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Current efficient multipliers have computation delays that in-
crease as O(log n), where n is the number of bits in the inputs. In
fact, this asymptotic time complexity for multiplication cannot be
improved if the fan-in of the circuits is bounded above by a con-
stant independent of n. In this paper, we study the potential gain
in the speed of arithmetic computation provided by massive paral-
lelism (i.e., unbounded fan-in/fan-out) and examine the tradeoffs
between the speed and the amount of hardware in large but re-
stricted fan-in threshold circuits. Threshold circuits are chosen
because the potential speed-up in AND--OR circuits for multipli-
cation is minimal even if the fan-in is allowed to be arbitrarily
large. It is well known in complexity theory that any arbitrary
fan-in AND-OR circuit for multiplication of two n-bit integers
must have €2(log n/log log n) computation delays if the circuit
size is bounded by a polynomial in n. Threshold circuits, on
the other hand, are more powerful and we present here threshold
circuits for multiplication with fan-in bounded by m, size
0@ ~4**m"¥-D\/log m), and depth O(d log n/log m) for every
fixed integer d > 0. Similar results are also shown for symmetric
functions such as the parity. With the rapid advance of VLSI
technology and the promise of large scale implementations of
cheap and reliable threshold gates, our results could be used for
the design of massively parallel high-speed multipliers. o 1995
Academic Press, Inc.

1. INTRODUCTION

Many computationally intensive applications such as
real-time signal processing rely crucially on the availabil-
ity of a fast arithmetic logic unit. Any improvement in the
speed of an adder or a multiplier can result in an en-
hanced performance of the corresponding system. Be-
cause of such fundamental considerations, several effi-
cient designs of multipliers [4, 12—-14, 18, 19] have been
proposed (see, for example, [17] for a survey of such
results).
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One basic assumption in these conventional multiplier
designs is that the fan-in (i.e., number of inputs to each
gate) is bounded above by a constant independent of the
input size n. Very often, each gate in the circuit under
consideration simply has only two inputs. If such con-
straint on the fan-in of the multiplier circuits is imposed,
then the design of the Ofman-Wallace tree [12] or the
algorithm of Schonhage and Strassen [14] achieve asymp-
totic optimality in terms of time complexity. Indeed, any
design based on a bounded fan-in circuit model that
yields a circuit with O(log n) computation delays or/and
O(n) gate counts must be asymptotically optimal in terms
of time complexity or/and circuit size, respectively.

1.1. Potential Speed-Up by Massive Parallelism

The previous discussion leaves open the question of
the potential gain in the speed of arithmetic computations
when large fan-in circuits are allowed. To answer this
question, theoretical computer scientists have used the
model of unbounded fan-in combinational circuits to un-
derstand fundamental issues of paraliel computation. To
be more specific, this computational model should be re-
ferred to as unbounded fan-in parallelism, since the num-
ber of inputs to each gate in the circuit is not bounded by
a constant and is allowed to be arbitrarily large. The theo-
retical study of unbounded fan-in parallelism may give us
insights into devising faster algorithms for various com-
putational problems than would be possible with bounded
fan-in parallelism. The objective of such study is to deter-
mine what can be saved with respect to hardware and
time if the fan-in can be increased arbitrarily.

Clearly, the particular weighting of circuit depth, fan-
in, and size that gives a realistic measure of a network’s
cost and speed depends on the technology used to build
it. One case where circuit depth would seem to be the
most important parameter and where large fan-in is feasi-
ble is when the circuit is implemented using optical de-
vices. We refer those who are interested in the implemen-
tation of such optical devices to [1].

1.2. Threshold Circuits—Motivation

A motivation in our study of threshold circuits comes
from the understanding of the computational limitation of
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AND-OR circuits. It is known [5] that for multiplication,
having large fan-in cannot in principle improve the speed
of AND-OR circuits substantially. Therefore, if such a
fundamental limitation is to be overcome by massive par-
allelism, a different model must be used. Threshold cir-
cuits become an attractive alternative.

Many logic optimization problems implicitly contain as
subproblems the mapping of symmetric functions onto
general purpose programmable devices. However, cir-
cuit designers have observed that they are unable to im-
plement most symmetric functions in a small chip area
with, for example, a few cascade of programmable logic
arrays. This can be explained by the result that {5] many
symmetric functions such as the parity require un-
bounded fan-in AND-OR circuits of {)(log n/log log n)
depth to compute, if the circuit size is bounded by a
polynomial in n, similar to the case of multipliers. Since
the conventional designs of bounded fan-in circuits for
multiplication [14] and for symmetric functions [10] re-
quire only O(log n) depth, we conclude that no significant
speed-up in AND-OR circuits can be achieved by having
large fan-in gates.

On the other hand, it is known [11] that any symmetric
function of n variables can be computed by a depth-2
threshold circuit with O(n?) size. Moreover, it has been
shown in [3] that all basic arithmetic operations such as
multiplication of two n bit integers can be carried out in
constant depth threshold circuits with size that increases
as a polynomial in n (i.e., O(n¢) for some constant ¢ > 0).
The constants in the depth of these circuits were signifi-
cantly improved in [15, 15a]. Together with the above
lower bound results, we can conclude that a threshold
circuit based design can lead to a more efficient imple-
mentation of arithmetic and symmetric functions than an
AND-OR circuit based design.

1.3. Depth-Size and Fan-in Tradeoffs in
Massive Parallelism

Although unbounded fan-in threshold circuits have
been designed in the literature, in many instances, the
fan-in of the circuit under study increases at least linearly
Q(n) with the input size. However, the available fan-in
might not be large enough to meet the requirements of a
given circuit and a modified circuit might need to be de-
signed with restricted fan-in. In the context of arithmetic
circuits, issues such as how much can be gained in speed
when the fan-in is not arbitrary but is restricted to, say, a
small fractional power in n (i.e., n® for small ¢ > 0) are
not well understood.

We address this problem in the paper and derive results
on the tradeoffs between the circuit size and the compu-
tation delay with a simultaneous bound on the maximum
allowable fan-in (fan-out) for circuits performing multi-
plication and computation of symmetric functions. For
example, one would like to know the smallest possible
circuitry and/or computation delay in a multiplier when

the maximum allowable fan-in is O(V'n) instead of O(n).
This problem is almost completely solved in this paper
and it is shown that such circuits could have constant
depth. Similar results are derived for circuits implement-
ing symmetric Boolean functions.

Our goal in this paper is to establish the theoretical
foundations for the design of efficient small depth thresh-
old circuits for multiplication and symmetric functions.
With the rapid advance of VLSI technology and the
promise of large scale implementations of cheap and reli-
able threshold gates, we believe that our approach and
results will provide circuit designers more insights into
devising faster circuits.

2. DEFINITIONS AND SUMMARY OF RESULTS

For convenience of presentation, we define two impor-
tant notions associated with a circuit: the size and the
depth. The size and the depth give a measure of the
amount of hardware and the speed of the circuit, respec-
tively.

DEFINITION 1 (Size and Depth). In a combinational
circuit, the size is the total number of edges and the depth
is the number of levels.

The notion of size as defined here is not the only notion
accepted in the literature. In fact, as in our related work
{16], many authors define the size as the number of gates
in the circuit.

DEeFINITION 2 (Threshold Gate/Circuit). A threshold
gate computes a Boolean function f(X) of its inputs X =
(x, ..., x,) € {0, 1}" such that

1 fFX)=0

X) = F(X)) =
f(X) = sgn(F(X)) {0 if FOX) < 0

where F(X) = 2%, w; - x; + wo and the weights w; are
real-valued. A threshold circuit is a combinational logic
circuit in which each basic component is a threshold gate.

Besides multiplication, we shall study the design of
threshold circuits for the class of symmetric functions.

DeFINITION 3 (Symmetric Function). A Boolean
function f: {1, 0}* — {1, 0} is said to be symmetric if
flxy, ooy x,) = f(x(\)s ey X))
for any permutation (xqy, ..., x(,) of (x{, ..., x,), or equiva-

lently, the function depends only on the sum of its input
values 27, x;.

A common example of a symmetric function is the par-
ity function, for which the output is 1 if the sum of its
inputs is odd, and 0 otherwise.

It turns out that an efficient design of a general sym-
metric function leads directly to a fast multiplier design.
We are able to derive depth-size tradeoffs results, with a
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simultaneous bound on maximum allowable fan-in, for
circuits computing symmetric functions. We should note
here that apart from the usefulness of these results in the
context of efficient multiplier circuits, these results could
be equally useful in efficient implementations of other
logic functions which use symmetric functions as basic
blocks.

In Section 3, we first describe a threshold circuit that
computes the parity function of n variables. Using the
“periodic” structure of the parity function, our design
yields a threshold circuit of fan-in m, depth O(d log n/log
m), size O(nm"®-Y) and O(nm~"*-") threshold gates
for every fixed integer d > 0 (Theorem 1). We also show
how to design a threshold circuit for parity with fewer
gates but more edges. In particular, we obtain a threshold
circuit of size O(dnm"?), depth O(d log n/log m), fan-in
bounded by m, and O(dn/m'~") threshold gates (Theo-
rem 2).

Then we present a more general circuit design for arbi-
trary symmetric functions. More precisely, we prove the
following result:

THEOREM 3. Any symmetric function of n inputs can
be computed using a threshold circuit of size bounded
by OQ ¥ nm'®-"Vlog m) or O(n log n) if m"V&-1
Vlog m) = O(log n), and depth O(d log n/log m) and fan-
in bounded by m, for every fixed integer d > 0.

Using the results on symmetric functions in Section
3.2, we give a construction of a fast multiplier in Section
3.3. Similar to the Ofman-~Wallace tree design, our multi-
plier is based on the fast computation of multiple addi-
tion. Our algorithm is a generalization of the carry—save
technique and is a refinement of the results in [3, 15]. In
particular, we obtain the following result:

THEOREM 4. The product of two n bit integers can
be computed using a threshold circuit of size
0Q2 2p2m"®-"\/log m), depth O(d log n/log m), and
fan-in bounded by m, for every fixed integer d > 0.

Section 4 concludes with some open problems and di-
rections for future research.

3. THRESHOLD CIRCUITS FOR SYMMETRIC
FUNCTIONS AND MULTIPLICATION

Since a symmetric function depends only on the sum of
its inputs, it is natural to approach the problem with an
efficient way of computing the sum of n inputs. Thus it is
not surprising that the design of circuits for symmetric
functions is closely related to the design of multipliers. In
fact, the idea of computing the sum of n inputs using
threshold gates has already been used in [6] and our
results are generalizations of this work. (For other results
regarding the design of multipliers, see the comprehen-
sive survey in [17].) Before we present the general design
for an arbitrary symmetric function, we find it more in-
structive to present the design for a special case, the
parity function.

SIU, ROYCHOWDHURY, AND KAILATH

3.1. A Parity Circuit

Besides addition and multiplication, the parity function
is perhaps the most well known function in computa-
tional complexity theory. In fact, the lower bound result
on the limitation of AND-OR circuits for multiplication
was obtained by using the lower bound result on the par-
ity function [5].

It follows from a result of Muroga [11] that the parity
function can be computed using a depth-2 threshold cir-
cuit of size n + O(n). The size of the circuit was later
improved by Minnick [9] to n%/2 + O(n) (with the same
depth), using an ingenious ‘‘telescopic’’ technique. In
fact, their results hold for arbitrary symmetric functions.
But the fan-in of their circuits can be as large as {}(n). In
our earlier work [16], we generalized the construction in
[9] to obtain a depth-d threshold circuit for parity with a
near optimal number of gates, for every integer d > 2.
Here we shall give two circuit designs; one design is for
minimizing the number of edges and the other for mini-
mizing the number of gates, with respect to the depth and
the fan-in of the circuit. We shall use the circuits in [2, 16]
as the basic building blocks in our construction for the
parity circuits.

To give the basic idea of how threshold gates can over-
come the limitation of AND~OR gates, we first review
the classical construction of Muroga [11] in computing
symmetric functions.

A Depth-2 Construction

LEmMA 1 [11]. Let f(xy, x3, ..., X,) be a symmetric
function. Then f can be computed using a depth-2 thresh-
old circuit of size O(n?).

Proof. Since fonly depends on the sum of its inputs
>h x;, there exists a set of 5 subintervals in [0, n], say
ki, ki), Lka, ko), ..., LKy, k) (K's, kj’s are integers and
possibly k; = k;) such that

fxi, X2, ..., x,) = Viff 2, x; € [k;, k] for some J.
i=1

On the first level, there are 2s threshold gates computing

sgn {Z X — kj}2 Vi,
i=1

Yi, =

n

> x,-} forj=1,..s5.

I

i=1

sgn {I;j -
On the second level, the output gate computes
flxr, x2, ., x;) = sgn {2 (o + ¥) =5 — l}.
=1

To see that the output gate gives the correct value of the
function, note the following:
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If for all j, 2, x; & [k;, &1, then y, + 3, = 1
i=1

forallj=1,...,s.

Thus, sgn {Z (v, + ) — 5 — 1}

Jj=1

=sgn{s — s — 1} = 0.

On the other hand, if D, x; € [, /Ej]
iz

for some j € {1, ..., s}

theny, + ¥, = 2and y, + ¥, = 1 fori #j.

Thus, sgn {E (Yo, + ) — 5 — 1}
i=1
=sgn{s+1—s5s—-1}= 1.

Since s is at most n/2, there are at most n threshold gates
in the first level. Each gate in the circuit has fan-in at
most n. Thus the circuit size is O(n?). ®

Efficient Depth-d Constructions with Restricted Fan-in

If the fan-in is constrained to be not more than m < n,
then we cannot directly apply the previous construction.
Instead, we shall use the results in [2, 16] to construct a
small constant-depth circuit to be used as a submodule in
our designs. By doing so, we have reduced both the fan-
in requirement and the size of the circuit.

THEOREM 1. The parity function of n inputs can be
computed using a threshold circuit of size O(nm" V),
depth O(d log n/log m), and fan-in bounded by m. More-
over, the number of threshold gates in the circuit is
O(nm~Y*=1) for every fixed integer d > 0.

Proof. In [2], it was shown that for every d > 1, the
parity function of n inputs can be computed by a thresh-
old circuit of size O(n'*'?*~1) and depth O(d) (with fan-
in bounded by n). The number of threshold gates is
O(n!'~Y@*-1) Our threshold circuit has the structure of an
m-ary tree: each node in the tree corresponds to a subcir-
cuit of size O(m!*"?~1) and depth O(d) that computes
the parity of its m inputs, which are the outputs from the
nodes in the next lower level. At the bottom level, there
are n/m nodes each computing the parity of m inputs (the
inputs are the ‘‘leaves’ of the m-ary tree). The single
node at the top level of the tree outputs the parity of the n
inputs to the circuit. If / is the number of levels of the m-
ary tree, then clearly the number of leaves is m!. Thus / =
O(log n/log m). Since there are O(n/m) nodes in the tree
and each node requires a depth-O(d) size-O(m'*V@-1)
threshold circuit of O(m'~"-1) gates, the total circuit
size and depth are O(nm"?®~Y) and O(d log n/log m),

respectively. The number of threshold gates is O(n/m -
ml-l/(Z"—l)) = O(nm_“(zd‘”). a

It is clear that if the number of gates in the threshold
circuit corresponding to each node in the above circuit
can be reduced, then the overall gate count will also be
reduced. Depending on the technology of implementing
threshold gates, sometimes we might prefer a threshold
circuit with fewer threshold gates at the expense of more
edges. In fact, we can construct a threshold circuit with
fewer threshold gates than the one in Theorem 1, with a
small increase in the number of edges while having the
same depth. We shall state the following result without
proof. We refer the interested readers to our other paper
[16] for the details.

LEMMA 2. For every integer d > 0, we can compute
the parity of m inputs using a depth-(d + 1) threshold
circuit of size O(dm'*"¥) and fan-in bounded by O(m).
The number of threshold gates in the circuit is O(dm"?).

As a result of Lemma 2, we have the following theo-
rem:

THEOREM 2. For every d > 0, the parity function of n
inputs can be computed using a threshold circuit of size
O(dnm"?), depth O(d log nflog m) and fan-in bounded by
m. Moreover, the number of threshold gates in the circuit
is O(dn/m'~V4),

Proof. The proof is almost the same as in Theorem 1,
except that now each node in the m-ary tree corresponds
to a depth (d + 1) threshold circuit of size O(dm'*"¢) and
with O(dm") threshold gates. Since the number of nodes
O(n/m) and the number of levels O(log n/log m) of the
underlying m-ary tree remains the same, the circuit size
and depth become O(dnm'¥) and O(d log n/log m), re-
spectively. The total number of threshold gates in the
circuit is O(n/m - dmV) = O(dn/m'~V%). W

3.2. Computing a Sum of n Bits

The design of the parity circuit shown in the previous
section relies heavily on the ‘‘periodic’ structure of the
parity function. For a general symmetric function, the
parity circuit design based on an m-ary tree structure
does not seem to apply.

On the combinational complexity of a general symmet-
ric function, the first significant result was obtained by
Muller and Preparata [10]. They showed that any n-input
symmetric function can be constructed using a bounded
fan-in circuit of size O(n) and depth O(log n). For a
bounded fan-in circuit, this construction is (within a con-
stant factor) optimal both in circuit size and depth. For an
unbounded fan-in AND-OR circuit, a technique in [3]
shows that the depth of the circuit for symmetric function
can be improved to O(log n/log log n) by having arbitrar-
ily large fan-in gates, an improvement which can be
shown to be the best possible (asymptotically).

In our related work [16], we attempted to minimize the
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gate count and have obtained a depth-3 threshold circuit
of size O(n*?) (but O(Vn) number of gates) for any n-
input symmetric function. However, the threshold circuit
has a maximum fan-in of n + V. It can be shown that
the number of threshold gates in this circuit cannot be
reduced significantly without increasing the depth.

Here we shall constrain the fan-in of our circuit to be m
and construct a threshold circuit for an arbitrary symmet-
ric function that is efficient in circuit size and depth. The
construction consists of two parts. In the first part, we
design a threshold circuit that would output the log n-bit
sum of its n inputs. The construction of the second part is
easy. Since a symmetric function only depends on the
sum of its inputs, which has been encoded into log n bits
from the first part, we simply construct a look-up table
for the value of the function, which costs at most O(n log
n) circuitry.

It is easy to see from the proof of Lemma 1, one can
construct a depth-2 size-O(m?) threshold circuit to com-
pute the O(log m)-bit sum of the m inputs (x|, xa, ..., X,).
Actually, the size of the circuit can be significantly im-
proved, as stated in the following lemma, which is a spe-
cial case of a result in [2]. To avoid cumbersome nota-
tion, we shall assume that the sum of m bits can be
expressed as a log m-bit integer (e.g., Lemmas 3 and 5).

LemMA 3 (Beame et al. [2]). Given m inputs (x|, xa,
vees Xm), the log m-bit sum 272, x; can be computed using
a threshold circuit of size OQ 2m'*"¥-\/log m),
depth 7d, and fan-in bounded by m, for every fixed inte-
gerd > 0.

A major part of our design for symmetric functions and
multiplication is a threshold circuit with fan-in bounded
by m that efficiently computes the sum of many integers.
The basic idea is a generalization of the classical carry—
save technique or the Ofman-Wallace tree. The main
difficulty in computing the sum of n integers, where n >
m, is to compute the carry bits in parallel. The conven-
tional carry—save technique reduces the sum of three in-
tegers to the sum of two integers in one step, where one
of the resulting two integers consists only of the carry
bits. Our technique generalizes this idea and reduces the
sum of m N-bit integers to the sum of log m (N + log m)-
bit integers using a small depth threshold circuit. Similar
techniques have been used in [15]. For an expository
discussion of carry—save adders or the column compres-
sion technique, see the textbook of Kuck [8]. Using the
generalized carry-save techniques and the result of
Lemma 5, we can derive the following lemma; the proof
follows by adding the corresponding bits of the m given
integers.

LEMMA 4. Given m N-bit integers: x; = 2N 1x,  +

<+ 2x, + xi, i =1, ..., m. The sum 2., x; can be
reduced to a sum of log m integers of size at most (N +
log m)-bits, using a depth 7d threshold circuit of size
OQ-Nm!"*V¥-Y\/log m) and fan-in bounded by m.

Now we can construct a threshold circuit to compute
the sum of n inputs using the small depth circuits in
Lemma 3 and Lemma 4 as submodules.

LEMMA 5. Given n inputs (x(, x3, ..., x,), the O(log
n)-bit sum X', x; can be computed using a threshold
circuit of size OQ2~nm'"*-"\/log m), depth O(d log n/
log m), and fan-in bounded by m for every fixed integer
d>0.

Proof. For convenience, let fy(m) = 2-42m!*tV
@-b\/log m. Divide the inputs into n/m groups, each
having m inputs. Compute the (log m)-bit sum of each
group in parallel using the circuits in Lemma 3. This step
requires 7d levels of threshold gates and altogether
O(fy(m) - nim) = OQ~2pm""**~"\/log m) circuit size.

After the first step, we obtain n/m integers of size (log
m) bits: X = 2logmfl Xilogm—1 + -+ ZX,'J + Xi0s i = ], veey
n/m. Further divide these n/m integers into n/m? groups,
each having m integers of size log m bits. By Lemma 4,
the sum in each group can be reduced to a sum of log m
integers each of 2 log m bits. This step requires 7d levels
of threshold gates and O( fy(m) log m) = O(2~42m'*+ /2~
log*? m) circuitry for each group. If we perform the re-
duction in parallel for all n/m? groups of integers com-
puted from the first step, then O(n/m? - 2-42p!+12-D
log*? m) = O(n log¥? m) circuitry is needed. Since each
group of m integers is reduced to a group of log m inte-
gers, we have n log m/m? (2 log m)-bit integers after the
second step.

This reduction procedure is iterated until the sum is
reduced to the sum of <m integers each of O(log n) bits.
At every step, the integers are divided into groups of m
integers and the reduction procedure is applied to every
group. By Lemma 4, the sum of m integers of size (k log
m) bits in each group can be reduced to the sum of log m
integers of size (k + 1) log m-bits, using a threshold cir-
cuit of depth-7d and size O(kf,(m) log m) = OQ2~4%km'*V
-1 10g3? m). In general, after the kth step (k > 1), we
will have O(n(log m)*~'/m*) remaining integers of size k
log m bits, and the circuitry required in the kth step is
O(fu(m) - (k — 1) log m - n(log m)*~2/m*) = O(nfy(m) - k -
(log m)*~'/m*). The reduction procedure is iterated until
O(n(log m)*~Y/m*) drops below m, say i, or when k =
O(log nflog m). Then apply Lemma 4 again with m re-
placed by m and N replaced by O(log n) so that there are
< log m remaining integers each of O(log n) bits. This
would require a depth-7d threshold circuit with O(f,(m)
log n) circuitry. Since each step requires 7d levels of
threshold gates, so there are O(d log n/log m) levels and
the O((n/m) fi(m)) = OQ2-4nm""*~"log m) circuitry in
the first step dominates the circuit size after this se-
quence of reductions.

It remains to be shown how we can efficiently compute
the sum of log m O(log n)-bit integers: zy, ..., Ziogm. Parti-
tion each O(log n)-bit integer z; into O(log n/log log m)
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consecutive blocks §;; with each block having log log m
bits,fori=1, ...,logmandj =0, ..., O(log n/log log m).
Note that each block §; ; represents an integer < 2'ogloem —
1 = log m — 1. Thus the sum of all jth blocks, §; = 3 ioem
$ij, can be formed as the sum of (log m) (logm — 1) =
O(log? m) 1-bit number after each has been decoded, i.e.,
converted to unary notation. By Lemma 3, the sum of all
jth blocks S\®" §;; can be computed using a threshold
circuit of size O(fi(log? m)), depth 7d, and fan-in
bounded by O(log? m). Furthermore, each of these block
sums §; = Siem §;; can be represented in 2 log m bits.
Thus there is no overlapping in the binary representation
of 527 and §;,,2U*?1em  Using similar arguments as in
Lemma 4, we let

seven

= 2 jj.2j|°8’"

Jjeven

and

joddz 25j‘

Jjodd

il .
27 ogm’

then the binary representation of Seyeq is simply a concate-
nation of the bits in §p, §5, §4, ... and so forth. Similarly, a
concatenation of the bits in §;, $3, §s, ... yields the binary
representation of §,qq. Moreover, the original sum 2,
Xi = Seven t So0da. Since there are O(log n/log log m) §;’s
and each §; can be computed in parallel with a depth-7d
threshold circuit of size O(f;(log> m)), we only require a
depth-7d threshold circuit with O( f;(log? m) log n/log log
m) size to reduce the sum to the two O(log n)-bit integers
jodd and Seven-

To compute the sum of the remaining two O(log n)-bit
integers, it only requires another constant depth thresh-
old circuit of almost logarithmic size. Hence the total
circuit size is dominated by the O(2-“2nm!®~"\/log m)
circuitry in the first step and the circuit depth is O(d log
n/logm). B

LEMMA 6. Let f(xy, x3, ..., x,) be an arbitrary sym-
metric function. If the log n-bit sum 2]-, x; is given, then
the function f can be computed using an AND-OR cir-
cuit of size O(n log n), depth O(log n/log m) and fan-in
bounded by m.

Proof. Since a symmetric function depends only on
the sum of its inputs T, x; = 2,%" " 5,2/, which is given,
we can treat f as a function of log »n inputs s;, sy, ...,
Siogn—1- EXpress fas a logical sum-of-products form. Then
the number of product terms is at most O(2!%8") = O(n).
The first level of the circuit consists of at most n AND
gates with fan-in = log n computing all the product terms
if m = log n. If m < log n, we can replace each AND gate
by an m-ary tree of AND gates with fan-in m. This will
require at most O(log log n/log m) depth and O(n log n)
circuitry. To compute the OR of these product terms, we

can use an m-ary tree of OR gates with fan-in m to com-
pute. This costs at most 2 circuitry and O(log n/log m)
depth. Thus the overall circuit size is O(n log n) and
circuit depth is O(log n/log m). W

As a consequence of Lemma 5 and Lemma 6, we have
the following result:

THEOREM 3. Any symmetric function of n inputs can
be computed using a threshold circuit of size bounded
by OQ " nm"-Y\/log m) or O(n log n) if m"*-D
Vlog m = o(log n), depth O(d log n/log m), and fan-in
bounded by m for every fixed integer d > 0.

Proof. Let f(x;, xa, ..., x,) be an arbitrary symmetric
function. By Lemma 5, the log n-bit sum of the inputs
2%, x; can be computed by a threshold circuit of size
0 pm"¥-"\/log m), depth O(d log n/log m) and fan-
in bounded by m. It follows from Lemma 6 that another
depth O(log n/log m) and size O(n log n) circuit with fan-
in = m is needed to compute the final value. =

3.3. Fast Multiplication

Although multiplication of two n-bit integers requires
any bounded depth AND-OR circuit with arbitrary fan-in
to have exponential size, it was shown in [3] that many
fundamental arithmetic operations including multiplica-
tion and sorting can be computed by bounded depth
threshold circuits of polynomial size (i.e., size that grows
as n¢ for some ¢ > 0). The depth of these polynomial size
threshold circuits has been significantly reduced in [15].
Still, the circuit has very large fan-in and size (O(n?).

THEOREM 4. The product of two n-bit integers
can be computed using a threshold circuit of size
0Q~"p2m""¥-Y\/log m), depth O(d log n/log m), and
fan-in bounded by m for every fixed integer d > 0.

Proof. Again for convenience, let fy(m) = 2-42m'*V

@-D\/log m. Let the two input binary integers be x =
Xp-1Xn=2 <o+ X05 ¥ = Yn-1Yn-2 ... Yo. The first level of our
circuit outputs the n binary integers z; = z;, 2, ... %, of
size 2n bits, fori = 0, ..., n — 1, where

z=0 ..;_O(x,,_l ANy xu—2 ANy oo (g AN y) 0 ... 0.

———

[N—

n—i i

It is easy to see that the product of x and y is simply the
sum of the z;’s. This step requires one level of AND-OR
gates with fan-in 2 and O(n?) circuitry.

The problem has been reduced to the computation of a
sum of n integers z; of size 2n bits. We proceed as in
Lemma 5. Divide the n integers into n/m groups, each
having m integers. Apply the reduction procedure of
Lemma 4 (with N = 2n in this step) in parallel to each
group of integers. After the reduction, there are log m
integers remaining in each group. The reduction for each
group requires a depth-7d threshold circuit of size
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Onfim)) = OQ pm'*V@ \/log m) by Lemma 4.
Since there are n/m groups, there will be n log m/m re-
maining integers and the total circuitry required in this
step is O(nfy(m) - n/m) = OQ2~2n2m"*-"Vlog m).

Now we apply the reduction procedure iteratively until
we have reduced the multiple sum into a sum of < m
integers each with O(n)-bits. A simple induction shows
that in general at the end of the kth step (for k > 1), we
will have O(n(log m)*/m*) integers of size at most (2n + k
log m) bits, and the circuitry required in the kth step is
O((2n + klog m) - n(log m)*=Y/m* - f,(m)). So k = O(log
n/log m). Another application of Lemma 4 with N re-
placed by O(n) reduces the sum to a sum of < log m
integers each with O(n)-bits, using a depth-7d threshold
circuit of size O(nf;(m)). A “‘block partitioning’’ similar
argument to that in Lemma 5 further reduces this sum of
< log m integers to a sum of two O(n)-bit integers with a
depth-7d threshold circuit of size O(nf,(log? m)). At the
final step, the sum of the two integers can be computed
with almost linear size and depth O(log n/log m).

Thus the overall circuit size is dominated by the first
step, which is O(Q2-42n2m"2~Y\/log m). Since each re-
duction requires only 7d levels of threshold gates, the
overall circuit depth is O(d log n/log m). W

3.4. Comparison with Other Multipliers

Since many of the well known multiplier designs (e.g.,
[18, 13]) are based on the bounded fan-in combinational
circuit model, it is necessary that the circuit depth of
these multipliers increase proportionally to log n. On the
other hand, our multiplier design is based on the un-
bounded (but restricted) fan-in circuit model. Thus for
specific values of n, it is difficult to compare the merits of
our design with the well known ones. Since our goal is to
provide circuit designers with new theoretical insights for
the potential advantages of threshold gates, we would
still like to put some figures in perspective.

ExampLE 1. For carry-save addition, the best
known result on the circuit depth based on a bounded
fan-in circuit model was obtained in [13], where a circuit
consisting of 3-bit full adders with depth 3.71 log n + O(1)
and size O(n*'%) was derived for the multiple carry—save
addition of n numbers. If we let n = 128, then the carry—
save addition circuit in [13] has depth larger than 26. With
the same value of n, the multiplier in [18] has depth of 40.
In our circuit design based on threshold circuits with fan-
in m = 8, we can derive a multiple carry—save addition
circuit with gate count O(n?) and if n = 128, the depth of
the circuit is 20.

4. CONCLUDING REMARKS

Our main contribution in this paper is the demonstra-
tion of the tradeoffs among the circuits size, maximum
allowable fan-in, and the computation delay for multipli-
ers. While previous results on unbounded fan-in circuits

allow the fan-in to be arbitrarily large, we are able to
derive depth—size tradeoff results of these models, with a
simultaneous bound on the maximum allowable fan-in,
for multipliers and for circuits computing symmetric
functions. Moreover, our results appear to be the best
known in the literature.

The potential speed-up in performing multiplication by
increasing the fan-in of the AND-OR circuit is minimal.
In fact, even if the fan-in is allowed to be arbitrarily large,
the best possible computation delay in a polynomial-size
AND-OR circuit for multiplication of 2 n-bit integers is
Q(og n/log log n). However, with threshold circuits, we
can design a multiplier that speeds up asymptotically
with respect to the maximum allowable fan-in. In particu-
lar, we can construct a threshold circuit of size
0Q 2 2m"¥-Y\/log m) and depth O(d log n/log m),
with fan-in at most m, for every fixed integer d > 0.
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