

e∈E

ce(ze) +
∑

s∈S

ds(ys) −
∑

P∈P

µP fP +
∑

s∈S

∑

t∈T

λs,t(Rs,t −
∑

P∈Ps,t

fP )

+
∑

t∈T





∑

A⊆S

νA,t

(

H(XA|XAc) −
∑

i∈A

Ri,t

)





whereµP ≥ 0, λs,t ≥ 0 andνA,t ≥ 0 are the dual variables (i.e. Lagrange multipliers). For notational
simplicity, let us denote the partial derivative ofze with respect toxe,t, ∂ze

∂xe,t
by z

′

e,t. Note that the partial
derivative ofxe,t w.r.t. to fP is 1 for a P ∈ Pt. Similarly, we denote the partial derivative ofys with
respect toRs,t,

∂ys

∂Rs,t
by y

′

s,t. The KKT conditions are then given by the following equations that hold
∀ s ∈ S, t ∈ T ,

∂L

∂fP
=
∑

e∈P

c
′

e(ze)z
′

e,t(xe) − µP − λs,t = 0, ∀P ∈ Ps,t, and (3)

∂L

∂Rs,t
= d

′

s(ys)y
′

s,t(ρs) + λs,t −
∑

A⊆S:s∈A

νA,t = 0 (4)

along with the feasibility of the flow-rate(f,R) and the complementary slackness conditions,µP fP = 0
for all P ∈ P, λs,t(Rs,t −

∑

P∈Ps,t
fP ) = 0 for all s ∈ S, t ∈ T , andνA,t

(

H(XA|XAc) −
∑

i∈A Ri,t

)

= 0
for all A ⊆ S, t ∈ T .

Let us now interpret the KKT conditions at theOPT flow-rate(f∗, R∗). Suppose thatf∗
P > 0 for

P ∈ Ps,t. Then due to complementary slackness, we haveµ∗
P = 0 and consequently from equation (3)

we get
∑

e∈P c
′

e(z
∗
e )z

′

e,t(x
∗
e) = λ∗

s,t i.e. if there exists another pathQ ∈ Ps,t such thatf∗
Q > 0 then

∑

e∈P c
′

e(z
∗
e )z

′

e,t(x
∗
e) =

∑

e∈Q c
′

e(z
∗
e )z

′

e,t(x
∗
e).
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Now if we interpret the quantity
∑

e∈P c
′

e(ze)z
′

e,t(xe) as thedifferential costof the pathP associated
with the flow-rate(f,R) then this condition implies that the differential cost of all the paths going from the
same source to the same terminal with positive flows atOPT is the same. It is quite intuitive for if it were
not true the objective function could be further decreased by moving some flow from a higher differential
cost path to a lower differential cost one without violatingfeasibility conditions, and of course this should
not be possible at the optimum. Similarly, the differentialcost along a path with zero flow at OPT must have
higher differential cost and indeed this can be obtained as above by further noting that the dual variables
µP ’s are non-negative. We note this property of the OPT flow-rate in the following lemma.

Lemma 7 Let (f∗, R∗) be an OPT flow-rate for the instance(G, c, d,RSW). Then,∀t ∈ T, ∀s ∈ S,
P,Q ∈ Ps,t with fP > 0 we have

∑

e∈P

c
′

e(z
∗
e )z

′

e,t(x
∗
e) ≤

∑

e∈Q

c
′

e(z
∗
e )z

′

e,t(x
∗
e).

The above lemma provides a simple and intuitive characterization of how the flow allocations on var-
ious paths of same type (that is originating at same source and ending at the same terminal) behave at the
optimum solution. Although such a simple and intuitive characterization of the behavior of joint flow and
rate allocations at optimum is not immediately clear, we canindeed obtain three other simple and intuitive
conditions that together with Lemma 7, are equivalent to theKKT conditions. We establish this important
characterization in the Theorem 11. First, we will show in the next three lemmas that these conditions are
necessary for optimality.

Lemma 8 Let (f,R) be an OPT flow-rate for the instance(G, c, d,RSW). For t ∈ T , suppose that there
existi, j ∈ S that satisfy the following property. IfA ⊆ S, such thati ∈ A and

∑

l∈A Rl,t = H(XA|X−A),
thenj ∈ A. For suchi andj let P ∈ Pi,t, Q ∈ Pj,t with fP > 0. Then

∑

e∈P

c
′

e(ze)z
′

e,t(xe) + d
′

i(yi)y
′

i,t(ρi) ≤
∑

e∈Q

c
′

e(ze)z
′

e,t(xe) + d
′

j(yj)y
′

j,t(ρj).

Proof: Since(f,R) is an OPT flow-rate, it satisfies the KKT conditions for some suitable choice of dual
variablesλi,t ≥ 0, µP ≥ 0, νA,t ≥ 0. Now, we are given thatj ∈ A for all A ⊆ S such thati ∈ A
and

∑

l∈A Rl,t = H(XA|X−A), so if there is anA ⊆ S such thati ∈ A but j /∈ A then
∑

l∈A Rl,t >
H(XA|X−A) and therefore by complementary slackness we getνA,t = 0. Further, from Equation 4, we
have

d
′

i(yi)y
′

i,t(ρi) + λi,t =
∑

A⊆S:i∈A

νA,t

=
∑

A⊆S:i∈A,j∈A

νA,t

(since
∑

A⊆S:i∈A,j /∈A

νA,t = 0)

and

d
′

j(yj)y
′

j,t(ρj) + λj,t =
∑

A⊆S:j∈A

νA,t

=
∑

A⊆S:j∈A,i∈A

νA,t +
∑

A⊆S:j∈A,i/∈A

νA,t

≥
∑

A⊆S:j∈A,i∈A

νA,t

= d
′

i(yi)y
′

i,t(ρi) + λi,t.
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Therefore we get,
d
′

i(yi)y
′

i,t(ρi) + λi,t ≤ d
′

j(yj)y
′

j,t(ρj) + λj,t.

Furthermore, we are given thatfP > 0 which, using Equation 3 and complementary slackness condition
fP µP = 0, implies thatλi,t =

∑

e∈P c
′

e(ze)z
′

e,t(xe) and sinceµQ ≥ 0 we have
∑

e∈Q c
′

e(ze)z
′

e,t(xe) ≥ λj,t.
Therefore,

d
′

i(yi)y
′

i,t(ρi) +
∑

e∈P

c
′

e(ze)z
′

e,t(xe) ≤ d
′

j(yj)y
′

j,t(ρj) +
∑

e∈Q

c
′

e(ze)z
′

e,t(xe).

This concludes the proof.

Lemma 9 Let (f,R) be an OPT flow-rate for the instance(G, c, d,RSW) wherein the functionsce’s and
ds’s are all strictly convex, then∀t ∈ T, ∀s ∈ S, we have

∑

P∈Ps,t
fP = Rs,t.

Proof: Let
∑

P∈Ps,t
fP > Rs,t then there is aP ∈ Ps,t with fP > 0. Define a new feasible flow̃f such that

f̃Q = fQ if Q 6= P andf̃P = fP − δ for some0 < δ < min{fP ,
∑

P∈Ps,t
fP − Rs,t}. Then,

∑

e∈E

ce(z̃e) =
∑

e∈P

ce(z̃e) +
∑

e/∈P

ce(ze)

=
∑

e∈E

ce(ze) +
∑

e∈P

(ce(z̃e) − ce(ze))

Now, since the functionsce is non-decreasing as well asze is non-decreasing in each co-ordinate, we get
ce(z̃e) − ce(ze) ≤ 0 for all e ∈ P . Therefore,

∑

e∈E

ce(z̃e) ≤
∑

e∈E

ce(ze) =⇒

C(f̃ , R) =
∑

e∈E

ce(z̃e) +
∑

s∈S

ds(ys)

≤
∑

e∈E

ce(ze) +
∑

s∈S

ds(ys)

= C(f,R)

which is a contradiction because(f,R), due to strict convexity of the functionC, is theuniqueOPT flow-
rate.

Lemma 10 Let (f,R) be an OPT flow-rate for the instance(G, c, d,RSW) wherein the functionsce’s and
ds’s are all strictly convex, then∀t ∈ T , we have

∑

s∈S Rs,t = H(XS).

Proof: As R is feasible,∀t ∈ T , Rt ∈ RSW and therefore,
∑

s∈S Rs,t ≥ H(XS). Suppose
∑

s∈S Rs,t >
H(XS) for somet ∈ T , then from Theorem 6 there exist ans ∈ S, such that all (Slepian-Wolf) inequalities
in which Rs,t participates are loose. Therefore, we can decrease this rate Rs,t by a positive amountr i.e.
to R̃s,t = Rs,t − r, without violating feasibility. This means that we can define a feasible ratẽR such that
R̃i,t = Ri,t if i 6= s andR̃s,t = Rs,t − r for somer > 0. Now,

∑

i∈S

di(ỹi) =
∑

i∈S

di(yi) + (ds(ỹs) − ds(ys))
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Now, sinceds is non-decreasing as well asys is non-decreasing in each co-ordinate, we getds(ỹs) ≤ ds(ys).
Therefore,

∑

i∈S

di(ỹi) ≤
∑

i∈S

di(yi) =⇒

C(f, R̃) =
∑

e∈E

ce(ze) +
∑

s∈S

ds(ỹs)

≤
∑

e∈E

ce(ze) +
∑

s∈S

ds(ys)

= C(f,R)

which is a contradiction because(f,R), due to strict convexity of the functionC, is theuniqueOPT flow-
rate.

Theorem 11 A feasible flow-rate(f,R) for the instance(G, c, d,RSW), which satisfies the following four
conditions is an OPT flow-rate for the instance(G, c, d,RSW). Also, there is always an OPT flow-rate that
satisfies these four conditions. Further, when the edge costfunctionsce for all e ∈ E and the source cost
functionsds for all s ∈ S are strictly convex, that is when the optimization problem(NIF-CP) is strictly
convex, these conditions are also necessary for optimality.

1. ∀t ∈ T, ∀s ∈ S, we have
∑

P∈Ps,t

fP = Rs,t.

2. ∀t ∈ T , we have
∑

s∈S

Rs,t = H(XS).

3. ∀t ∈ T, ∀s ∈ S, P,Q ∈ Ps,t with fP > 0,

∑

e∈P

c
′

e(ze)z
′

e,t(xe) ≤
∑

e∈Q

c
′

e(ze)z
′

e,t(xe).

4. For t ∈ T , suppose that there existi, j ∈ S that satisfy the following property. IfA ⊆ S, such that
i ∈ A and

∑

l∈A Rl,t = H(XA|X−A), thenj ∈ A. For suchi and j let P ∈ Pi,t, Q ∈ Pj,t with
fP > 0. Then

∑

e∈P

c
′

e(ze)z
′

e,t(xe) + d
′

i(yi)y
′

i,t(ρi) ≤
∑

e∈Q

c
′

e(ze)z
′

e,t(xe) + d
′

j(yj)y
′

j,t(ρj).

Proof: We prove that the above four conditions imply optimality of(f,R). Our assumptions guarantee that
the optimization problem (NIF-CP) for the instance(G, c, d,RSW) is convex and since all the feasibility
constraints are linear, strong duality holds [6]. This implies that the KKT conditions are necessary and
sufficient for optimality. We show that a feasible flow-rate(f,R) with the above four properties satisfies the
KKT conditions for the instance(G, c, d,RSW) for a suitable choice of the dual variables given below.
Choosingλi,t’s:

λi,t := min
P∈Pi,t

∑

e∈P

c
′

e(ze)z
′

e,t(xe).
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Note that, usingCondition 3, for i ∈ S, if there exist aPi ∈ Pi,t such thatfPi
> 0 then we have

λi,t =
∑

e∈Pi

c
′

e(ze)z
′

e,t(xe).

ChoosingµP ’s: ForP ∈ Pi,t take

µP :=
∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t.

ChoosingνA,t’s: Let
hi,t := d

′

i(yi)y
′

i,t(ρi) + λi,t.

Let π denote a permutation such that0 ≤ hπ(1),t ≤ hπ(2),t ≤ . . . hπ(NS),t. Now take

νA,t =















hπ(1),t if A = {π(1), π(2), . . . , π(NS)}

hπ(i),t − hπ(i−1),t if A = {π(i), . . . , π(NS)}

and2 ≤ i ≤ NS

0 otherwise.

Now, with the above choice of dual variables we will check allthe KKT conditions one by one.
Dual Feasibility:

• λi,t ≥ 0 asce andze are non-decreasing functions i.e.c
′

e(ze) ≥ 0 andz
′

e,t(xe) ≥ 0.

• µP ≥ 0 by the definition becauseλi,t ≤
∑

e∈P c
′

e(ze)z
′

e,t(xe) ∀P ∈ Pi,t.

• νA,t ≥ 0 by definition.

KKT Conditions as per equation 3:

∂L

∂fP
=
∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t − µP

=
∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t −

(

∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t

)

= 0.

KKT Conditions as per equation 4:

∂L

∂Rπ(i),t
= d

′

π(i)(yπ(i))y
′

π(i),t(ρπ(i)) + λπ(i),t −
∑

A⊆S:π(i)∈A

νA,t

= hπ(i),t −
∑

A⊆S:π(i)∈A

νA,t

= hπ(i),t −
∑

j∈{1,2,...,i}

ν{π(j),π(j+1),...,π(NS)},t

= hπ(i),t −
[

hπ(1),t + (hπ(2),t − hπ(1),t)

+(hπ(3),t − hπ(2),t) + · · · + (hπ(i),t − hπ(i−1),t)
]

= hπ(i),t − hπ(i),t = 0.

Complementary Slackness Conditions:

14



• µP fP = 0 for all P ∈ P.

Let P ∈ Pi,t andfP > 0 then usingCondition 3 and definition ofλi,t we get
∑

e∈P

c
′

e(ze)z
′

e,t(xe) = λi,t

and therefore,
µP =

∑

e∈P

c
′

e(ze)z
′

e,t(xe) − λi,t = 0.

• λs,t(Rs,t −
∑

P∈Ps,t
fP ) = 0 for all s ∈ S, t ∈ T .

This follows from theCondition 1.

• νA,t

(

H(XA|XAc) −
∑

i∈A Ri,t

)

= 0 for all A ⊆ S, t ∈ T .

Note thatνA,t = 0 except forA = {π(i), π(i + 1), . . . , π(NS)}, for i = 1, 2, . . . , NS . Therefore the
only condition that needs to be checked is that if
∑NS

j=i Rπ(j),t > H(Xπ(i),Xπ(i+1), . . . ,Xπ(NS)|Xπ(i−1), . . . ,Xπ(1)), thenhπ(i),t − hπ(i−1),t = 0.

Towards this end letj ∈ {π(i), π(i + 1), . . . , π(NS)}, and letAj be the minimum cardinality set such
thatj ∈ Aj and

∑

l∈Aj
Rl,t = H(XAj

|X−Aj
) i.e.

Aj = arg min
A⊆S:j∈A,

P

l∈A Rl,t=H(XA|X−A)
|A|.

Such a setAj always exists because fromCondition 2 we have
∑NS

l=1 Rl,t = H(X1, . . . ,XNS
) and therefore

the set
{

A ⊆ S : j ∈ A,
∑

l∈A Rl,t = H(XA|X−A)
}

is not empty.
We claim that there exists aj∗ ∈ {π(i), π(i+1), . . . , π(NS)} such thatAj∗∩{π(1), π(2), . . . , π(i−1)}

is not empty. If this is not true then clearly we have∪π(NS)
j=π(i)Aj = {π(i), π(i + 1), . . . , π(NS)} and using

the supermodularity property of conditional entropy (ref.Lemma 5), we obtain

π(NS)
∑

j=π(i)

Rj,t = H(Xπ(i),Xπ(i+1), . . . ,Xπ(NS)|Xπ(i−1), . . . ,Xπ(1)),

which is a contradiction, therefore we must have such aj∗ ∈ {π(i), π(i + 1), . . . , π(NS)} such thatAj∗ ∩
{π(1), π(2), . . . , π(i − 1)} is not empty.

Next, we show that there exists a sourcek ∈ {π(1), π(2), . . . , π(i − 1)} such that ifj∗ ∈ A and
∑

l∈A Rl,t = H(XA|X−A), thenk ∈ A. Towards this end suppose that there exist subsetsS1 andS2 of S
such thatj∗ ∈ S1 ∩ S2 and

∑

l∈S1
Rl,t = H(XS1 |X−S1) and

∑

l∈S2
Rl,t = H(XS2 |X−S2), then using the

supermodularity property of conditional entropy we can show that rate inequality involvingS1 ∩ S2 is also
tight ( Lemma 5) i.e.

∑

l∈S1∩S2
Rl,t = H(XS1∩S2 |X−(S1∩S2)). This implies thatAj∗ , being of minimum

cardinality, is the intersection of all sets that havej∗ as a member on which the rate inequality is tight i.e.

Aj∗ =
⋂

A⊆S

{A : j∗ ∈ A,
∑

l∈A

Rl,t = H(XA|X−A)}.

Moreover note thatAj∗ is not a singleton set sinceAj∗ ∩ {π(1), π(2), . . . , π(i − 1)} 6= φ. Therefore there
exists ak ∈ Aj∗ such thatk 6= j∗. By our above arguments this implies that ifA ⊆ S is such thatj∗ ∈ A
and

∑

l∈A Rl,t = H(XA|X−A) thenk ∈ A.
Clearly,Rj∗,t > H(Xj∗ |X−j∗) ask does not participate in this rate inequality. Therefore,Rj∗,t > 0

which implies that there exists aP ∈ Pj∗,t with fP > 0, therefore usingCondition 3 and the definition of
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λj∗,t we have
∑

e∈P c
′

e(ze)z
′

e,t(xe) = λj∗,t. Also, by the definition ofλk,t there is aQ ∈ Pk,t such that
∑

e∈Q c
′

e(ze)z
′

e,t(xe) = λk,t.
Now usingCondition 4, we get

∑

e∈P

c
′

e(ze)z
′

e,t(xe) + d
′

j∗(yj∗)y
′

j∗,t(ρj∗) ≤
∑

e∈Q

c
′

e(ze)z
′

e,t(xe) + d
′

k(yk)y
′

k,t(ρk) ∀Q ∈ Pk,t

which implies that
λj∗,t + d

′

j∗(yj∗)y
′

j∗,t(ρj∗) ≤ λk,t + d
′

k(yk)y
′

k,t(ρk)

and therefore we gethj∗,t ≤ hk,t. Now note thatk ∈ {π(1), π(2), . . . , π(i−1)} while j∗ ∈ {π(i), . . . , π(NS)}.
This implies in turn thathπ(i),t ≤ hj∗,t ≤ hk,t. But, we know thathk,t ≤ hπ(i−1),t i.e. hπ(i),t−hπ(i−1),t ≤ 0
but we already havehπ(i),t − hπ(i−1),t ≥ 0 and hencehπ(i),t − hπ(i−1),t = 0.

This establishes that the four conditions are sufficient foroptimality. Further, as per Lemmas 7, 8, 9, 10,
under strict convexity conditions, these conditions are necessary too.

Corollary 12 If the sources are independent (i.e.RSW ∈ Mind), there is a feasible flow-rate for instance
(G, c, d,RSW) that is an OPT flow-rate for both the instances(G, c, d,RSW) and (G, c̃, d̃,RSW), where
c̃e(x) = αce(x) for constantα > 0, and d̃s is any convex, differentiable, positive and non-decreasing
function. Further, this OPT flow-rate satisfies the four conditions in Theorem 11 for both the instances
(G, c, d,RSW) and(G, c̃, d̃,RSW).

Proof: The idea is that when the sources are independent, Condition(2) in Theorem 11 implies that
Rs,t = H(Xs) for all s ∈ S, t ∈ T , and therefore, there is no pair(i, j) such thatj participates in all
tight rate inequalities involvingi and consequently it is not required to check Condition (4). For the sake of
completeness the proof follows.

Let (f,R) be an OPT flow-rate for(G, c, d,RSW) satisfying the four conditions in Theorem 11. Note
that such an OPT flow-rate always exists as per Theorem 11. Since the sources are independent the rate
inequalities constraints becomes

∑

i∈A

Ri,t ≥ H(XA) for all A ⊆ S, t ∈ T .

Therefore, using Condition (2) in Theorem 11, we obtain

Rs,t = H(Xs) for all s ∈ S, t ∈ T .

Now we will show that(f,R) is also an OPT flow-rate for the instance(G, c̃, d̃,RSW) by showing that
it satisfies the four conditions in Theorem 11 for instance(G, c̃, d̃,RSW). Note that Conditions (1) and (2)
are easily satisfied by(f,R) as they do not depend on particular cost functions. Further,

∑

e∈P

c̃
′

e(ze)z
′

e,t(xe) = α
∑

e∈P

c
′

e(ze)z
′

e,t(xe),

therefore condition
∑

e∈P

c̃
′

e(ze)z
′

e,t(xe) ≤
∑

e∈Q

c̃
′

e(ze)z
′

e,t(xe)

is equivalent to
∑

e∈P

c
′

e(ze)z
′

e,t(xe) ≤
∑

e∈Q

c
′

e(ze)z
′

e,t(xe),
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therefore condition (3) is also satisfied. For the condition(4), let us first note that as discussed above
Rs,t = H(Xs) for all s ∈ S, t ∈ T . This implies that there is no pair(i, j) ∈ S×S satisfying the promise in
condition (4) i.e. there is no pair(i, j) such thatj participates in all tight rate inequalities involvingi (simply
becausej does not participate in the tight rate inequalityRi,t = H(Xi)). Thus,(f,R) satisfies all the4
conditions in Theorem 11 for the instance(G, c̃, d̃,RSW) and hence is an OPT flow-rate for(G, c̃, d̃,RSW).

5 The Flows and Rates at Nash Equilibrium

In this section, we study the properties of a Nash flow-rate whenever the individual optimization problem
(i.e. the best response problem) of each terminal is convex,that is whenever Nash equilibrium can be
considered as an appropriate solution concept for the Distributed Compression Game when viewed through
the algorithmic lens. Therefore, throughout this section,we assume that the edge cost splitting mechanism
Ψ, as well as, the source cost splitting mechanismΦ are such that the functionsC(t), for all t ∈ T , are
convex. By considering the best response problem of each terminal, and an approach essentially the same as
in the Section 4 for characterizing OPT flow-rate, we can obtain the following Theorem 13 for characterizing
Nash flow-rate.

Theorem 13 Consider an instance(G, c, d,RSW,Ψ,Φ) whereC(t) is convex for allt ∈ T . A feasible
flow-rate(f,R) for the instance(G, c, d,RSW), which satisfies the following four conditions is a Nash flow-
rate for (G, c, d,RSW,Ψ,Φ). Further, whenC(t) is strictly convex for allt ∈ T , these conditions are also
necessary.

(1) ∀t ∈ T, ∀s ∈ S, we have
∑

P∈Ps,t

fP = Rs,t.

(2) ∀t ∈ T , we have
∑

s∈S

Rs,t = H(XS).

(3) ∀t ∈ T, ∀s ∈ S, P,Q ∈ Ps,t with fP > 0,

∂C
(t)
E (f)

∂fP
≤

∂C
(t)
E (f)

∂fQ
.

(4) For t ∈ T , let j ∈ S participates inall tight rate inequalities involvingi ∈ S (i.e. if A ⊆ S, such that
i ∈ A and

∑

l∈A Rl,t = H(XA|X−A), thenj ∈ A) and letP ∈ Pi,t, Q ∈ Pj,t with fP > 0 then we
have

∂C
(t)
E (f)

∂fP
+

∂C
(t)
S (R)

∂Ri,t
≤

∂C
(t)
E (f)

∂fQ
+

∂C
(t)
S (R)

∂Rj,t
.

Further, under similar convexity conditions, we can also show that a Nash flow-rate always exists for
the Distributed Compression Game. This is done via first compactifying the strategy setsAt’s to obtain a
restricted game where existence of a Nash equilibrium follows from the standard fixed point theorems [21].
Then, by utilizing the monotonically non-decreasing properties of various cost functions, it is argued that
a Nash equilibrium of the restricted game is also a Nash flow-rate for ourDistributed Compression Game
thereby proving the existence of a Nash flow-rate forDistributed Compression Game.

The Theorem 14 in the following is a very standard and popularresult on the existence of Nash equilib-
rium and we adopt it from the book by Osborne and Rubinstein [21].

17



Theorem 14 The strategic game〈N, (Ai) , (�i)〉 has a Nash equilibrium if for alli ∈ N, the following
conditions hold.

a) The setAi of actions of playeri is a nonempty compact convex subset of a Euclidean space.

b) The preference relation�i is continuous and quasi-concave onAi. A preference relation�i on A

is said to be quasi-concave onAi if for everya ∈ A the set{ãi ∈ Ai : (a−i, ãi) �i a} is convex. A
preference relation�i onA is said to be continuous ifa �i b whenever there are sequences{ak} and
{bk} with ak, bk ∈ A andak �i bk for all k such that{ak} and{bk} converge toa andb respectively.

Now, let us consider an instance(G, c, d,RSW,Ψ,Φ) of the Distributed Compression Game, whereC(t)

is convex for allt ∈ T .
The action set of the terminalt ∈ T is

At =







(ft,Rt) :

fP ≥ 0 ∀P ∈ Pt,
∑

P∈Ps,t
fP ≥ Rs,t ∀s ∈ S,

Rt ∈ RSW







. (5)

Clearly this is a nonempty convex subset of an Euclidean Space, but it is not compact.
Let us consider a game with a restricted set of strategies denotedÃt’s as follows and let us call this new

game as therestricted gamefor the instance(G, c, d,RSW,Ψ,Φ).

Ãt =























(ft,Rt) :

fP ≥ 0 ∀P ∈ Pt,
∑

P∈Ps,t
fP ≥ Rs,t ∀s ∈ S,

Rt ∈ RSW,
fP ≤ H(XS) ∀P ∈ Pt,
Rs,t ≤ H(XS) ∀s ∈ S























. (6)

Now the setÃt becomes compact as it is a closed and bounded subset of an Euclidean space, and
thereforeÃt satisfies the requirement(a) of the Theorem 14.

Since players’ cost functionsC(t) are convex and continuous for allt ∈ T , the condition(b) in the
Theorem 14 is also satisfied and we obtain the following result.

Lemma 15 The restricted game for the instance(G, c, d,RSW,Ψ,Φ), whereC(t) is convex for allt ∈ T ,
admits a Nash equilibrium.

Now we claim that every Nash equilibrium of the restricted game is also a Nash equilibrium for the
original game and that will imply the existence of a Nash flow-rate for the original game.

Lemma 16 Every Nash equilibrium of the restricted game for the instance(G, c, d,RSW,Ψ,Φ), whereC(t)

is convex for allt ∈ T , is also a Nash flow-rate for the instance(G, c, d,RSW,Ψ,Φ).

Proof: Let (f,R) be a Nash equilibrium of the restricted game for the instance(G, c, d,RSW,Ψ,Φ).
Then, for allt we have

C(t)(f,R) ≤ C(t)(f−t,R−t, f̃t, R̃t)

for all f̃t, R̃t feasible for the restricted game i.e. coming from the restricted strategy set̃At.
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Now let (f̃t, R̃t) ∈ At \ Ãt i.e. f̃t, R̃t is feasible for the original game but not feasible for the restricted
game. For ease of notation, let us define the following quantities.

S1,t =
{

s ∈ S : R̃s,t > H(XS)
}

, S2,t = S \ S1,t

R
′

t =
{

R
′

s,t := H(XS)|s ∈ S1,t

}

P1
t =

{

P ∈ Pt : f̃P > H(XS)
}

, P2
t = Pt \ P1

t

f
′

t =
{

f
′

P := H(XS)|P ∈ P1
t

}

Note that in definingR
′

t andf
′

t we have projected all the flows and rates violating the feasibility for the
restricted game to their boundary values and therefore the strategy(f

′

t , {f̃P : P ∈ P2
t},R

′

t, {R̃s,t : s ∈
S2,t}) ∈ Ãt i.e. it is feasible for the restricted game.

Now,

C(t)(f−t,R−t, f̃t, R̃t) ≥ C(t)(f−t,R−t, f̃t,R
′

t, {R̃s,t : s ∈ S2,t})

≥ C(t)(f−t,R−t, f
′

t , {f̃P : P ∈ P2
t},R

′

t, {R̃s,t : s ∈ S2,t})

and since(f,R) is a Nash equilibrium for the restricted game and(f
′

t , {f̃P : P ∈ P2
t },R

′

t, {R̃s,t : s ∈ S2,t})
is feasible for the restricted game we have

C(t)(f,R) ≤ C(t)(f−t,R−t, f
′

t , {f̃P : P ∈ P2
t},R

′

t, {R̃s,t : s ∈ S2,t})

≤ C(t)(f−t,R−t, f̃t, R̃t)

and thereforeC(t)(f,R) ≤ C(t)(f−t,R−t, f̃t, R̃t) for all (f̃t, R̃t) ∈ At implying that (f,R) is a Nash
equilibrium of the original game meaning(f,R) is a Nash flow-rate for the instance(G, c, d,RSW,Ψ,Φ)

Combining the Lemmas 15 and 16 we obtain the following theorem.

Theorem 17 An instance(G, c, d,RSW,Ψ,Φ), whereC(t) is convex for allt ∈ T , admits a Nash flow-rate.

6 Wardrop Flow-Rate and the Price of Anarchy

In this section, we investigate the inefficiency brought forth by the selfish behavior of terminals. First, we
will show that the Wardrop equilibrium is a socially optimalsolution for a different set of (related) cost
functions. Using this, we will construct explicit examplesthat demonstrate that the POA> 1 and determine
near-tight upper bounds on the POA as well. We start out with the characterization of Wardrop flow-rate.

Theorem 18 Let ze(xe) =
(
∑

t∈T xn
e,t

)
1
n ,Ψe,t(xe) =

xn
e,t

(
P

j∈T xn
e,j)

andΦs,t(ρs) = 1
NT

. A Wardrop flow-

rate for(G, c, d,RSW,Ψ,Φ) is an OPT flow-rate for(G, c̃, d,RSW), wherec̃e(x) = NT

∫ ce(x)
x dx. Further,

when the edge cost functionsce for all e ∈ E and the source cost functionsds for all s ∈ S are strictly
convex, an OPT flow-rate for(G, c, d,RSW) is also a Wardrop flow-rate for(G, ĉ, d,RSW,Ψ,Φ), where
ĉe(x) = 1

NT
xc

′

e(x).

Proof: We will show that the definition of a Wardrop flow-rate for instance(G, c, d,RSW,Ψ,Φ) exactly
corresponds to the four conditions for the instance(G, c̃, d,RSW) in Theorem 11.
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We have,

z
′

e,t(xe) =
1

n





∑

j∈T

xn
e,j





1
n
−1

nxn−1
e,t =

ze

xe,t

xn
e,t

∑

j∈T xn
e,j

.

Therefore,

CP (f) =
∑

e∈P

ce(ze)
xn−1

e,t
(

∑

j∈T xn
e,j

)

=
∑

e∈P

ce(ze)
z
′

e,t(xe)

ze

=
1

NT

∑

e∈P

c̃
′

e(ze)z
′

e,t(xe)

where the last equality follows from the fact that

c̃e(x) = NT

∫

ce(x)

x
dx =⇒ c̃

′

e(x) = NT
ce(x)

x
.

Also,

C
(t)
S (R) =

1

NT

∑

i∈S

di(yi), =⇒

∂C
(t)
S (R)

∂Ri,t
=

1

NT
d
′

i(yi)y
′

i,t(ρi).

Therefore,

CP (f) +
∂C

(t)
S (R)

∂Ri,t
=

1

NT

[

∑

e∈P

c̃
′

e(ze)z
′

e,t(xe) + d
′

i(yi)y
′

i,t(ρi)

]

.

The result follows from the equivalence of conditions coming from Definition 3 and Theorem 11.
In contrast with the result of [5] that holds for a single source with the edge cost splitting mechanism

used above, from Theorem 18, we can note that for most reasonable cost splitting mechanisms, the POA
will not equal one for all monomial edge cost functions. We construct explicit examples for POA> 1 in
the Figures 1 and 2. The example in Figure 1 is near tight as will be evident from an upper bound on POA
derived in Theorem 20.

It is interesting to note that in the case when sources are independent, in the Wardrop or OPT solutions,
the rates requested at various sources will equal their respective lower bounds (i.e. their entropies). There-
fore, the cost term corresponding to the sources will be fixed, and one only needs to find flows that minimize
the edge costs. In this situation, it is not hard to see that the POA will again equal one forall monomial edge
cost functions. i.e.it is the correlation among the sources that is responsible for bringing more anarchy.
We formalize this below.

Let Ck = {c : ce(x) = aex
k, ae > 0,∀e ∈ E} be the set of edge cost functions where all edge cost

functions are monomial of the same degreek possibly with different coefficients, andCmon = ∪k≥1Ck.
Similarly, Dk = {d : di(y) = biy

k, bi > 0,∀s ∈ S}. Also, letDconvex = {d : di is convex∀i ∈ S}.
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Corollary 19 Correlation Induces Anarchy: Letze(xe) =
(
∑

t∈T xn
e,t

)
1
n , Ψe,t(xe) =

xn
e,t

(
P

j∈T xn
e,j)

, ys(ρs) =

(
∑

t∈T Rm
s,t

)
1
m , andΦs,t(ρs) = 1

NT
, then we have

1. ρ(Gall,Cmon,Dconvex,Ψ,Φ,Mind) = 1.

2. ρ(Gall,CNT
,Dconvex,Ψ,Φ,Mc) = 1.

3. ρ(Gall,Cmon,Dconvex,Ψ,Φ,Mc) > 1 for large values ofm andn.
In fact,ρ(Gall,C1,D2,Ψ,Φ,Mc) > 1+NT

5 .

4. ρ(Gdsw,Cmon,Dconvex,Ψ,Φ,Mc) > 1 for large values ofm andn.

Proof: Let c ∈ Cmon i.e. ce(x) = aex
k for ae > 0 for all e ∈ E, therefore,

∫ ce(x)
x dx =

∫

aex
k−1 dx =

ae
1
kxk = 1

kce(x). Also, d ∈ Dconvex. Now, since the sources are independent (i.e.RSW ∈ Mind), from
Theorem 18 and Corollary 12 it follows that a Wardrop flow-rate for instance(G, c, d,RSW,Ψ,Φ) is also an
OPT flow-rate for the instance(G, c, d,RSW) which implies thatρ(Gall,Cmon,Dconvex,Ψ,Φ,Mind) = 1.

Even if the sources are correlated, when we havek = NT , we haveNT

∫ ce(x)
x dx = ce(x) and using

Theorem 18, a Wardrop flow-rate for instance(G, c, d,RSW,Ψ,Φ) is also an OPT flow-rate for the instance
(G, c, d,RSW) which implies that

ρ(Gall,CNT
,Dconvex,Ψ,Φ,Mc) = 1.

We proveρ(Gall,C1,D2,Ψ,Φ,Mc) > 1+NT

5 and consequently

ρ(Gall,Cmon,Dconvex,Ψ,Φ,Mc) > 1,

by explicitly constructing an example as provided in Figure1. All sources are identical with entropyh,
therefore,RSW ∈ Mc. Let ds(y) = C1y

2 for all s ∈ S, therefore,d ∈ D2, and the edge cost functions,
ce(x) = x except for the edge(u, v) for which ce(x) = C2 x. Therefore,c ∈ C1. Let us consider the
following flow-rate(f,R)

R1,t = h ∀t ∈ T

Rs,t = 0 ∀s ∈ S − {1}, t ∈ T

f(1,t) = h ∀t ∈ T over dotted edges in Figure 1

fP = 0 ∀P ∈ Pt − {(1, t)}, t ∈ T.

Clearly,(f,R) is feasible for the instance(G, c, d,RSW). We claim that(f,R) is a Wardrop flow-rate for the
instance(G, c, d,RSW,Ψ,Φ) when2C1h

NT
≤ 1+C2. To see this, first note that(f,R) satisfies the Conditions

(1) and (2) in the definition of Wardrop flow-rate (Definition 3) for the instance(G, c, d,RSW,Ψ,Φ). We
will now check the conditions (3) and (4) in Definition 3. NotethatΨe,t(xe) = 1

NT
wheneverxe,t = x for
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all t ∈ T for somex > 0 and by continuity this is true even ifx = 0. Therefore,

C(1,t)(f) =
∑

e∈{(1,t)}

ce(ze)Ψe,t(xe)

xe,t
=

h . 1

h
= 1,

C(1,u,v,t)(f) =
∑

e∈{(1,u),(u,v),(v,t)}

ce(ze)Ψe,t(xe)

xe,t

= lim
x−→0

[

x . (1/NT )

x
+

C2x . (1/NT )

x
+

x . 1

x

]

= 1 +
1 + C2

NT
, and similarly

C(s,u,v,t)(f) = 1 +
1 + C2

NT
, s ∈ S − {1}.

Clearly, the condition (3) is satisfied asC(1,t)(f) < C(1,u,v,t)(f). Also,

∂C
(t)
S (R)

∂Ri,t
=

1

NT
d
′

i(yi)y
′

i,t(ρi)

=
1

NT
2C1yiy

′

i,t(ρi)

=
2C1

NT
y2

i

Rm−1
i,t

∑

j∈T Rm
i,j

=
2C1

NT





∑

j∈T

Rm
i,j





2/m

Rm−1
i,t

∑

j∈T Rm
i,j

.

∴

∂C
(t)
S (R)

∂R1,t
=

2C1

NT
(NT hm)2/m hm−1

NT hm

=
2C1h

N2
T

asm −→ ∞ and

∂C
(t)
S (R)

∂Rs,t
≥ 0,∀s ∈ S − {1}.

Therefore, when2C1h
NT

≤ 1 + C2, we get

C(1,t)(f) +
∂C

(t)
S (R)

∂R1,t
≤ C(s,u,v,t)(f) +

∂C
(t)
S (R)

∂Rs,t

∀s ∈ S − {1}
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which implies that the condition (4) is also satisfied. Thus,(f,R) is indeed a Wardrop flow-rate for the
instance(G, c, d,RSW,Ψ,Φ). Further,

C(f,R) =
∑

e∈∪t∈T {(1,t)}

ce(ze) +
∑

e∈∪s∈S{(s,u)}

ce(ze)

+ c(u,v)(z(u,v)) +
∑

e∈∪t∈T {(v,t)}

ce(ze) +
∑

s∈S

ds(ys)

= NT h + 0 + 0 + 0 + C1 (NT hm)2/m

= NT h + C1h
2 asm −→ ∞.

Now let us consider another flow-rate(f∗, R∗)

R∗
s,t =

h

NS
∀s ∈ S, t ∈ T

f∗
(1,t) = 0 ∀t ∈ T, and

f∗
(s,u,v,t) =

h

NS
∀s ∈ S, t ∈ T.

Clearly,(f∗, R∗) is feasible for the instance(G, c, d,RSW). Further,

C(f∗, R∗) =
∑

e∈∪t∈T {(1,t)}

ce(z
∗
e ) +

∑

e∈∪s∈S{(s,u)}

ce(z
∗
e ) + c(u,v)(z

∗
(u,v))

+
∑

e∈∪t∈T {(v,t)}

ce(z
∗
e ) +

∑

s∈S

ds(y
∗
s)

= 0 + NS

(

NT (
h

NS
)n
)1/n

+ C2(NT hn)1/n

+NT h + NSC1

(

NT (
h

NS
)m
)2/m

= h(1 + C2 + NT ) +
C1h

2

NS
asm −→ ∞, n −→ ∞.

Thus, when1+C2
C1

< h (1− 1
NS

), we haveC(f∗, R∗) < C(f,R). AsOPT (G, c, d,RSW) ≤ C(f∗, R∗),
this implies that the POA is greater than one.
In particular,

ρ(Gall,C1,D2,Ψ,Φ,Mc) >
C1 + NT

h
1+C2+NT

h + C1
NS

.

Now, takeh = 1, NS = NT > 4, 1 + C2 = 3NT , C1 = N2
T , and note that

2C1h

NT
= 2NT < 3NT = 1 + C2,

as well as,
1 + C2

C1
=

3

NT
< (1 −

1

NT
) = (1 −

1

NS
) as NT > 4.
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Figure 1: Example of a network where POA is linear inNT .
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2

t1

t2

Figure 2: Classical Slepian-Wolf network with appropriatecosts also has POA> 1.
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Therefore, we get

ρ(Gall,C1,D2,Ψ,Φ,Mc) >
1 + NT

5
.

This is near tight as will be evident from Theorem 20.
To establish (4), we will prove a stronger result,ρ(Gdsw,C3,D3,Ψ,Φ,Mc) > 1, by constructing an

example as described below. As shown in Figure 2, there are two sources and two terminals which are
directly connected to each source. Both sources are identical with entropy1, d1(y) = C1y

3, d2(y) = C2y
3

with C1, C2 > 0, C1 6= C2 andce(x) = x3 for all edges. We now outline the argument that shows that the
POA> 1.

First, observe that the instance is symmetric with respect to terminals and all cost functions are strictly
convex. Therefore the OPT flow rate for the instance, denoted(f∗, R∗) is such thatR∗

s,t1 = R∗
s,t2 for

s = 1, 2. Next, by the characterization as per Theorem 18, the Wardrop flow-rate, denoted(f,R) is an
OPT flow-rate forc̃e(x) = 2

3x3 with the source cost functions remaining the same. This new instance
with c̃e(x) = 2

3x3 is also symmetric with respect to the terminals and the cost functions remain strictly
convex. Therefore we conclude that for the Wardrop flow-rateas wellRs,t1 = Rs,t2 for s = 1, 2. Let
R1,t1 = R1,t2 = h andR∗

1,t1
= R∗

1,t2
= h∗. Using the properties of Wardrop flow-rate and OPT flow rate

as per Condition (2) in Theorem 11, we haveR2,t1 = R2,t2 = 1 − h andR∗
2,t1

= R∗
1,t2

= 1 − h∗. We
argue below thath 6= h∗. Consequently, by uniqueness of the OPT flow-rate (due to strict convexity of the
objective function) we will haveC(f,R) > C(f∗, R∗) implying ρ(Gdsw,C3,D3,Ψ,Φ,Mc) > 1. We have,
for t = t1, t2,

∂C
(t)
S (R)

∂R1,t
=

1

NT
d
′

1(y1)y
′

1,t(ρ1)

=
3

2
C1y

2
1y1

Rm−1
1,t

∑2
j=1 Rm

1,j

=
3

4
C1h

2 asm → ∞.

Similarly,
∂C

(t)
S (R)

∂R2,t
=

3

4
C2(1 − h)2.

By the definition of Wardrop flow-rate, we have

f(1,t) = h, f(2,t) = (1 − h).

Thus,
C(1,t)(f) = h2, C(2,t)(f) = (1 − h)2.

Further,
∂C

(t)
S (R)

∂R1,t
+ C(1,t)(f) =

∂C
(t)
S (R)

∂R2,t
+ C(2,t)(f)

implies that
3

4
C1h

2 + h2 =
3

4
C2(1 − h)2 + (1 − h)2.

Therefore,

h

1 − h
=

√

3
4C2 + 1
3
4C1 + 1

.
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Now, from Theorem 18,(f∗, R∗) is a Wardrop flow-rate for the instance where everything remains the same
except for the edge cost functions which are now3

2x3 instead ofx3 and performing the similar calculations
as above for(f,R), we obtain

h∗

1 − h∗
=

√

3
4C2 + 3

2
3
4C1 + 3

2

.

Clearly, sinceC1 6= C2, we geth 6= h∗. In particular, takeC1 = 4, C2 = 8, thenh = 0.5695 and
h∗ = 0.5635. Thus,C(f,R) = 1.9061, C(f∗, R∗) = 1.9052 implying thatPOA ≥ 1.004 > 1, in this

example.
Note that while constructing the above examples the source cost splitting function we have used is

Φs,t(ρs) = 1/NT . Further, for the same mechanism, Corollary 19(2) providesan example of edge cost
functions that gives a POA of one, and possibly this is the only choice giving POA one. Before considering
another reasonable splitting mechanism, we first establishan upper bound which is nearly attainable by
instance given in Figure 1.

Theorem 20 Letze(xe) =
(
∑

t∈T xn
e,t

) 1
n ,Ψe,t(xe) =

xn
e,t

(
P

j∈T xn
e,j)

andΦs,t(ρs) = 1
NT

. Then,

ρ(Gall,Ck,Dconvex,Ψ,Φ,Mc) ≤ max{
NT

k
,

k

NT
}.

Proof: As in the proof of Theorem 18, we have,CP (f) = 1
NT

∑

e∈P c̃
′

e(ze)z
′

e,t(xe) and CPi
(f) +

∂C
(t)
S

(R)
∂Ri,t

= 1
NT

[

∑

e∈Pi
c̃
′

e(ze)z
′

e,t(xe) + d
′

i(yi)y
′

i,t(ρi)
]

.

Let (f,R) be a Wardrop flow-rate and(f∗, R∗) be OPT for(G, c, d,RSW) respectively. Further, let̃ce(x) =

NT

∫ ce(x)
x dx = NT

∫

aex
k−1dx = NT

k aex
k. Now,

C(f,R) =
∑

e∈E

ce(ze) +
∑

s∈S

ds(ys) =
∑

e∈E

aez
k
e +

∑

s∈S

ds(ys)

and

C(f∗, R∗) =
∑

e∈E

ce(z
∗
e ) +

∑

s∈S

ds(y
∗
s)

=
∑

e∈E

ae(z
∗
e )k +

∑

s∈S

ds(y
∗
s)

Let us first consider the case whereNT ≥ k i.e. 1 ≤ NT

k .

C(f,R) =
∑

e∈E

aez
k
e +

∑

s∈S

ds(ys)

≤
∑

e∈E

NT

k
aez

k
e +

∑

s∈S

ds(ys)

=
∑

e∈E

c̃e(ze) +
∑

s∈S

ds(ys).
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Now, from Theorem 18,(f,R) is OPT for(G, c̃, d,RSW) and because(f∗, R∗) is feasible for(G, c̃, d,RSW)
we get

∑

e∈E

c̃e(ze) +
∑

s∈S

ds(ys) ≤
∑

e∈E

c̃e(z
∗
e ) +

∑

s∈S

ds(y
∗
s)

=
∑

e∈E

NT

k
ae(z

∗
e )k +

∑

s∈S

ds(y
∗
s)

≤
NT

k

[

∑

e∈E

ae(z
∗
e )k +

∑

s∈S

ds(y
∗
s)

]

=
NT

k
C(f∗, R∗).

Therefore,
C(f,R)

C(f∗, R∗)
≤

NT

k
.

Similarly, for the case whenNT ≤ k i.e. 1 ≥ NT

k ,

C(f,R) =
∑

e∈E

aez
k
e +

∑

s∈S

ds(ys)

=
k

NT

[

∑

e∈E

NT

k
aez

k
e +

∑

s∈S

NT

k
ds(ys)

]

≤
k

NT

[

∑

e∈E

NT

k
aez

k
e +

∑

s∈S

ds(ys)

]

=
k

NT

[

∑

e∈E

c̃e(ze) +
∑

s∈S

ds(ys)

]

Now, from Theorem 18,(f,R) is OPT for(G, c̃, d,RSW) and because(f∗, R∗) is feasible for(G, c̃, d,RSW)
we get

∑

e∈E

c̃e(ze) +
∑

s∈S

ds(ys) ≤
∑

e∈E

c̃e(z
∗
e ) +

∑

s∈S

ds(y
∗
s)

=
∑

e∈E

NT

k
ae(z

∗
e )k +

∑

s∈S

ds(y
∗
s)

≤
∑

e∈E

ae(z
∗
e )k +

∑

s∈S

ds(y
∗
s)

= C(f∗, R∗)

Therefore,

C(f,R)

C(f∗, R∗)
≤

k

NT
.

Now we consider another splitting mechanismΦ that looks more like the edge cost splitting mechanism

Ψ. Specifically, takeys(ρs) =
(
∑

t∈T (Rs,t)
m
) 1

m andΦi,t(ρi) =
(Ri,t)

m
P

j∈T (Ri,j)m . Let us first note the general-

ization of Corollary 19(1) for any source cost splitting mechanismΦ. Proof is esentially the same as before.
The condition (2) in the definition of Wardrop flow-rate as well as OPT flow-rate renders all the rates to be
equal to their corresponding entropies and consequently the condition (4) need not be checked.
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Lemma 21 Letze(xe) =
(
∑

t∈T xn
e,t

)
1
n , Ψe,t(xe) =

xn
e,t

(
P

j∈T xn
e,j)

, andΦs,t(ρs) be any source cost splitting

function, then we have
ρ(Gall,Cmon,Dconvex,Ψ,Φ,Mind) = 1.

Now, we will argue that withys(ρs) =
(
∑

t∈T (Rs,t)
m
)

1
m andΦi,t(ρi) =

(Ri,t)m
P

j∈T (Ri,j)m we have

ρ(Gdsw,Cmon,Dconvex,Ψ,Φ,Mc) > 1 for large values ofm andn. Let us consider the same example as in
Figure 2 but with the new source cost splitting mechanism. First, note that OPT flow-rate is independent of
the choice of cost splitting functions and the previously calculated OPT flow-rate for this instance(f∗, R∗)
is given by

R∗
1,t = f∗

(1,t) = h∗, and

R∗
2,t = f∗

(2,t) = 1 − h∗.

We will argue that this is not a Wardrop flow-rate and since theOPT flow-rate is unique (by strict convexity)
we will obtainPOA > 1. After some simple calculations we get

∂C
(t)
S (R)

∂Ri,t
= d

′

i(yi)
yi

Ri,t
Φ2

i,t(ρi) + m
di(yi)

Ri,t
Φi,t(ρi) (1 − Φi,t(ρi)) .

Therefore,

∂C
(t)
S (R∗)

∂R1,t
= (m + 3)(NT )3/m C1

4
(h∗)2 and

∂C
(t)
S (R∗)

∂R2,t
= (m + 3)(NT )3/m C2

4
(1 − h∗)2.

Also, C(1,t)(f
∗) = (h∗)2 andC(2,t)(f

∗) = (1 − h∗)2. Note thatNT = 2 in this example. Now, with
C1 = 4, C2 = 8, we haveh∗ = 0.5635 and therefore

C(1,t)(f
∗) +

∂C
(t)
S

(R∗)
∂R1,t

C(2,t)(f∗) +
∂C

(t)
S

(R∗)
∂R2,t

=
(h∗)2 + (m + 3)(NT )3/m C1

4 (h∗)2

(1 − h∗)2 + (m + 3)(NT )3/m C2
4 (1 − h∗)2

=
(m + 3)(NT )3/m + 1

2(m + 3)(NT )3/m + 1

0.56352

(1 − 0.5635)2

=
1

2

0.56352

(1 − 0.5635)2

= 0.8333 6= 1 asm → ∞.

Theorem 22 Let ze(xe) =
(
∑

t∈T xn
e,t

) 1
n , ys(ρs) =

(
∑

t∈T (Rs,t)
m
) 1

m , Ψe,t(xe) =
xn

e,t

(
P

j∈T xn
e,j)

, and

Φi,t(ρi) =
(Ri,t)

m
P

j∈T (Ri,j)m for large values ofm andn, then we have

ρ(Gdsw,Cmon,Dconvex,Ψ,Φ,Mc) > 1.
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7 Future Directions

In this work, we have initiated a study of the inefficiency brought forth by the lack of regulation in the
multicast ofmultiple correlated sources. We have established the foundations of the framework by providing
the first set of technical results that characterize the equilibrium among terminals, when they act selfishly
trying to minimize their individual costs without any regard to social welfare, and its relation to the socially
optimal solution. Our work leaves out several important open problems that deserve theoretical investigation
and analysis. We discuss some of these interesting problemsin the following.

Network Information Flow Games: From Slepian-Wolf to Polymatroids: It is interesting to note that
all the results presented in this chapter naturally extendsto a large class of network information flow prob-
lems where the entropy is replaced by any rank function (ref.Chapter 10 in [10]) and equivalently con-
ditional entropy is replaced by any supermodular function.This is because the only special property of
conditional entropy used in our analysis is its supermodularity. Polytopes described by such rank functions
are calledcontra-polymatroidsand the SW polytope is an example. Therefore, by abstractingthe network
coding scenario to this more general setting, we can obtain anice class of multi-player games with compact
representations, which we callNetwork Information Flow Games. It would be interesting to study these
games further and investigate the emergence of practical and meaningful scenarios beyond network coding.
Furthermore, the network coding scenario where the terminals do not necessarily want to reconstruct all the
sources should also be interesting to analyze.

Dynamics of Wardrop Flow-Rate: Can we design a noncooperative decentralized algorithm that steers
flows and rates in way that converges to a Wardrop flow-rate? What about such an algorithm which runs in
polynomial time? A first approach could be to consider an algorithm where each terminal greedily allocates
rates and flows by calculating marginal costs at each step. The following theorem, which follows from an
approach similar to that in the proof of Theorem 11, providessome intuition on why such a greedy approach
might work, as per the relationship between Wardrop and OPT according to Theorem 18.

Theorem 23 Let(f,R) be an OPT flow-rate for instance(G, c, d,RSW) and definehs,t := d
′

s(ys)y
′

s,t(ρs)+
λs,t for s ∈ S, t ∈ T , whereλs,t’s are dual variables satisfying KKT conditions 3, 4. Further, let σ :
T × S −→ S be defined such that0 < hσ(t,1),t < hσ(t,2),t < · · · < hσ(t,Ns),t. Then,

k
∑

i=1

Rσ(t,i),t = H(Xσ(t,1),Xσ(t,2), . . . ,Xσ(t,k)) for k = 1, . . . , Ns.

Better bounds on POA: Although we have provided explicit examples where correlation brings more
anarchy, as well as, an upper bound on POA which is nearly achievable, we believe that more detailed
analysis is necessary. An important approach in this direction would be to characterize exactly how the
POA depends on structure of SW region i.e. to analyze the finerdetails on how correlation among sources
changes POA, even in the case of two sources. Further, other interesting splitting mechanisms should also
be studied.

Capacity Constraints and Approximate Wardrop Flow-Rates: One immediate direction of investiga-
tion could be to consider the scenario where there is a capacity constraint on each edge i.e. the maximum
amount of flow that can be sent through that edge. Another interesting problem is to investigate the sensitiv-
ity of the implicit assumption in our analysis that terminals can evaluate various quantities, and in particular
the marginal costs, with arbitrary precision. This can be achieved by formulating a notion of approximate
Wardrop flow-rate, where terminals can distinguish quantities only when they differ significantly.
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