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Abstract

We consider the min-cost multicast problem (under networkrg) with multiple correlated sources
where each terminal wants to losslessly reconstruct alstheces. This can be considered as the net-
work generalization of the classical distributed sourcding (Slepian-Wolf) problem. We study the
inefficiency brought forth by the selfish behavior of the tarats in this scenario by modeling it as a
noncooperative game among the terminals. The solutioneginiat we adopt for this game is the pop-
ular local Nash equilibrium (Wardrop equilibrium) adaptedthe scenario with multiple sources. The
degradation in performance due to the lack of regulationeéasared by th€rice of Anarchy(POA),
which is defined as the ratio between the cost of the worsilpeds/ardrop equilibrium and the socially
optimum cost. Our main result is that in contrast with thesoafsindependent sources, the presence of
source correlations can significantly increase the pricanairchy. Towards establishing this result we
make several contributions. We characterize the socigtimal flow and rate allocation in terms of
four intuitive conditions. This result is a key technicahtidbution of this paper and is of independent
interest as well. Next, we show that the Wardrop equilibrisia socially optimal solution for a different
set of (related) cost functions. Using this, we construgtieit examples that demonstrate that the POA
> 1 and determine near-tight upper bounds on the POA as well.nTdie techniques in our analysis
are Lagrangian duality theory and the usage of the supertfadtyuof conditional entropy. Finally, all
the techniques and results in this paper will naturally edt® a large class of network information flow
problems where the Slepian-Wolf polytope is replaced by @mtra-polymatroid (or more generally
polymatroid-like set), leading to a nice class of succinattirplayer games and allow the investigation
of other practical and meaningful scenarios beyond netwoding as well.

1 Introduction

In large scale networks such as the Internet, the agentb/@t/n producing and transmitting information
often exhibit selfish behavior e.g. if a packet needs to temvéhe network of various ISP’s, each ISP will
behave in a greedy manner and ensure that the packet spenadimum time on its network. While this
minimizes the ISP’s cost it may not be the best strategy froowemall network cost perspective. Selfish
routing, that deals with the question of network perfornreanader a lack of regulation has been studied
extensively (see [20, 25]) and has developed as an areaeomtesearch activity. However, by and large
most of these studies have considered the network traféictiefl into the network at various sources to be
independent.
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From an information theoretic perspective there is no neemhsider the sources involved in the trans-
mission to be independent. In this work we initiate the staflgetwork optimization issues related to the
transmission of correlated sources over a network whendkata involved are selfish. In particular, we
concentrate on the problem of multicasting correlatedssipver a network to different terminals, where
each terminal is interested in losslessly reconstructiithQ@asources. We assume that the network is capable
of network coding. Under this scenario, a generalizatiothefclassical Slepian-Wolf theorem of distributed
source coding [14] holds for arbitrary networks. In parf@uwhen the network performs random linear
network coding each terminal can recover the sources umgeopriate conditions on the Slepian-Wolf re-
gion and the capacity region of the terminals with respetitésources, thereby allowing distributed source
coding over networks. The selfish agents in our set-up aréethgnals who pay for the resources. Each
terminal aims to minimize her own cost while ensuring tha sln satisfy her demands. It is important to
note that this is a generalization of the problem of minimwstcelfish multicast of independent sources
considered by Bhadra et al.| [5].

1.1 Our Results

In this work, we model the scenario as a noncooperative ganomgst the selfish terminals who request
rates from sources and flows over network paths such thatitftvidual cost is minimized (i.e. with no
regard for social welfare) while allowing for reconstractiof all the sources. We investigate properties
of the socially optimal solution and define appropriate sofuconcepts (Nash equilibrium and Wardrop
equilibrium) for this game and investigate properties @ tlow-rates at equilibrium. We briefly describe
our contributions below.

i) Characterization of social-optimality condition¥he problem of computing the socially optimal cost
is a convex program. We present a precise characterizatitite @ptimality conditions of this con-
vex program in terms of four intuitive conditions, using kaggian duality theory and by judiciously
exploiting the super-modularity of conditional entropyhig result is a key technical contribution of
this paper and is of independent interest as well.

i) Demonstrating the equivalence of flow-rates at equilibriwith social-optimal solutions for alter-
native instancesWe consider certain meaningful market models that splibuese costs amongst
the different terminals and show that the flows and ratesuh@egame-theoretic equilibriums are in
fact socially optimal solutions for a different set of coghétions. This characterization allows us to
quantify the degradation caused by the lack of regulatidme Measure of performance degradation
due to such loss in regulation that we adopt isBmiee of Anarchy(POA), which is defined as the
ratio between the cost of the worst possible equilibriumthedocially optimum cost [15, 22, 26,/25].

iii) Showing that source correlation induces anarcfijie main result of this work is that the presence
of source correlations can significantly increase the PQdeuneasonable cost-splitting mechanisms.
This is in stark contrast to the case of multicast with inchej@at sources, where for a large class of
cost functions, cost-splitting mechanisms can be desigmdensure that the price of anarchy is one.
We construct explicit examples where the POA is greater ¢timenand also obtain an upper bound on
the POA which is near tight.

Finally, we expect that the techniques developed in theeptesork will be applicable to a large class
of network information flow problems with correlated sowweeghere the Slepian-Wolf polytope is replaced



by polymatroid-like objects. These include multi-termisaurce coding with high resolution [28] and the
CEO problem([23].

1.2 Background and Related Work

Distributed source coding (or distributed compressioag (3], Ch. 14 for an overview) considers the prob-
lem of compressing multiple discrete memoryless sourcaisaie observing correlated random variables.
The landmark result of Slepian and Walf [27] characterizesfeasible rate region for the recovery of the
sources. However, the problem of Slepian and Wolf considedlgect link between the sources and the
terminal. More generally one would expect that the souroesngcunicate with the terminal over a network.
Different aspects of the Slepian-Wolf problem over netvgdnkve been considered inl([2/ 8] 24]). Network
coding (first introduced in the seminal work of Ahlswede ef&]) for correlated sources was studied by Ho
et al. [14]. They considered a network with a set of sourcelssaset of terminals and showed that as long as
the minimum cuts between all non-empty subsets of souraka particular terminal were sufficiently large
(essentially as long as the Slepian-Wolf region of the ssit@s an intersection with the capacity region of
a given terminal), random linear network coding over thewoek followed by appropriate decoding at the
terminals achieves the Slepian-Wolf bounds.

The problem of minimum cost multicast under network codiag been addressed in the work[of][19,
18]. The multicast problem has also been examined by camsigselfish agents [5, 16, 17]. Our work is
closest in spirit to the analysis of Bhadra et all [5] thatsiders selfish terminals. In this scenario, for a
large class of edge cost functions, they develop a pricinchiar@sm for allocating the edge costs among the
different terminals and show that it leads to a globally matfi solution to the original optimization problem,
i.e. the price of anarchy is one. Their POA analysis is simdahat in the case of selfish routing [26, 25].
Our model is more general and our results do not generalixa theirs in a straightforward manner. In
particular, we need to judiciously exploit several nomiéli properties of the Slepian-Wolf polytope in our
analysis.

Further, motivated by the need to deal with selfish usersicpéarly in network setting, there has been
a large body of recent work at the intersection of networkiggme theory, economics, and theoretical
computer science [20] 4, 113]. This work adds another intieiggslimension to this interdisciplinary area.

2 The Model

Consider a directed gragh = (SUT UV, E). There is a set of source nodgshat may be correlated and a
set of sinksI” that are the terminals (i.e. receivers). Each source noslereds a discrete memoryless source
X;. The Slepian-Wolf region of the sources is assumed to be kraowd is denotetRgyy. For notational
simplicity, let Ng = |S|, Ny = |T|, S = {1,2,..., Ng}, andT = {t;,to,...,tn, }. The set of paths from
sources to terminalt is denoted byP, ;. Further, define€P, = UscsPs, i.e. the set of all possible paths
going to terminak, and? = U,crP;, the set of all possible paths. Aowis an assignment of non-negative
reals to each patP € P. The flow onP is denotedfp. A rateis a functionR : S x T'— R*, i.e. the
rate requested by the terminafrom the sources is R, ;. We will refer to a flow and rate paitf, R) as
flow-rate Also, let us denote the rate vector for termihély R; and the vector of requested rates at source
S by Ps i.e. Ry = (Rl,t> Rg’t, L 7RNs,t) andps = (Rs,tlaRs,tga . 7R37tNT)'

Associated with each edgec F is a costc., which takes as argument a scalar variahléhat depends
on the flows to various terminals passing throagBimilarly, letd, be the cost function corresponding to the
sources, which takes as argument a scalar variahléhat depends on the rates that various terminals request
from s. These functions,’s andd,’s are assumed to beonvex, positive, differentiable and monotonically
increasing Further, the function#%“’) dx are also convex, positive, differentiable and monotohjcal



increasing. In particular, these conditions are satisfietlbctions likez®,a > 1 andzeb®,b > 0 among
others.

The network connection we are interested in supporting éswainere each terminal can reconstruct all
the sources. i.e. we need to jointly allocate rates and flowedch terminal so that it can reconstruct the
sources. We now present a formal description of the optitieizgroblem under consideration.

2.1 Min-Cost Multicast with Multiple Sources

Let us call the quadrupléG, ¢, d, Rgy) aninstance The problem of minimizing the total cost for the
instance(G, ¢, d, Rgw) can be formulated as

minimize C(f,R) = Zce(ze) + st(ys)

ecF sES
subjectto  fp>0VPc?
(NIF=CP) > fp>Ry Vs€SVteT (1)

PE:Ps,t
R € Rgyw VEteT

wherez., Ve € Eis a function ofx, s, , ze s, - - - s et that we denote. (zc+,, Ze s, - - - ,xe,tNT) with
Tet = ) pepuecp fP Ve € E, YVt € T, andys, Vs € Sis a function ofp, that we will denotey;(p;).

The formulation above is similar to the one presented in [3wever since we consider source cor-
relations as well, their formulation is a specific case of fmumulation. Since network coding allows the
sharing of edges, the penalty at an edge is only the maximuhmaiithe sum i.ez. is the maximum flow
(among the different terminals) across the edg8imilarly, the penalty at the sources for higher resohutio
guantization is also driven by the maximum level requesteddth terminal i.ey; is also maximum. In
this work, for differentiability requirements the maximdonction will be approximated ak, norm with a
largep. Nevertheless, most of our analysis is done whegrandy, are non-decreasing functions partially
differentiable with respect to their arguments, such ¢hét.) andd;(ys) are convex, positive, differentiable
and monotonically increasing. Note that in the formulatidiove, the objective function is convex and all
constraints are linear which implies that this is a convetsoigation problem.

The constraint[{1) above models the fact that the total flemnfthe source to a terminalt needs to
be at leastR, ;. Finally, the rate point of each termin&; needs to be within the Slepian-Wolf polytope.
A flow-rate (f, R) satisfying all the conditions in the above optimizationigem (i.e. (NIF-CP) ) will be
called a feasibleflow-rate for the instancéG, c, d, Rgw) and the cost’( f, R) will be referred to as the
social costcorresponding to this flow-rate. Also, we will call a solutiof*, R*) of the above problem as
anOPT flow-rate for the instancéG, c, d, Rgw).

Consider a feasible flow-ratef, R) for the above optimization problem. It can be seen that theevaf
the flow fromA C Sto aterminalt € T'iS Y pe,_,p,, [P = D sea Rst- SinceR; € Rgw the result of
[14] shows that random linear network coding followed byrayppiate decoding at the terminals can recover
the sources with high probability. Conversely the resulfl@;,[2] shows the necessity of the existence of
such a flow.

2.2 Terminals’ Incentives and the Distributed CompressiorGame

The above formulation for social cost minimization for tietance(G, ¢, d, Rgyy) disregards the fact that

the agents who pay for the costs incurred at the edges anduhges may not be cooperative and may have
incentives for strategic manipulation. In this work we ddes the scenario where the terminals pay for
the network resources they are being provided. The tersara noncooperative and will behave selfishly



trying to minimize their own respective costs without refjr the social cost, while ensuring that they can
reconstruct all the sources. We have the following assumgti

(i) Let (f,R) denote a feasible flow rate for the instan@@, c, d, Rsw). The network operates via
random linear network coding (or some practical linear nekweoding scheme) over the subgraph of
G induced by the correspondifg. } for e € E. The terminals are capable of performing appropriate
decoding to recover the sources.

(i) Each terminalt € T can request for any specific set of flows on the paths P; and rateR, as
long as such a request allows reconstruction of the soutade§ here is a mechanism in the network
by means of which this request is accommodated i.e. the apbaver which random linear network
coding is performed is adjusted appropriately.

In this work we wish to characterize flow-rates that represenequilibrium among selfish terminals
who act strategically to minimize their own costs. Furthere) we shall systematically study the loss that
occurs due to the mismatch between the social goals andn@fegelfish goals.

Towards this end, we now formally model the game originafimogn the selfish behavior of the ter-
minals. We model this game asnarmal formal gameor strategic gamd21] , which we refer to as the
Distributed Compression Game(DCG)

A normal form game, denoteN, { 4; }ien, {=i}ien), consists of the set gflayersN, the tuple ofset
of strategiesA; for each playei € N, and the tuple opreference relationg-; for each playei € N on the
setA = X;enA;. Fora,b € A, a =; b means that the playérmprefers the tuple of strategiesto the tuple
of strategies. In the context oDistributed Compression Gamgiven an instancéG, ¢, d, Rsw), these
parameters are defined as follows.

2.2.1 The Distributed Compression Game

e Players: N = T, i.e. the terminals are the players. This is because, asanedtabove, the terminals
are the users and they are the ones who pay for the networkreesathey are being provided.

e Strategies: The strategy set of a playerc T consists of tuplesf;, R;) where

— fi is the vector of flows on paths going#pi.e. the vector of valuegp for all P € P,, and recall
that R; denotes the rate vector for termiral

= fP=0VPEP,Y pep , fr= Rsy Vs € SandR, € Rgw.

Therefore,
fP >0 VP e ‘:Pta
A= (fi, R) . Xpep,, fr=Rsp V€S, 5. (2)
Rt S ngW

Note that a feasible flow-ratgf, R) for the instancgG, ¢, d, Rgw) is an element of the set =
xe7 Ay defined for the same instance.

¢ Preference Relations:To specify the preference relation of termirtat 7', we need to know how
much does she pay given a feasible flow-rgteR) i.e. what fractions of the costs at various edges
and sources are being paid % To this end, we need market models, i.e. mechanisms fdtirggpli
the costs among various terminals.



— Edge CostsAt a flow f, the cost of an edge € E' is c.(z.). Itis split among the terminals
t € T, each paying a fraction of this cost. Let us say that the ifragbaid by the playet
is W (x.) i.e. the playert paysc.(z.)¥..(x.) for the edgee wherex, denotes the vector
(et Tetys - - - viEe,tNT)- Of course,y ;.1 ¥e(x.) = 1to ensure that the total cost is borne
by someone or the other. The total cost borné bgross all the edges }s .5, ce(ze) We i),

denoteob*g) (f)-

— Source CostsAt a rateR, the cost for the sourceis d(y; ), which is split among the terminals
t € T, such that pays a fraction®; ,(p,) i.e. the playet paysd;(ys)®s.(p,) for the source
s. Of course,y ", . ®,:(ps) = 1. Therefore, the total cost borne byor all sources, denoted

CY(R), 18 Y e da(ys)sa(py).

Thus, with theedge-cost-splitting mechanisinand thesource-cost-splitting mechanisin the total
cost incurred by the playere T at flow-rate( f, R) denotedC'®)(f, R) is

O(f,R) = CP(f)+ c<”<R>

= Zce Ze et +Zd ys stps

eeE seS

Now, each terminal would like to minimize its own cost i.e. the functi@i® (f, R) and therefore the
preference relation§~, } are as foIIows For two flow-ratey, R) € A and(f,R) € A, (f R) =
(f,R)ifand only if C)(f R) < CW(f, R). Also, (f, R) = (f,R) iff C)(f R) < CO(f, R).

Note that for specifying a Distributed Compression Gamegiition to the paramete¢s, c, d andRgyy
we also need the cost-splitting mechanistnand®. We will call (G, ¢, d, Rgw, ¥, @) as an instance of the
Distributed Compression Game.

2.2.2 Solution Concepts for the Distributed Compression Gae

We now outline the possible solution concepts in our scenarhese are essentially dictated by the level
of sophistication of the terminals. Sophistication referghe amount of information and computational
resources available to a terminal. In this work we shall waith two different solution concepts that we
now discuss.

a) Nash Equilibrium.The solution concept of Nash equlibrium requires the coteplgormation setting
and requires each terminal to compute her best responsg tpvam tuple of strategies of the other players.
For notational simplicity, letf_; be the vector of flows on paths not going to termitak. the vector of
valuesfp for all P € P — P, thereforef = (f_;, f;). Similarly, R_, is the vector of rates corresponding to
all players other than, thereforeR (R_:, Ry). In our setting, the best response problem of a terntinal
is to minimize her cost functiof'* (f_t, fi, Ry, Ry) over(f;, R;) € A, given any(f_¢, R_;). Therefore
a Nash flow-rate is defined as follows.

Definition 1 (Nash flow-rate) A flow-rate( f, R) feasible for the instanc&’, ¢, d, Rgw) is at Nash equi-
librium, or is a Nash flow-rate for instandg=, ¢, d, Rgw, ¥, @), if Vt € T,

CO(f,R) < CD(f_y, fr, Ry, Ry) Y(f1, Ry) € Ay

We note that computing the best response will in generalimegugiven terminal to know flow assignments
on all possible paths and rate vectors for all the terminilereover, convexity of the objective function
in NIF — CP (i.e. social costC(f, R)) does not imply convexity o&")(f_;, f;, R_;, R;) in the vari-
ables(f;, R;) € A; in general. Therefore the computational requirementsetdtminals may be large.



Consequently Nash equilibrium does not seem to be an apagt®@olution concept for the Distributed
Compression Game when viewed through the algorithmic lens.

b) Wardrop Equilibrium. From a practical standpoint, a terminal may only have paktiawledge
of the system and may be computationally constrained. Atisolilconcept more appropriate under such
situations is that of local Nash equilibrium or Wardrop diguum that is widely adopted in selfish routing
and transportation literature [25,(3, 9]. We note that tbisititon concept has also been utilized[in [5] and
is further justified in[[11]. We first present the precise dé&fin of the Wardrop equilibrium in our case and
then provide an intuitive justification. Towards this end meed to define the marginal cost of a path.

Definition 2 (Marginal Cost of a Path) For a P € P, its marginal cost is

Cp(f) _ Z Ce(ze)\ye,t(me) '

X
eeP et

Therefore, for the terminal the total cost for the edge@,g), can be equivalently written as

el =3 Cr(f)fr.

PeP,

Definition 3 (Wardrop flow-rate) A flow-rate(f, R) feasible for the instancéG, c, d, Rsw) is at local
Nash equilibrium, or is a Wardrop flow-rate for instan¢€, c, d, Rgw, ¥, @), if it satisfies the following
conditions.

1. vteT, Vse S, we have

Z fP = Rs,t-

PETs,t

2.Vt € T, we have

> Ry, = H(Xs).

seS

3.VteT,Vse S, P,Q € Ps;with fp > 0,
Cp(f) < Cq(f).

4. Fort € T, letj € S participates inall tight rate inequalities involving € S (i.e. if A C S, such that
icAand) R = H(XA|X_A)@, thenj ¢ A)and letP € P;;,Q € P;; with fp > 0then we

have @ @
0C§’ (R) 0C’(R)
CP(f) 8Ri7t - CQ(f) aijt

Intuitively, conditions (1) and (2) require that each temalirequests as little rate and flow as possible.
Condition (3) ensures that an infitesimally small changedw thllocations from patt® (wherefp > 0) to
pathQ whereP, Q € P, ;, willincrease the sum cost along pathshin Now, consider an infitesimally small
change in flow allocation fron® € P;; (wherefp > 0) to Q € P;;. This also requires a corresponding
change in the rates requested from souticasd j by terminalt. Under certain constraints on the source
j, Condition (4) ensures that the overall effect of this cleangl serve to increase terminék cost. The

"We useH (X a|X_a) and H(X 4| X ac) interchangeably in the text to denote the joint entropy efshurces in sefl given
the remaining sources.



conditions on the sourcgare well-motivated in light of the characterization of Ndihv-rate in sectionl5
in the case when the best response problem of every termsinahivex.

We remark that a Nash flow-rate may not always be a Wardrop fégvand vice versa. When sources
are independent, condition (2) implies tha, = H(X) forall s € S,t € T and it is not required to
check the condition (4). Also we can recover condition (3sbi#ting: = j in condition (4). They are stated
separately for the sake of clarity.

As we discussed earlier, the solution concept based on Wasduilibrium seems more suitable to our
scenario and consequently we define the price of anarch2Pl25] in terms of Wardrop flow-rate instead
of Nash flow-rate.

Definition 4 Price of Anarchy(POA): Let € be a class of edge cost functiori®, be a class of source
cost functions G be a class of networks/graphg, be an edge cost splitting mechanisfnbe a source
cost splitting mechanism, arfdl be a set of Slepian-Wolf polytopes. We will refe($oC, D, ¥, ®, M)
as ascenario The price of anarchy for the scenar{g, C, D, ¥, ®, M), denotedp(S, C,D, ¥, d, M), is
defined as maximum over all instandgs, ¢, d, Rsw) with G € G,c € C,d € D, Rgw € M, of the ratio
between the cost of worst possible Wardrop flow-rate for tiseance(G, ¢, d, Rsw, ¥, @) and the cost of
OPT flow-rate (i.e. the socially optimal cost) for the instalG, c, d, Rgw). That is,

GEG,ceC,deD,RgyweM

maxr, R) is a Wardrop flow-rate fo(G, ¢, d, Rgvy, ¥, ®) C(f’ R)>
5,6,D,0,3,M) = max ( ’
p( ) Coprr(G,c,d, Rgw)

whereCopr (G, ¢, d, Rgw) refers to the optimal cost af I F' — C' P for the instanceG, ¢, d, Rgw).

Let us denote the set of Slepian-Wolf polytopes correspanth the case where there are no source
correlations (i.e.H(Xa|X_4) = H(X4) forall A € S) by M;,,4 (subscriptind denotes -independent
and the set of Slepian-Wolf polytopes corresponding to tee avhere sources are correlated (i.e. there
existsA C S with H(X4|X_4) < H(X4)) by M.. Also, we useS,; to denote the class of all graphs
where everyt € T is connected to every € S, and G,,,, (Subscriptdsw denotes - direct Slepian-
Wolf) to denote the class of complete bipartite graphs betweesdhof sources and the set of terminals.
Note that§G,,,, corresponds to the case where every terminals is directipexied to every source by
an edge and no network coding is required. A question we \eilhost concerned with in this work is
whetherp(g, C, D, ¥, &, M.) > p(G,C, D, ¥, &, M;,4), and in particular whethes(G, C, D, ¥, &, M,) >
1 but p(G,C, D, ¥, P, M;,q) = 1 for meaningful classes of cost functio@sD and reasonable splitting
mechanism@ and® i.e. does correlation induce anarchy?

3 Some Properties of Slepian-Wolf Polytope

In this section, we establish two properties of Slepianf\Wolytope that will be useful in the latter sections.

Lemma5 LetR; € Rgwi€. D> o0 Ry > H(Xa|X_4)forall AC S.If Sy, 9 C S satisfy

Z Rl,t = H(XS1 |X—51)
S

and

Z Rl,t = H(X52|X—52)
€Sy



then we have

> Riy=H(X5,n9|X_(s,nsy))
l€S1NSy

and

Z Ry = H(Xs08,1 X~ (5,U8,))-
1€S1USy

Proof: We have,

Z Ry + Z Ry = Z Ry + Z Ry

leS1NSs 1eS1USy €Sy €Sy
= H(Xs,|X_5) + H(Xs,|X_5,)
< H(Xsn8,1 X (s1n8,)) + H (X108, X (5,082))

where in the second step we have used the supermodularipenycf conditional entropy. Now we are
also given that

> Ry > H(Xs,n8,1X_(s,nsy)
leS1NS2

and

Z Riy > H(Xs08,1 X~ (51085))-
1€S1US2

Therefore we can conclude that

Z Ry = H(Xs,08,1 X (5,08,))

l€S1USy
and
Z Ry = H(Xs1n8,1 X (51n5))-
l€S1NSa
Theorem 6 Consider a vectofRy, Ra, ..., R,,) such that
> R > H(Xa|Xae), forall Ac {1,2,...,n}, and
i€A
> R > H(X1, Xa,..., Xy).
=1
Then there exists another veci@®;, Ry, ..., R,) such thatk; < R; forall i = 1,2,...n and

> R; > H(Xa|Xae), forall Ac {1,2,...,n}, and
€A

Y R =H(X1,Xs,...,Xp).
i=1

Proof. We claim that there exists/;« € {R1, Ra, ..., R,,} such that all inequalities in whicR;- partici-
pates are loose. The proof of this claim follows.



Suppose that the above claim is not true. Then foRalwherei € {1,2,...,n}, there exists at least
one subseb; C {1,2,...,n} such that,

> Ry = H(Xg|Xse).
kEeS;

i.e. eachR; participates in at least one inequality that is tight.

Now by applying Lemma&]5 on the sef§, Ss,...,S,, sinceS; U Sy---U S, = {1,2,...,n}, we
gethzl R, = zi€S1US’2~~~USn R, = H(X51U52"'U5n|X—(S1USQ---USn)) = H(Xl, Xo, ... ,Xn), whichis a
contradiction.

The above argument shows that there exists spinseich that all inequalities in whicR;- participates
are loose. Therefore we can reduBe: to a new vaIueR;fd until one of the inequalities in which it
participates is tight. If the sum-rate constraint is metwétuality then we can sét;-* = Rgfd otherwise
we can recursively apply the above procedure to arrive aivaveetor that is component-wise smaller that
the original vecto( Ry, Rs, ..., R,).

4 Characterizing the Optimal Flows and Rates

In this section, we investigate the properties ofGHAT flow-rate via Lagrangian duality theoryl[6]. Since
the optimization problen{NIF-CP) is convex and the constraints are such that the strong yimditls,
the Karush-Kuhn-Tucker(KKTgonditions exactly characterize optimality [6]. Therefowe start out by
writing the Lagrangian dual dflIF-CP,

L=> celze)+ > do(ys) = > upfr+ > > Aet(Rsr— Y [p)

ecE ses PeP seS teT PePs ¢
Y D vay ( (Xa|Xae) ZRM>
teT | ACS €A

whereup > 0,A;; > 0 andvs, > 0 are the dual variables (i.e. Lagrange muItipIiers) Fomatonal
simplicity, let us denote the partial derivative of with respect tar. ;, 5= by zet Note that the partial
derivative ofz. wrt to fp is1foraP € P,. Similarly, we denote the partial derivative gf with
respect toR; ;, aR by yst The KKT conditions are then given by the following equations thdtdho
Vse S teT,

oL

Y Z Cle(ze)ze,t(we) — HpP — )\s,t = 07 VP e iPs,t7 and (3)
afP eeP
oL / /
OR = ds(yS)ys,t(ps) + /\s,t - Z VAL = 0 (4)
st ACS:scA

along with the feasibility of the flow-ratéf, R) and the complementary slackness conditignsfp = 0
forall P € P, A t(Rst — D peo, . fp)=0foralls e S,;t €T, andv,, ( (X 4| X ac) — ZieARi,t) =0
forallAgSteT

Let us now interpret the KKT conditions at t@PT flow-rate(f*, R*). Suppose thaf; > 0 for
P € P5,;. Then due to complementary slackness, we hayve= 0 and consequently from equatidd (3)
we get) p c.( e)zet(m ) = A, ie. if there exists another patg € P, such thatfs, > 0 then

S eer Ce(20) 2o () = D eeq Co(28) 20 4(2).
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Now if we interpret the quantity_ c;(ze)z;,t(a:e) as thedifferential costof the pathP associated
with the flow-rate( f, R) then this condition implies that the differential cost dftak paths going from the
same source to the same terminal with positive flowSRT is the same. It is quite intuitive for if it were
not true the objective function could be further decreasedhbving some flow from a higher differential
cost path to a lower differential cost one without violatiiegsibility conditions, and of course this should
not be possible at the optimum. Similarly, the differentiaét along a path with zero flow at OPT must have
higher differential cost and indeed this can be obtainedbaseaby further noting that the dual variables
up's are non-negative. We note this property of the OPT flow-nathe following lemma.

Lemma 7 Let (f*, R*) be an OPT flow-rate for the instandér, c,d, Rsw). Then,vt € T, Vs € S,
P,Q € P, with fp > 0 we have

S () (@h) <z z (xh).
ecP ecQ
The above lemma provides a simple and intuitive charaetéoiz of how the flow allocations on var-

ious paths of same type (that is originating at same sourdesading at the same terminal) behave at the
optimum solution. Although such a simple and intuitive etderization of the behavior of joint flow and
rate allocations at optimum is not immediately clear, we icaieed obtain three other simple and intuitive
conditions that together with Lemrha 7, are equivalent tokkK& conditions. We establish this important
characterization in the Theordm|11. First, we will show ie ttext three lemmas that these conditions are
necessary for optimality.

Lemma 8 Let(f, R) be an OPT flow-rate for the instandé;, ¢, d, Rgw). Fort € T, suppose that there
existi, j € S that satisfy the following property. K C S, such that € Aand} ;. 4, Ry, = H(Xa|X_4),
thenj € A. Forsuchi andjlet P € P;;,Q € P, with fp > 0. Then

D celze)ze (@) + di(yi) i (03) <Y colze) 2 (@e) + di(y5)y; (py)-
eeP ecq

Proof: Since(f, R) is an OPT flow-rate, it satisfies the KKT conditions for somgadile choice of dual
variables);; > 0, up > 0, v4; > 0. Now, we are given thaf ¢ A for all A C S such thati ¢ A
and) ;.4 Ry = H(X4|X_4), soif there is and C S such thati ¢ Abutj ¢ Athen) ,_, Ri; >
H(Xa|X_4) and therefore by complementary slackness wevget= 0. Further, from Equatiohl4, we
have

di(ya)yio(pi) + Xig = Z VA
ACS:i€A

= E VAt

ACS:i€A, jeA
(since Z vae =0)
ACS:i€A,jEA
and

ye) + X = D vau
ACS:jeA

= Z vag + Z VALt

ACS:jeAicA ACS:jeA,i¢A

> Z VAt

ACS:jeAicA
= d;(Yi)yir(Pi) + Nig-

11



Therefore we get,
di(Yi) i e (Pi) + Xip < dj(y)y;.(Ps) + Ajie
Furthermore, we are given thgp > 0 which, using Equatioh]3 and complementary slackness dondit

fpup = 0,impliesthat\;; = > _pc (ze)ze t(me) and sinceig > Owe havezeeQ ( ¢) ;t(me) > At
Therefore,

&)y e(p) + > colze)ze (@e) < dj(yi)yso(py) + D colze) 2 o(e).
ecP ecQ

This concludes the proof.

Lemma 9 Let (f, R) be an OPT flow-rate for the instan¢é€, ¢, d, Rgy) wherein the functions,’s and
ds's are all strictly convex, theknt € T, Vs € S, we haveZPeTS . fp = Rsy.

Proof: LetZPeTS , fp > Rsthenthereis & € Ps with fp > 0. Define a new feasible flovi such that
fo=foif Q+# Pandfp = fp — 6 for somed < 6 < min{fp, > pes,, fp — Ry} Then,

Zce(ée) = Zce(ée)—l—ZCe(ze)

eeF ecP e¢P
= E Ce Ze + E Ce Ze - e))
eckE ecP

Now, since the functions, is non-decreasing as well as is non-decreasing in each co-ordinate, we get
Ce(Ze) — ce(ze) < Oforall e € P. Therefore,

Zce(,%e) < Zce(ze) =

eck eckE
C(f7 R) = Z ce(Ze) + Z ds(ys)
ecll seS
< Z Ce(ze) + Z ds(ys)
ecll seS
= C(f,R)

which is a contradiction becaus$¢, R), due to strict convexity of the functio@, is theuniqueOPT flow-
rate.

Lemma 10 Let(f, R) be an OPT flow-rate for the instan¢é&, ¢, d, Rgyy) wherein the functions,’s and
d,'s are all strictly convex, thel't € T', we haved ¢ Ry = H(Xg).

Proof: As R is feasible,vt € T, R; € Rsw and thereforep o R, > H(Xs). SUppose g R >
H(Xg) for somet € T, then from Theorernl6 there exist are S, such that all (Slepian-Wolf) inequalities
in which R, ; participates are loose. Therefore, we can decrease tkigtatby a positive amount i.e.

to Rst = R, — r, without violating feasibility. This means that we can defanfeasible ratd? such that
Rz,t =R |f 1#£s andRst = R, — r for somer > 0. Now,

Zdz(gz) Zd Yi) (¥s) — ds(ys))

€S €S

12



Now, sincel, is non-decreasing as well as is non-decreasing in each co-ordinate, we @gtys) < ds(ys).
Therefore,

Zdz@z) < Zdz(yz) =

€S ieS
C(f,R) = Z ce(2e) + Z ds(7s)
eck s€S
<O celze) + Y ds(ys)
eel ses
= C(f,R)

which is a contradiction becaus$¢, R), due to strict convexity of the functio@, is theuniqueOPT flow-
rate.

Theorem 11 A feasible flow-ratd f, R) for the instanceG, c, d, Rgw), which satisfies the following four
conditions is an OPT flow-rate for the instan@@, c, d, Rgy). Also, there is always an OPT flow-rate that
satisfies these four conditions. Further, when the edgefaastionsc, for all e € E and the source cost
functionsd, for all s € S are strictly convex, that is when the optimization problghF-CP)is strictly
convex, these conditions are also necessary for optimality

1.vteT, Vse S, we have

Z fP = Rs,t-

PETs,t

2.Vt € T, we have

> Ry = H(Xs).

ses

3.VteT,Vse S, P,Q e Py with fp > 0,

Z Cle(ze)zle,t(Q%) < Z Cle(ze)Z;,t(we)-

eeP e€eq)

4. Fort € T, suppose that there existj € S that satisfy the following property. i C S, such that
i€ Aand) ;4 Ry = H(X4|X_4), thenj € A. Forsuchi andj let P € P;;,Q € P;, with

fp>0.Then
> colze)zop(@e) + di(yi) i (p) <D colze)zey(xe) + d;(y;)y; . (py)-
ecP eeq

Proof: We prove that the above four conditions imply optimality( ¢f R). Our assumptions guarantee that
the optimization problemNIF-CP) for the instanceG, ¢, d, Rgw) is convex and since all the feasibility
constraints are linear, strong duality hold$ [6]. This implthat the KKT conditions are necessary and
sufficient for optimality. We show that a feasible flow-r@fe R) with the above four properties satisfies the
KKT conditions for the instancé’, ¢, d, Rg) for a suitable choice of the dual variables given below.
Choosing); ;'s:

Ait = min c,e(ze)z;t(me).

eeP

13



Note that, usingCondition 3, for i € S, if there exist aP; € P; ; such thatfp, > 0 then we have

it = Z Ce(2e) 2 4 ().

eeP;
Choosingup’s: For P € P, ; take
Hp = Z C;(Ze)zé,t(me) — At
ecP

Choosingr44’s: Let

hie = d;(yi)y; (i) +
Let = denote a permutation such tai A1) ; < hr(2) < - h ~(Ng),t- Now take

by if A= {m(1),7(2),...,7(Ns)}
Dy = hai)e = (i1, i A = {7 (@), ,m(Ns)}
’ and?2 < < NS
0 otherwise.

Now, with the above choice of dual variables we will checkiladl KKT conditions one by one.
Dual Feasibility:

e )iy > 0asc, andz are non-decreasing functions i (z.) > 0 andz, ,(z.) > 0.
o up > 0 by the definition becausk; ; < 3, p c.(ze)z. 4 (xe) VP € Py
e vy > 0 by definition.

KKT Conditions as per equation[3:

aL / /
Y Z Ce(ze)ze,t(we) - )‘Lt —HP

afP ecP
= Z Zet (Te) — it — (Z Cle(ze)zé,t(we) - )‘Lt)
ecP ecP
=0.

KKT Conditions as per equation[4:

8[/ / 12
Np = () Wr ()Y (i)t (Pr(iy) + Arit — Z VA4

= hw(i),t - Z VAt

ACS:m(1)EA

=ha@a = D V@) m(Ns)ht
je{1,2,...i}
= hr(iye — [Prye + (Br@)e — Prgye)
+(ha@)e = ha@)e) + -+ (Brgiye = Pr(iz1).)]
= Ny = x(iye = 0

Complementary Slackness Conditions:

14



o upfp=_0forall P e ?.
Let P € P;, and fp > 0 then usingCondition 3 and definition of); ; we get
Z C;(ze)Z;,t(we) = Ait
eeP

and therefore,

pp = Z C;(ze)z;’t(me) — At =0.
ecP

® Asi(Rst — Xpep,, fr) =0foralls e St eT.
This follows from theCondition 1.

o vay (H(XalXac) =Y ;cqRiy) =0forall AC S,teT.

Note thatv4 ; = 0 except forA = {n (i), 7(i + 1),...,m(Ng)}, fori =1,2,..., Ng. Therefore the
only condition that needs to be checked is that if
E;V:SZ Rw(j),t > H(XW(Z')>X7r(i+1)7 s ?Xﬂ'(NS) |X7r(i—1)7 s >X7r(1))7 thenhw(i),t - hw(i—l),t = 0.

Towards this end lef € {7 (i), 7(i + 1),...,m(Ng)}, and let4; be the minimum cardinality set such
thatj € Ajand);cq R = H(Xa,[X_4;)le.

Aj = arg min |Al.
ACS:JEAY e q Rii=H(Xa|X_4)
Such a sefl; always exists because frodondition 2 we haver\is1 Ry, = H(Xy,...,Xng)and therefore
these{ AC S:je A > 4R =H(Xa|X_4)} is notempty.
We claim that there existsjd € {m (i), m(i+1),. (NS)} such thatd;« N{x(1),7(2),...,7(i—1)}

is not empty. If this is not true then clearly we hayé NS A = {m(i),m(i +1),.. ,w(NS)} and using

7'('2

the supermodularity property of conditional entropy ( mma[E) we obtam

m(Ns)
> Rji= (i) Xr(it1)s - - - » Xr(Ne) [ K= 1)s - - - Xr(1))
j=mn(i)
which is a contradiction, therefore we must have sugh @ {n (i), 7(i +1),...,m(Ng)} such thatd;- N

{m(1),7(2),...,7(i — 1)} is not empty.

Next, we show that there exists a soudces {n(1),7(2),...,n(¢ — 1)} such that if;* € A and
Y iea R = H(X4|X_4), thenk € A. Towards this end suppose that there exist sulsed.S; of S
such thati* € S1 N S and) ;s R = H(Xg [ X_g,) and),cs Ry = H(Xs,|X_s,), then using the
supermodularity property of conditional entropy we carwvglizat rate inequality involvings; N .S, is also
tight (Lemmald) i.e.} ;cq s, Rt = H(Xs1ns,|X_(s,ns,))- This implies thatd;, being of minimum
cardinality, is the intersection of all sets that haves a member on which the rate inequality is tight i.e.

o= ﬂ {A:j* GAZRH— (XalX_a)}.

ACS leA

Moreover note thatl ;- is not a singleton set sinc&;- N {7 (1), 7(2),...,7(i — 1)} # ¢. Therefore there
exists ak € A;- such thatc # j*. By our above arguments this implies thatdifC S is such thag* € A
anleeA R ;= H(X4|X_4) thenk € A.

Clearly, Rj~; > H(X; ) ask does not participate in this rate inequality. Therefdig;; > 0
which implies that there exists/a € P;-; with fp > 0, therefore usingondition 3 and the definition of
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Aje We haveY. . p c.(ze)z, () = Aj= 1. Also, by the definition o\, there is aQ € P, such that

ZeeQ e(ZE)Zé,t(wE) = Ayt
Now usingCondition 4, we get

Z ce(ze)zei(a:e) + dj* (yj*)yj*,t(l’j*) < Z ce(ze)z&t(a:e) + dk(yk)yk,t(pk) VQ € Pry
ecP ecQ

which implies that
Ajet + dj*(yj*)yj*,t(pj*) < Ak + dk(yk)yk,t(pk)

and therefore we gét;- ; < hy ;. Now note thak € {7 (1), 7(2),...,n(i—1)} while j* € {n(i),...,7(Ng)}.
This implies in turn thahw(m < hj*,t < hk;7t. But, we know thahm < hw(i—l),t i.e. hﬂ-(i)ﬂg _hw(i—l),t <0
but we already have ;) ; — hri—1),; = 0 and hencév, ;) ; — hri-1): = 0.

This establishes that the four conditions are sufficienofiimality. Further, as per Lemmad7[8[ 9] 10,
under strict convexity conditions, these conditions amessary too.

Corollary 12 If the sources are independent (i8sw € M;,q), there is a feasible flow-rate for instance
(G, c,d, Rsw) that is an OPT flow-rate for both the instances, ¢, d, Rsy) and (G, &, d, Rsw), Where
¢o(z) = ac.(x) for constantar > 0, and d, is any convex, differentiable, positive and non-decreasing
function. Further, this OPT flow-rate satisfies the four dtinds in Theoreni_11 for both the instances
(G, ¢,d, Rsw) and (G, &, d, Rgw).

Proof: The idea is that when the sources are independent, Cond&join Theorenl_Ill implies that
R,y = H(X;) forall s € S;t € T, and therefore, there is no pdit, j) such thatj participates in all
tight rate inequalities involving and consequently it is not required to check Condition (4).tRe sake of
completeness the proof follows.

Let (f, R) be an OPT flow-rate fofG, ¢, d, Rsw) satisfying the four conditions in Theordm|11. Note
that such an OPT flow-rate always exists as per The@rém 1Lke $re sources are independent the rate
inequalities constraints becomes

> Riy>H(X,) forall AC S,teT.
icA
Therefore, using Condition (2) in Theorém 11, we obtain
R,y = H(X,) forallse S,teT.

Now we will show that(f, R) is also an OPT flow-rate for the instan@é, ¢, d, Rsw) by showing that
it satisfies the four conditions in Theoréml 11 for instanGec, d, Rs). Note that Conditions (1) and (2)
are easily satisfied blyf, R) as they do not depend on particular cost functions. Further,

§ C(Ze etwe —045 etwe
eepr eepP

therefore condition

/

Sz za(me) < a(ze)z (@)

ecP ecQ

is equivalent to
D celze)ze(@e) £ D celze) (@),
eeP ecQ
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therefore condition (3) is also satisfied. For the condit{dh let us first note that as discussed above
R, = H(X;)foralls € S,t € T. This implies that there is no pdii, j) € S x S satisfying the promise in
condition (4) i.e. there is no pait, j) such thay participates in all tight rate inequalities involvingsimply
because does not participate in the tight rate inequalRy; = H(X;)). Thus,(f, R) satisfies all thet
conditions in Theorem 11 for the instan@@, ¢, d, Rsw) and hence is an OPT flow-rate @&, ¢, d, Rsw)-

5 The Flows and Rates at Nash Equilibrium

In this section, we study the properties of a Nash flow-ratervelrer the individual optimization problem
(i.e. the best response problem) of each terminal is conv®t,is whenever Nash equilibrium can be
considered as an appropriate solution concept for theiBiséd Compression Game when viewed through
the algorithmic lens. Therefore, throughout this sectiwa,assume that the edge cost splitting mechanism
U, as well as, the source cost splitting mechaniBrare such that the function§®, for all ¢ € T, are
convex. By considering the best response problem of eactirtal, and an approach essentially the same as
in the Sectioh}4 for characterizing OPT flow-rate, we canialitee following Theorer 13 for characterizing
Nash flow-rate.

Theorem 13 Consider an instancéG, c, d, Rsyw, ¥, ®) whereC® is convex for allt € T. A feasible
flow-rate(f, R) for the instance G, ¢, d, Rsw), which satisfies the following four conditions is a Nash flow-
rate for (G, ¢, d, Rsy, ¥, ®). Further, whenC'") is strictly convex for alt € T, these conditions are also
necessary.

(1) VteT, Vs e S, we have

Z fP = Rs,t-

PETs,t

(2) vVt € T, we have
> Ry = H(Xs).

ses

B) VteT,Vse S, P,Q e P with fp >0,

oC(f) _ ICE(f)
ofp  — Ofg

(4) Fort € T, letj € S participates inall tight rate inequalities involving € S (i.e. if A C .S, such that
icAand) ., Ry = H(X4|X_4), thenj € A)and letP € P;;,Q € P;; with fp > 0 then we
have

oCy(f) , 0CY(R) _0C(f) 00y (R)
ofp OR,; — 0Ofq OR;;

Further, under similar convexity conditions, we can alsovslthat a Nash flow-rate always exists for
the Distributed Compression Game. This is done via first @mtifying the strategy setd;’s to obtain a
restricted game where existence of a Nash equilibriumvdalfrom the standard fixed point theorers|[21].
Then, by utilizing the monotonically non-decreasing prtipe of various cost functions, it is argued that
a Nash equilibrium of the restricted game is also a Nash fle-for ourDistributed Compression Game
thereby proving the existence of a Nash flow-rateDtributed Compression Game

The Theoreni 14 in the following is a very standard and popélsult on the existence of Nash equilib-
rium and we adopt it from the book by Osborne and Rubinstelh [2
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Theorem 14 The strategic gameéN, (4;), (>=;)) has a Nash equilibrium if for alf € N, the following
conditions hold.

a) The setd; of actions of playet is a nonempty compact convex subset of a Euclidean space.

b) The preference relatior; is continuous and quasi-concave djp. A preference relatiornr; on A
is said to be quasi-concave ofy if for everya € A the set{a; € A; : (a—;,a;) =; a} IS convex. A
preference relatiorr; on A is said to be continuous if >=; b whenever there are sequenc{eé} and
{bF} with a*, v* € A anda® »=; b* for all k such that{a*} and {v*} converge ta: andb respectively.

Now, let us consider an instan¢g, ¢, d, Rsw, ¥, @) of the Distributed Compression Game, whéré
is convex for allt € T
The action set of the terminale T is

fP Z 0 VP S ‘:Pt7
Ap = (ft7Rt) : EPefPs,t fP > Rs,t Vs € S, . (5)
R; € Rsw

Clearly this is a nonempty convex subset of an Euclidean&iaut it is not compact.
Let us consider a game with a restricted set of strategiesteleérd,’s as follows and let us call this new
game as theestricted gamefor the instanceéG, ¢, d, Rsw, ¥, ®).

fp=>0VPeP,

B ZPefPs,t fP > Rs,t Vs € 57

A= (ft, Bt) : Ry € Rgw, : (6)
fp < H(Xs) VP € P,
Res < H(Xs) Vs € S

Now the set4, becomes compact as it is a closed and bounded subset of aideanckpace, and
thereforeA, satisfies the requiremefi) of the Theoreri 14.

Since players’ cost function§'") are convex and continuous for allc T, the condition(b) in the
Theoreni 14 is also satisfied and we obtain the following tesul

Lemma 15 The restricted game for the instan¢€, ¢, d, Rgw, ¥, ®), whereC'® is convex for allt € T,
admits a Nash equilibrium.

Now we claim that every Nash equilibrium of the restricteangais also a Nash equilibrium for the
original game and that will imply the existence of a Nash fiate for the original game.

Lemma 16 Every Nash equilibrium of the restricted game for the ins&it, ¢, d, Rgyy, ¥, ®), whereC'®)
is convex for allt € T', is also a Nash flow-rate for the instang@, c, d, Rsw, ¥, ).

Proof: Let (f, R) be a Nash equilibrium of the restricted game for the instaidee:, d, Rgw, ¥, ).
Then, for allt we have o
CO(f,R) < CO(f_1, Ry, fi, Ry)

for all f,, R, feasible for the restricted game i.e. coming from the restri strategy set,.

18



Now let(f;, R;) € A, \ A, i.e. f;, R, is feasible for the original game but not feasible for therie®d
game. For ease of notation, let us define the following qgtiesti

S1,t={s€S:Rs,t>H(XS)}  S2p =5\ Sy
R; = {R;vt = H(Xg)|s € Sl,t}
gatlz{Pe?t:fp>H(Xs)} , PI=P\ P}

fo ={1p = H(xX9)|P € 7}}

Note that in definingR't and ft' we have projected all the flows and rates violating the féagilbor the
restricted game to their boundary values and thereforettategy (f;, {fr : P € P}, R;,{Rs; : s €
Sy4}) € A, i.e. itis feasible for the restricted game.

Now,

COfor,Rog, fr, R) > CO(f, Ry, fi, Ry, {Rayt s € Say})
> C(t)(f—th—tyft,? {fP 1P e ‘:P%}’R;’ {Rs,t S e SZ,t})

and since f, R) is a Nash equilibrium for the restricted game &rfid { fr : P € P?}, R;, {Rs : s € Sa.})
is feasible for the restricted game we have

COf,R) < CO(f_y,R_y, f,,{fp: P € P}, R, {Rsy:5€ Say})
< C(t)(f—taR—tyftth)

and therefore0®) (f, R) < CW(f_,, R_y, f;, Ry) for all (f;, R;) € A, implying that(f, R) is a Nash
equilibrium of the original game meanirig, R) is a Nash flow-rate for the instan¢€’, ¢, d, Rgyy, ¥, ®)
Combining the Lemmds 15 ahd|16 we obtain the following theore

Theorem 17 An instanceG, ¢, d, Rsw, ¥, ®), whereC'® is convex for alk € T, admits a Nash flow-rate.

6 Wardrop Flow-Rate and the Price of Anarchy

In this section, we investigate the inefficiency broughthHdry the selfish behavior of terminals. First, we
will show that the Wardrop equilibrium is a socially optimsdlution for a different set of (related) cost
functions. Using this, we will construct explicit examptéat demonstrate that the POA1 and determine
near-tight upper bounds on the POA as well. We start out \wghcharacterization of Wardrop flow-rate.

1 n
Theorem 18 Letze(z.) = (Y ,eral) ™, Veu(xe) = (intn) and ®, :(p,) = - A Wardrop flow-

jeT Te,j
rate for (G, ¢, d, Ry, ¥, ®) is an OPT flow-rate fofG, ¢, d, Rgw), wherec.(z) = Np [ #dm. Further,
when the edge cost functions for all e € E and the source cost functior for all s € S are strictly

convex, an OPT flow-rate fqiG, ¢, d, Rgw) is also a Wardrop flow-rate fofG, ¢, d, Rsw, ¥, ®), where
A~ _ 1 !
Ce(z) = N—Ta:ce(:n).

Proof: We will show that the definition of a Wardrop flow-rate for iaste(G, ¢, d, Rgyw, ¥, ®) exactly
corresponds to the four conditions for the instaf@ec, d, Rsw) in Theoreni IIL.
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We have,

Therefore,

= E etl'e

eEP

where the last equality follows from the fact that

6e(w) = NT/#CL’E - E;((ﬂ) = NTce(x).

T
Also,
(t
Cs'(R NT Zd Yi)s
€S
aCét)(R) 1 / /
Wi,t = N_Tdi(yl)yi,t(pi)'
Therefore,
c (f)"‘w_L Zél(z )zl (x )_|_d'( ) ! (p;)
v OR; ~ Nr e\~e/“et\e i\Yi)Yi t\P;

eeP

The result follows from the equivalence of conditions cogrirom Definition[3 and Theorem 1L1.

In contrast with the result of [5] that holds for a single smuwith the edge cost splitting mechanism
used above, from Theorem]18, we can note that for most rellgonast splitting mechanisms, the POA
will not equal one for all monomial edge cost functions. Wastouct explicit examples for POA 1 in
the Figure$ 1 and 2. The example in Figure 1 is near tight ddwiévident from an upper bound on POA
derived in Theorern 20.

It is interesting to note that in the case when sources aepintient, in the Wardrop or OPT solutions,
the rates requested at various sources will equal theiectigsp lower bounds (i.e. their entropies). There-
fore, the cost term corresponding to the sources will be fiaad one only needs to find flows that minimize
the edge costs. In this situation, it is not hard to see tleaPthA will again equal one foall monomial edge
cost functions. i.eit is the correlation among the sources that is responsibtebfinging more anarchy
We formalize this below.

LetC, = {c : ce(x) = acx®, a. > 0,Ve € E} be the set of edge cost functions where all edge cost
functions are monomial of the same degkepossibly with different coefficients, an@,,., = Ui>1Cs.
Similarly, Dy, = {d : d;(y) = biy*, b; > 0,Vs € S}. Also, let Deonper = {d : d; is convexvi € S}.
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3=

Corollary 19 Correlation InducesAnarchy: Letz(z.) = (> ,cp 27;)

e () ﬁ&/s(ﬂs) =
(Xier jot)%, and®; ;(p,) = §-, then we have

1. p(Sait, Crmons Deonves ¥s P, Ming) = 1.

2. p(Sats Cnys Deonvers ¥, @, Me) = 1.

3. p(Sait, Comons Deonveas ¥, @, M,) > 1 for large values ofn andn.
In fact, p(Sau, C1, Do, ¥, &, M) > LT,

4. p(Sasw, Crmons Deonvez, ¥, @, M.) > 1 for large values ofn andn.

Proof: Letc € Cpop i.6. ce(z) = aca” for a. > 0 for all e € E, therefore, [ #dm = [aea* 1 dx =

ae%{ﬂk = %ce(w). Also, d € D.onver. NOw, since the sources are independent (Reyw € M;,q), from

Theoreni 1B and Corollafy 112 it follows that a Wardrop flowerfair instanceG, ¢, d, Rgyw, ¥, @) is also an
OPT flow-rate for the instandg>, ¢, d, Rgyw) which implies thato(Sai, Crmon, Deonvers ¥, P, Ming) = 1.

Even if the sources are correlated, when we Have N, we haveNy [ #dm = c.(z) and using
Theoreni 1B, a Wardrop flow-rate for instar(€e c, d, Rsw, ¥, ®) is also an OPT flow-rate for the instance
(G, ¢,d, Rgw) which implies that

P(9all7 C‘3NT7 'Dconvexw \117 (I)a Mc) =1.
We provep(Sau, C1, D2, ¥, &, M.) > 5T and consequently
P(Salh Cron; pconve:w v, P, Mc) > 1,

by explicitly constructing an example as provided in FiglireAll sources are identical with entropy,
therefore Rgyw € M. Letds(y) = Cyy? for all s € S, therefore,d € D,, and the edge cost functions,
ce(x) = x except for the edgéu, v) for which c.(z) = Cy x. Therefore,c € C;. Let us consider the
following flow-rate(f, R)

Ri; = hVteT

Ry = 0VseS—{1},teT
fan = h Vte T overdotted edges in Figuré 1
fr = 0vPe? —{(1,t)},teT.

Clearly,(f, R) is feasible for the instandg&z, ¢, d, Rgyw). We claim that f, R) is a Wardrop flow-rate for the
instance(G, ¢, d, Rgw, ¥, @) When%%—;h < 14 C,. To see this, first note th&f, R) satisfies the Conditions
(1) and (2) in the definition of Wardrop flow-rate (Definitibh f8r the instanceqG, ¢, d, Rgw, ¥, ®). We
will now check the conditions (3) and (4) in Definitioh 3. Ndtat ¥, ;(x.) = NLT wheneverr, ; = x for
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all t € T for somex > 0 and by continuity this is true evenif = 0. Therefore,

Can(f)= 3 Celze)Perl:) :h}.ll .,

ce{(L)} Let

CelZe \Pe, e
Comnn( = 3 Celellerl@d)
ec{(1,u),(u,v),(v,t)} et

x x T

= lim
z—0

1+ Cy
Nr
1+ Cy
Nt

, and similarly

C(s,u,v,t)(f) =1+ ,8€8— {1}

Clearly, the condition (3) is satisfied &%, ;)(f) < C(1,u,04) (f)- Also,

acY(R) 1,
OR; = N_Tdi(yl)yi,t(pi)

1 /
= N—T2clyiyi,t(pi)

2C1y-2 RZ;—l
Nr szeTRZ}

2/m
2C4 . Ry
- Np (ZRzy) TKTRZ}.

jeT
() m—1
. 0Cs" (R) @(NThm)Wm h
OR1 4 Nr Nrh™
= 2C12h asm — oo and
Ny
9Cy (R)
a5 —{1}.
OR., = 0,Vs € S — {1}

Therefore, whe?$: < 1+ 5, we get
Nt

acY(R) oCY(R)
CanN+=5m,~ < Coann(H) + =55

Vs e S — {1}
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which implies that the condition (4) is also satisfied. Thys,R) is indeed a Wardrop flow-rate for the
instance(G, ¢, d, Rgw, ¥, ®). Further,

C(f,R) = Z ce(ze) + Z Ce(ze)

e€User{(1,)} e€Uses{(s;u)}

+ C(u,y)(z(u’v)) + Z Ce(ze) + Z ds(ys)

e€Uier{(v,t)} seS
Nrh 404040+ Cy (Nph™)2™
= Nph+ C1h% asm — .

Now let us consider another flow-raté*, R*)

. h
s’t:N_S \V/SGS,tGT

fhpy=0vteT and

. h
f(&u,v,t) == N_S Vs c S,t S T.
Clearly, (f*, R*) is feasible for the instandg=, ¢, d, Rsw). Further,

C(f*,R") = Z ce(zg) + Z ce(ze) + C(U,v)(ziku,v))

ecUier{(1,)} e€Uses{(s,u)}

+ Y )+ do(wy)

e€Uter{(v,t)} ses

= 0+ Ng (NT(N—S)"> + Cy(Nph™)H/m

+Nrh + NsCy <NT(N—S)m>

C1h?
= h(1+Cy+ Np)+ —
Ng

asm — 0o, n — Q.

Thus, When“% <h(l- NLS), we haveC'(f*, R*) < C(f,R). AsOPT (G, c,d,Rgw) < C(f*, R*),
this implies that the POA is greater than one.
In particular,
C1+ 5z

14+Co+Nr + C1’
h Ng

p(Sar; C1, Do, ¥, &, M) >

Now, takeh = 1, Ng = Ny > 4,1 + Cy = 3Ny, C; = N2, and note that

2C1h
L — 9Ny < 3Np =1+ Oy,
Nt
as well as, .
1+ C 3 1 1
=—<(1——)=(1——) as Ny > 4.
Ci Nr ( NT) ( Ns) T

23



Figure 1: Example of a network where POA is lineai\i.

2 t,

Figure 2: Classical Slepian-Wolf network with appropriatsts also has POA 1.
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Therefore, we get
14+ Np

5

p(Gai, C1, Do, ¥, &, M) >

This is near tight as will be evident from Theoréni 20.

To establish (4), we will prove a stronger resytSgs.,, C3, D3, ¥, ®, M.) > 1, by constructing an
example as described below. As shown in Fidure 2, there asesbwrces and two terminals which are
directly connected to each source. Both sources are igémtith entropy1, d;(y) = C1y?, da(y) = Cay?
with Cy,Cy > 0,0y # Cy ande.(x) = 23 for all edges. We now outline the argument that shows that the
POA > 1.

First, observe that the instance is symmetric with respetgriminals and all cost functions are strictly
convex. Therefore the OPT flow rate for the instance, den¢fédRr*) is such thatk;, = R;,, for
s = 1,2. Next, by the characterization as per Theoferm 18, the Warflow-rate, denotedf, R) is an
OPT flow-rate foré.(z) = 223 with the source cost functions remaining the same. This mstance
with é.(xz) = %x?’ is also symmetric with respect to the terminals and the agsttions remain strictly
convex. Therefore we conclude that for the Wardrop flow-estevell R;;, = R,, for s = 1,2. Let
Ryt = Rit, = handRy, = Rj,, = h*. Using the properties of Wardrop flow-rate and OPT flow rate
as per Condition (2) in Theorem111, we halg;, = R, = 1—handR;, = Rj, =1-h". We
argue below that # h*. Consequently, by uniqueness of the OPT flow-rate (due it stinvexity of the
objective function) we will have&’(f, R) > C(f*, R*) implying p(Sasw, C3, D3, ¥, ®, M.) > 1. We have,
fort = t1, to,

acy(R) 1
OR1;  Nr
m—1

3 Ry
Oyt =
2 ZJ 1

= ZCth asm — oo.

dy (y1)y1.4(p1)

Similarly,
PR 3
" ORy; 4
By the definition of Wardrop flow-rate, we have

fapn=h fen=0-nh).

Cy(1 — h)2.

Thus,
Can(f)=h? Cpay(f)=01-h)?>%
Further,
oC{ (R) acY(R)
~m, Can(f) = T Crany(f)
implies that
St 12 =20 (-
Therefore,

h %02-1-1

1-h 301 +1
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Now, from Theoren 18, /*, R*) is a Wardrop flow-rate for the instance where everything iesihe same
except for the edge cost functions which are rgmé instead ofz® and performing the similar calculations
as above fo( f, R), we obtain

h* %Cz -l-%

L—h 30143

Clearly, sinceC; # Cs, we geth # h*. In particular, takeC; = 4,Cy = 8, thenh = 0.5695 and
h* = 0.5635. Thus,C(f, R) = 1.9061,C(f*, R*) = 1.9052 implying that POA > 1.004 > 1, in this
examplel

Note that while constructing the above examples the soupse splitting function we have used is
P, (p;) = 1/Np. Further, for the same mechanism, Corollary 19(2) proviaesxample of edge cost
functions that gives a POA of one, and possibly this is thg ohbice giving POA one. Before considering
another reasonable splitting mechanism, we first establishpper bound which is nearly attainable by
instance given in Figulé 1.

n

U () = ﬁ and®,(p,) = §-. Then,

3=

Theorem 20 Letz.(z.) = (3 cr 22))

Yjer e,
Nr k
P(Salla eka ®com)e:c7 \117 (I), Mc) < max{—T7 _}
k ' Nr
Proof: As in the proof of Theoreri 18, we hav€ip(f) = §= > .cp (2)z4(ze) and Cp,(f) +
ac(t) R W ’ ’ ’
S = N | Leer, (27 (@e) + di )y o(py)] -

Let (f, R) be a Wardrop flow-rate ang*, R*) be OPT for(G, ¢, d, Rsw) respectively. Further, It (z) =
Ve 200 4 T = Sa, ok Now

C(f,R) = ZCE(ZE) + st(ys) = Zaezf + st(ys)

ecE ses eceE ses

and

C(f*aR*) = Zce('z:) + st(y:)

eeE seS
= ac(z)F + > di(y)
eeE ses

Let us first consider the case whevg > kie. 1 < %

C(f,R) = Z aez{: + ZdS(QS)

ecE ses

< Z %aezf + st(ys)

eeE seS

= Z Ce(ze) + st(ys)-

eeE ses
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Now, from Theorert 18, f, R) is OPT for(G, ¢, d, Rgw) and becausgf*, R*) is feasible forG, ¢, d, Rgw)

we get
Dtz + ) ds(ys) < D () + D ds(yl)
ecE sES eeE ses
Np
= Z—ae +Zd ys)
eeE sES
NT k *
< T Zae( ) +st(y5)
eceE sES
N
= S CUTRY)
Therefore,
C(f,R) _ Nr
(f*R*) ~ k

Similarly, for the case wheWy < kie.1> 5T

C(f,R) = Z aez{: + Z ds(ys)

ecE ses
— P aeze + Z —ds(ys)]
NT LecE k ses k
N
< ]\]; Z aez{: + ZdS(QS)]
T LecE ses
k
= N Z Ce(2e) + Z ds(ys)]
T LecE ses
Now, from Theoreri 18,f, R) is OPT for(G, ¢, d, Rsw) and becausgf*, R*) is feasible for( G, ¢, d, Rgw)
we get
Z Ce(2e) + Z ds(ys) < Z Ce(2e) + Z ds(y5)
eclE ses ecl seS
= Z —ae + Z d ys
eeE ses
< D acZ) 4+ do(yl)
eceE ses
= C(f",R")
Therefore,
C(fR) _ k
C(f*, R*) — Np

Now we consider another splitting mechani§nthat looks more like the edge cost splitting mechanism

. Specifically, takeys(p,) = (X,ep(Rss)™) ™ andd; ,(p;) = % Let us first note the general-
S T,

ization of Corollary 19(1) for any source cost splitting thanism®. Proof is esentially the same as before.

The condition (2) in the definition of Wardrop flow-rate as Wl OPT flow-rate renders all the rates to be

equal to their corresponding entropies and consequerdlgdhdition (4) need not be checked.
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e t(xe) = % and® .(p,) be any source cost splitting

jeT Le,j

3=

Lemma 21 Letze(x.) = (D ,cp 22y)

function, then we have
p(9all> emona .Dcmwema \ij (I), Mznd) =1

- . i R’L m
Now, we will argue that withy,(p,) = (3 ,cr(Rs)™) ™ and®; (p;) = % we have
2(SGdsws Crmons Deonver, ¥, , M) > 1 for large values ofn andn. Let us consider the same example as in
Figure[2 but with the new source cost splitting mechanisnstFiote that OPT flow-rate is independent of
the choice of cost splitting functions and the previouslicaiated OPT flow-rate for this instan¢¢™, R*)

is given by

R;,t - f(*lt) =1- h*

We will argue that this is not a Wardrop flow-rate and sinceQi flow-rate is unique (by strict convexity)
we will obtain POA > 1. After some simple calculations we get

t
%ﬁm = d;(yz-)]iit ®?,(p;) + md;%(iz)fl)i,t(pi) (1— ii(py)).
Therefore,
M = (m+ 3)(N:r)?’/”"‘ﬁ(h*)2 and
OR1 4 4
0Cg) (")

C
_ 3/m~2 1 1%\2
oy (m+ 3)(Nr) 1 (1 —h%)=.

Also, C1 4 (f*) = (h*)* andCo ) (f*) = (1 — h*)%. Note thatNy = 2 in this example. Now, with
Cy = 4,0y = 8, we haveh* = 0.5635 and therefore

acy (r*)

Con()+ r () + (m+3)(Np)¥ ™G (h*)?
ac(t) R* - _ h*\2 3/m@ — h*)2

C(2,t)(f*) + BSRQ(J: ) (1 h ) + (m+3)(NT) 1 (1 h )

 (mA3)(Np)P™ 41 0.56352

T 2(m+3)(Np)3/m 41 (1 —0.5635)2

1 0.56357

~ 2(1-0.5635)2

= 0.8333 £ 1asm — oo.

1 1 z?

Theorem 22 Let ze(zc) = (X er i)™ ys(ps) = (Crer(Ro)™) ™, Ver(ae) = m and
J €,J]

_ _ (Ri)™
Q;(p;) = ZJTW for large values ofn andn, then we have

p(9dsw> emona .Dcmwemy \I’, q>, Mc) > 1.
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7 Future Directions

In this work, we have initiated a study of the inefficiency dngbt forth by the lack of regulation in the
multicast ofmultiple correlated sourcedVe have established the foundations of the framework byiiray

the first set of technical results that characterize thelibguim among terminals, when they act selfishly
trying to minimize their individual costs without any reddo social welfare, and its relation to the socially
optimal solution. Our work leaves out several importantropeblems that deserve theoretical investigation
and analysis. We discuss some of these interesting prohieths following.

Network Information Flow Games: From Slepian-Wolf to Polymatroids: It is interesting to note that
all the results presented in this chapter naturally extémd@slarge class of network information flow prob-
lems where the entropy is replaced by any rank function (@Hapter 10 in[[10]) and equivalently con-
ditional entropy is replaced by any supermodular functidimis is because the only special property of
conditional entropy used in our analysis is its supermaitylaPolytopes described by such rank functions
are calledcontra-polymatroidsand the SW polytope is an example. Therefore, by abstrattegetwork
coding scenario to this more general setting, we can obtaiceaclass of multi-player games with compact
representations, which we calletwork Information Flow Gamesdt would be interesting to study these
games further and investigate the emergence of practicain@aningful scenarios beyond network coding.
Furthermore, the network coding scenario where the telsd@mnot necessarily want to reconstruct all the
sources should also be interesting to analyze.

Dynamics of Wardrop Flow-Rate: Can we design a noncooperative decentralized algorithtrstears
flows and rates in way that converges to a Wardrop flow-rate@t\&hout such an algorithm which runs in
polynomial time? A first approach could be to consider anréttym where each terminal greedily allocates
rates and flows by calculating marginal costs at each step.fdllowing theorem, which follows from an
approach similar to that in the proof of Theorem 11, provistase intuition on why such a greedy approach
might work, as per the relationship between Wardrop and Gfedrding to Theorer 18.

Theorem 23 Let(f, R) be an OPT flow-rate for instand€?, ¢, d, Rsw) and defingu, ; := d, (ys)ys ,(ps)+
Ast for s € S;t € T, where),'s are dual variables satisfying KKT conditiof$[3, 4. Funhet o :
T x S — S be defined such th@it< i, ;1)1 < ho(r,2),0 <+ < ho,n,),e- TheN,

k

ZRo(t,i),t = H(X,01), Xo(t,2)s - » Xo(tk)) fork=1,..., N;.
i=1

Better bounds on POA: Although we have provided explicit examples where corighabrings more
anarchy, as well as, an upper bound on POA which is nearlyeaabie, we believe that more detailed
analysis is necessary. An important approach in this daectould be to characterize exactly how the
POA depends on structure of SW region i.e. to analyze the fiegtils on how correlation among sources
changes POA, even in the case of two sources. Further, ottezesting splitting mechanisms should also
be studied.

Capacity Constraints and Approximate Wardrop Flow-Rates: One immediate direction of investiga-
tion could be to consider the scenario where there is a dgpamistraint on each edge i.e. the maximum
amount of flow that can be sent through that edge. Anotherasti@eg problem is to investigate the sensitiv-
ity of the implicit assumption in our analysis that termmahn evaluate various quantities, and in particular
the marginal costs, with arbitrary precision. This can beeed by formulating a notion of approximate
Wardrop flow-rate, where terminals can distinguish quistionly when they differ significantly.
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