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Switching in a reversible spin logic gate

S. Bandyopadhyay†
Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska, 68588-0511, USA

V. P. Roychowdhury
School of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

(Received 15 July 1996)

Theoretical results for the adiabatic switching of a reversible quantum inverter–realized
with two antiferromagnetically coupled single electrons in adjacent quantum dots—are
presented. It is found that a large exchange interaction between the electrons favors faster
switching but also makes the timing of the read cycle more critical. Additionally, there exists
an optimal input signal energy to achieve complete switching. Only for this optimal signal
energy does the inverter yield an unambiguous, logically definite state. An experimental
strategy for realizing circuits based on such gates in self-assembled arrays of quantum dots
is briefly discussed.
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1. Introduction

Research in nanoelectronic classical Boolean logic circuits derived from single electron interactions in
quantum dots has been a busy field for the last few years [1–9]. A number of ideas have appeared in the
literature [1–9] that visualize building dissipative (non-reversible) logic circuits based on Coulomb or exchange
interaction between single electrons in arrays of quantum dots. Some of these schemes (e.g. [2]), however,
are not only flawed, but they also violate the basic tenets of circuit theory. The individual logic devices have
no isolation between input and output so that the input bit cannot even uniquely determine the output bit! (for
a discussion of this issue see [3–6, 10]).

In this paper, we explore a different type of gate. It is a quantum mechanical gate that is reversible and
non-dissipative. It should be contrasted with ‘parametron-type’ constructs that dissipate less thankT ln 2
energy per bit operation [11], but are otherwise not entirely non-dissipative. While the bits in a parametron are
c-numbers, the bits in the quantum gate to be described are true qubits and the time evolution of the system
is unitary. For the sake of simplicity, we consider the smallest quantum gate possible, namely an inverter.
It is fashioned from two antiferromagnetically coupled single electrons in two closely spaced quantum dots
as envisioned in [3–5]. The equilibrium steady-state behavior of such a system has been investigated by
Molotkov and Nazin [7, 8]. Here, we will explore the dynamic behavior and the unitary time evolution of this
system in a non-dissipative and globally phase-coherent environment.
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Fig. 1. Two adjacent quantum dots hosting single electrons. In the ground state, the spins of the two electrons are antiparallel. If spin
polarization is used to encode binary bits, the logic state of one dot is always the inverse of the other. This realizes an inverter in which
one dot acts as the input terminal and the other as the output.

2. Theory

Consider two single electrons housed within two closely-spaced quantum dots as shown in Fig. 1. It was
shown in [3] that the preferred ordering of this system is antiferromagnetic, i.e. the two electrons have opposite
spins. If the spin polarization in one dot is considered to be the input ‘qubit’ and that in the other the output
‘qubit’, then this system acts as an inverter since the spin-polarizations are antiparallel (logic complement)
[3, 8]. Note that an inverter is always logically reversible since one can invariably predict the input bit from a
knowledge of the output bit (in practice, the input bit is recovered by merely passing the output through another
inverter). However, such a gate is not a universal quantum gate unlike the Toffoli gate [12]. Various schemes for
realizing non-dissipative and reversible quantum logic gates have recently appeared in the literature [13–18].
Experimental demonstrations of quantum logic gates have also been reported [19, 20]. Almost all of these
schemes encode the qubit in a photon (rather than an electron) state thereby requiring optical components
that are incompatible with ultra-large-scale integration. In contrast, the spin gate based on single electrons in
quantum dots is very appealing from the perspective of high-density circuits.

To analyse the system in Fig. 1 quantum-mechanically, we will assume that there is only one size-quantized
level in each quantum dot. Then, the Hubbard Hamiltonian for this system in the presence of a globally applied
magnetic field can be written following Molotkov and Nazin [7] as

H =
∑
iσ

(ε0niσ + gµB Hi sign(σ ))+
∑
〈i j 〉

ti j (c
+
iσcjσ + h.c.)+

∑
i

Ui ni↑ni↓

+
∑
〈i j 〉αβ

Ji j c
+
iαciβc+jβcjα + Hz

∑
iσ

gµBniσsign(σ ) (1)

where the first term denotes the electron energy in thei th dot (Hi is az-directed local magnetic field selectively
applied at thei th dot), the second term denotes the hopping between dots, the third term is the Coulomb
repulsion within thei th quantum dot, the fourth term is the exchange interaction between nearest-neighbour
dots and the last term is the Zeeman splitting energy corresponding to the globally applied magnetic field
oriented along thez-direction.

We can simplify the Hamiltonian in Eqn (1) to the Heisenberg model following Molotkov and Nazin [8] to
yield

H = J
∑
〈i j 〉

σziσz j + J
∑
〈i j 〉
(σxiσx j + σyiσy j )+

∑
input dots

σzih
input
zi (J > 0) (2)

where we have neglected the global magnetic field. The quantityhinput
zi is the Zeeman energy caused by a

local magnetic field applied to thei th dot in thez-direction which will orient the spin in thei th dot along that
field. Such a local field can be applied via a spin-polarized scanning tunneling microscope (SPSTM) tip as
visualized in [3] and serves to provide an input signal to the gate.
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Table 1: Eigenenergies and eigenstates of the Hamiltonian for an inverter.

Eigenenergies Eigenstates

hA + J |↓↓〉

−J +
√

h2
A + 4J2

√
1

2

(
1+ hA√

h2
A + 4J2

)
|↑↓〉 +

√
1

2

(
1− hA√

h2
A + 4J2

)
|↓↑〉

−J −
√

h2
A + 4J2

√
1

2

(
1− hA√

h2
A + 4J2

)
|↑↓〉 −

√
1

2

(
1+ hA√

h2
A + 4J2

)
|↓→〉

−hA + J |↑↑〉

In the basis of states|σAσB〉 (A andB are the two electrons), the Hamiltonian in Eqn (2) can be written as
hA + J 0 0 0

0 hA − J 2J 0
0 2J −hA − J 0
0 0 0 −hA + J

 (3)

wherehA is the interaction with the input magnetic field selectively applied to quantum dotA. The two-
electron basis states can be denoted as|↓↓〉, |↑↓〉, |↓↑〉 and |↑↑〉; they form a complete orthonormal set.
The ‘upspin’ polarization is oriented along the direction of the locally applied external magnetic field in this
representation.

The eigenenergies and corresponding eigenvectors of the above Hamiltonian are given in Table 1.
It is obvious that the third row in Table 1 corresponds to the ground state. In the absence of any external

magnetic field(hA = 0), the ground-state energy is−3J and the ground-state wavefunction is1√
2
(|↑↓〉−|↓↑〉).

note that the ground state in the absence of any external magnetic field is an entangled state in which neither
the quantum dotA nor the quantum dotB has a definite spin polarization.

3. Adiabatic switching

We now wish to study the following switching problem. Assuming that the inverter is in its ground state
without any applied magnetic field, we will calculate how long it takes after a magnetic field is applied to
quantum dotA for the spin inA to orient along the field and the spin inB to orient in the opposite direction
(as required by the inversion operation).

After the external field is applied at timet = 0, the inverter evolves in time according to the unitary
operation

[c(t)] = exp[−iHt/h̄][c(0)] (4)

whereH is given by Eqn (3) and [c] is a four-element unit vector [c1, c2, c3, c4] that describes the wavefunction
ψ(t) according to

ψ(t) = c1(t)|↓↓〉 + c2(t)|↑↓〉 + c3(t)|↓↑〉 + c4(t)|↑↑〉. (5)

The initial conditions are described by
c1(0)
c2(0)
c3(0)
c4(0)

 =


0
1√
2

− 1√
2

0

 . (6)
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The solution of Eqn (4) subject to the initial condition given by Eqn (6) is

c1(t) = c4(t) = 0

c2(t) =
ei J t/h̄

√
2

[
cos(ωt)− i

(
hA

h̄ω
+
√

1− h2
A

h̄2ω2

)
sin(ωt)

]
(7)

c3(t) = −
ei J t/h̄

√
2

[
cos(ωt)− i

(
hA

h̄ω
−
√

1− h2
A

h̄2ω2

)
sin(ωt)

]
whereω =

√
h2

A + 4J2/h̄.
Therefore, the wavefunction at an arbitrary timet is given by

c2(t)|↑↓〉 + c3(t)|↓↑〉 (8)

with c2 andc3 given by Eqn (7).
After the switching is complete, the system should be in the state|↑↓〉. Therefore, the switching delaytd

can be defined as the time taken for|c2(t)| to reach its maximum value and, correspondingly, for|c3(t)| to
reach its minimum value.

This yields

td = h

4
√

h2
A + 4J2

. (9)

It should be understood that the systemdoes notreach a steady state at timet = td, but instead continues to
evolve in accordance with Eqn (4). The computation (inversion) can be halted by reading the spin-polarization
(logic bit) in the output dot (dotB) with a SPSTM tip at timet = td since the reading operation is dissipative
and collapses the wavefunction. Note that the higher the frequencyω, the more critical is the timing for the
read cycle that halts the quantum computation. Sinceω increases with the exchange energyJ, a largerJ will
mandate a greater accuracy in the read cycle.

To achieve complete switching, the magnitude|c2(td)| should be unity and|c3(td)| should vanish. From
Eqns (7) and (9), we obtain

|c2(td)| = hA + 2J√
2h2

A + 8J2
. (10)

The magnitude|c2(td)|2 as a function of the normalized input signal energyhA/J is shown in Fig. 2. It reaches
a maximum value of unity (corresponding to complete switching) whenhA = 2J. Therefore, there exists an
optimal value of the input signal energyhA for which complete switching can be obtained.

It should be noted from Eqn (9) that the switching delay decreases with increasing exchange energyJ. For
the optimal case(hA = 2J), the switching delay ish/(8

√
2J). We can estimate the order of magnitude fortd.

Presumably, the maximum value of local magnetic field that can be applied to a dot with a SPSTM tip is about
1 T. SincehA ≈ gµB B (µB is the Bohr magnetron), this means that the maximum value ofhA that we can
hope to obtain is about 0.1 meV if we assume the Landég-factor to be 2. Consequently,Joptimal= 0.05 meV.
This gives a value oftd ≈ 7 ps. Therefore, these inverters are capable of quite fast switching.

We can also estimate the temperature of operation for such inverters. Since the exchange energy should
exceed the thermal energykT for stable operation, the ambient temperature should be restricted to below
T = J/k = 570 mK. Because the operation of the inverter requires global phase coherence (i.e. the phase
breaking time should be significantly longer thantd), a low temperature is also otherwise required. To increase
the temperature to a more practical value of 4.2 K,Joptimal should be 0.364 meV and thereforehA should be
as large as 0.728 meV. This requires the ability to generate a local magnetic flux density in excess of 7 T with
an SPSTM tip as an input to cell A. This is not possible with present state of SPSTM technology, but could
become feasible in the future.
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Fig. 2. The magnitude of|c2(td)|2 as a function of the normalized unput signal energyhA/J.
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Fig. 3. Atomic force micrograph of a self-assembled mask to create a periodic array of quantum dots. Details can be found in [4, 6].

We conclude this paper with a brief discussion of experimental strategies undertaken by us in our efforts to
fabricate such gates. We believe that the optimal technique is ‘gentle’ self-assembly of quantum dots rather
than nanolithography which causes processing damage and has a slow throughput. We fabricate a regular array
of the dots using a self-assembled mask for mesa-etching. The self-assembled mask is created by evaporating
aluminum on the chosen semiconductor structure and then electropolishing it in a solution of perchloric acid,
butyl cellusolve and ethanol at 60 V for 30 s at room temperature. Figure 3 shows the raw atomic force
micrograph of a self-assembled mask of aluminum with a dimpled surface that consists of a periodic array of
crests and troughs with hexagonal packing. The troughs are etched away by an appropriate etchant leaving a
regular pattern of isolated crests on the surface of the semiconductor structure that serve as a mask through
which mesas are etched. Owing to space limitations, we will omit details of the fabrication process, but instead
refer the reader to [4, 6].
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