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MALWARE MUTATION DETECTOR 

REFERENCE TO RELATED APPLICATIONS 

[0001] This application claims priority to US. Provisional 
Patent Application No. 60/721,639 (“the ’639 Provisional 
Application”), ?led Sep. 29, 2005, titled “Polymorphic 
Software Identi?cation”. The contents of the ’639 Provi 
sional Application are incorporated by reference as if set 
forth fully herein. 

FIELD OF THE INVENTION 

[0002] The present invention relates generally to the 
detection of polymorphic software, and in a preferred 
embodiment to the detection of polymorphic computer soft 
ware threats. 

BACKGROUND OF THE INVENTION 

[0003] The computing industry is constantly battling to 
detect and disable software designed for malicious purposes. 
We refer to all such malicious software as “malware,” and 
this includes, but is not limited to, viruses, worms, back 
doors, Trojan Horses, and combinations thereof. The most 
common method of detecting malware is known as signature 
matching, which involves identifying a unique ?ngerprint 
associated with a particular malware or set of malware, and 
then checking a suspect ?le for the known ?ngerprint. 
Typically, the signatures are simple strings or regular expres 
srons. 

[0004] However, malware authors have developed meth 
ods to circumvent signature matching by creating malware 
that changes its form, or mutates, from one instance to 
another. We refer to this as polymorphism. Malware authors 
may create various mutations of a particular malware by 
using a mutation engine, which is software that transforms/ 
mutates an original malware (referred to herein as a parent 
malware) into a new malware (referred to herein as a child 
malware) to avoid signature matching, but nonetheless 
ensures the child malware maintains the malicious function 
ality of the parent malware. Various methods of this muta 
tion include: basic block randomization; basic block split 
ting; decoy instruction insertion; decoy basic block 
insertion; peephole transformations; constant hiding; sub 
routine synthesis; branch target hiding; spectrum modi?ca 
tion, and entry point obscuring. Known mutation engines 
include ADMmutate, CLET, and JempiScodes. We believe 
the ?rst fully polymorphic WINDOWS 32-bit malware was 
the Win95/Marburg virus released in 1998. Although poly 
morphism has manifested itself to date most often in viruses, 
other types of malware may also be polymorphic. For 
example, Agobot (also known as Gaobot or Phatbot) is a 
known polymorphic worm. 

[0005] The software security industry has responded to 
polymorphic threats by using a process sometimes referred 
to as “generic decryption”, in which emulators are used to 
allow execution and inspection of suspect ?les in a con 
trolled environment. Basically, a software model of an 
operating environment is developed, and the suspect ?le 
(potential malware) is then run in the model environment 
where the emulator monitors its execution. But this 
approach is typically dif?cult to implement in practice and 
relatively easy to circumvent. For example, the emulation 
may be cost-prohibitive. Additionally, the malware may be 
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able to detect that it is running in an emulated environment 
and therefore terminate before delivering its payload. As 
such, a mutation detector may never identify the signature, 
and erroneously conclude the suspect malware is not a 
threat. 

[0006] A promising approach to identifying polymorphic 
software has been developed by researchers at the Univer 
sity of Wisconsin, in which the structural attributes of a 
particular polymorphic attack are characterized by an 
automaton. The suspect ?le is analyzed, and the basic blocks 
and control ?ow path are determined. The instructions are 
then annotated with semantic information, and the control 
?ow path and control tree are compared to the automaton 
that characterized the speci?c malware. This approach has 
the potential to undo the effects of some of the malware 
community’s circumvention techniques (e.g., peephole 
transformations, basic block randomization, and decoy basic 
block insertion), but requires signi?cant computation time, 
and also requires each polymorphic threat to be manually 
characterized. 

[0007] Therefore, an alternative malware mutation detec 
tor is desirable to enable the computer security industry to 
identify polymorphic malware. 

SUMMARY OF THE INVENTION 

[0008] The present invention includes a method for clas 
sifying/categorizing polymorphic computer software by 
extracting features from a suspect ?le, and comparing the 
extracted features to features of known classes of software 
(e.g., known malware). In essence, a suspect ?le is remapped 
into a feature space thereby allowing classi?cation of the 
suspect ?le by comparison of selected features from the 
suspect ?le to the features of known ?les in the feature 
space. For practical use, an effective mutation detector 
should have low false positive and low false negative. We 
have found that with the features identi?ed herein, and based 
on Bayesian classi?cation techniques, our invention meets 
these requirements. 

[0009] The process of our invention attempts to overcome 
various mutation engine camou?age techniques (described 
herein), so that the features extracted represent the true 
functionality of the suspect ?le. A preferred embodiment of 
the method of the present invention begins by converting the 
suspect ?le into high-level code (such as assembly code), 
from which the basic blocks of code are then constructed. 
Optional steps, such as applying an inverse peephole trans 
formation to the high-level code, may be used in certain 
situations. A control ?ow graph of the basic blocks of code 
is constructed, and simpli?ed in certain situations, from 
which a control tree is built. Features are then extracted from 
the high-level code, and used to classify the suspect ?le. The 
features we extract include OPCODE, MARKOV, Data 
Dependence Graph (DDG), and/or STRUCT, all de?ned 
herein. 

[0010] The present invention may incorporate social net 
working technology, which may also take advantage of 
Bayesian classi?cation techniques. This would allow a ?rst 
network node to query other network nodes for information 
the other nodes may have about the suspect ?le, and/or for 
the other nodes to perform their own independent classi? 
cation of the suspect ?le and report back to the ?rst node 
(and other network nodes). The information may be related 
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only to speci?c features, and not necessarily include a 
conclusive classi?cation of the suspect ?le. Thus, as a neW 
classi?cation feature is determined based on a high reliabil 
ity match against a neW ?le, the neW feature may be 
distributed across a peer-to-peer or other network, globally 
increasing the e?iciency of the classi?cations. Furthermore, 
a mutation engine may be used to generate child malWare 
from a knoWn malWare, and features may be extracted from 
the child malWare to further populate the feature space 
Within the parent malWare group. This “seeding” of the 
feature space helps the present invention detect polymorphic 
malWare potentially before it even makes its Way into the 
computing public. 
[0011] Since the classi?cation engine is preferably based 
on Bayesian statistics, the actual classi?cation time is rela 
tively loW. Furthermore, because of the nature of Bayesian 
statistics, in this preferred embodiment the data ?oW analy 
sis used for feature extraction does not need to be exact and 
conservative. In essence, using Bayesian techniques alloWs 
for faster imprecise algorithms may be used. 

[0012] One aspect of the present invention thus includes: 
identifying the suspect binary ?le to be classi?ed; converting 
the suspect binary ?le into a high-level code; extracting 
features from the high-level code; and classifying the sus 
pect binary ?le into one of a plurality of groups based on the 
features extracted. In a preferred embodiment the folloWing 
steps are also performed: constructing basic blocks of code 
from the high-level code; determining a control ?oW graph 
of the basic blocks of code; and building a control tree from 
the control ?oW graph. The features may be classi?ed prior 
to the suspect binary ?le being classi?ed, and certain tech 
niques (such as inverse peephole transformation, and/or 
sliding WindoW technique) may be applied to the suspect 
binary ?le before constructing its basic blocks. The features 
list may be sent across a netWork by a ?rst netWork node for 
processing by other netWork nodes, and then the ?rst net 
Work node may receive a response from another netWork 
node indicating Whether the features list corresponds to any 
one of a plurality of groups (e.g., knoWn malWare), after 
Which the suspect ?le may be classi?ed based at least 
partially on the response from the other netWork node. The 
result of the classi?cation may then be saved and used for 
reporting back to other netWork nodes that may send future 
queries. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0013] FIG. 1 is a ?owchart shoWing a method of the 
present invention. 

[0014] FIG. 2 is a typical system diagram of a netWork that 
may be used to implement the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

[0015] The method of the present invention is used to 
classify polymorphic computer softWare, by extracting fea 
tures from a suspect ?le and comparing the extracted fea 
tures to features of knoWn classes of softWare. The method 
produces practical results in part because of the feature 
space We have de?ned (i.e., the features We have chosen to 
extract), and in part based on the use of Bayesian statistics. 
That is, Within accepted probabilities, a child malWare 
exhibits the same set of features as its parent malWare. Thus, 
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once a parent malWare has been positively identi?ed, its 
features can be mapped to the feature space and added to the 
set of knoWn malWare Within the feature space (or a more 
speci?c set, e.g., MalWare-X), and a child malWare then 
Would likely be identi?ed as such once its features are 
extracted and compared to the parent malWare. 

[0016] As explained above, the malWare community has 
developed many camou?age techniques in an attempt to 
help their polymorphic malWare avoid detection by signa 
ture-matching mutation detectors. FolloWing are some of the 
mutation engine camou?age techniques that are used or that 
may be used. This list is not complete, but merely illustra 
tive. These methods may be used in combination and With 
other methods by malWare authors to make signature detec 
tion extremely di?icult. The methods are: 

[0017] Basic Block Randomization. This involves ran 
domly reordering the basic blocks of a program, thus poten 
tially breaking apart signatures Which span multiple basic 
blocks in the parent malWare. The Win32/Ghost and BadBoy 
viruses use this technique. Although a “basic block ” is a 
term of art, brie?y We describe it as an “atomic” unit of code, 
in that it contains only sequential linear code. Thus, a basic 
block may be simply a single instruction, or a series of 
consecutive linear instructions. Studies have shoWn that a 
typical basic block of code on average includes ?ve instruc 
tions. 

[0018] Basic Block Splitting. This involves splitting a 
basic block into tWo or more portions, thus potentially 
breaking apart signatures Which are in a single block in the 
parent malWare. 

[0019] Decoy Instruction Insertion. This involves insert 
ing useless instructions (i.e., dead code) Within an opera 
tional instruction sequence of a basic block, thus also 
potentially breaking apart signatures Which are in a single 
block in the parent malWare. 

[0020] Decoy Basic Block Insertion. This involves insert 
ing useless entire basic blocks, Which may impede data ?oW 
analysis (discussed herein) of a mutation detector. 

[0021] Peephole Transformations. This is similar to peep 
hole optimizations used by many compilers, in Which short 
sequences of code Within a basic block are replaced With 
more e?icient code. HoWever, in this case the malWare 
author is not concerned about e?iciency, but rather simply 
intends to replace a sequence of code With another func 
tionally equivalent sequence, thus potentially breaking apart 
signatures Which are in a single block in the parent malWare. 

[0022] Constant Hiding. This involves encryption of the 
constants in the compiler (e.g., using an XOR) combined 
With the corresponding decrypter in the executable code, to 
potentially avoid signature detection based on constant 
identi?cation. The Evol virus uses this technique. 

[0023] Subroutine Synthesis. This involves extracting a 
sequence of basic blocks from a program and replacing them 
placing them in a neW subroutine called in their place. This 
impedes mutation detectors that rely on subroutine analysis. 

[0024] Branch Target Hiding. This involves generating a 
custom subroutine containing a table of branch targets 
Within the body of the calling subroutine. The calling 
subroutine could then replace some or all branch instructions 
With a call to the neW subroutine and provide the index of the 
appropriate target. 
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[0025] Spectrum Modi?cation. This involves “whitening” 
the spectral ?ngerprint of a program by adding compensa 
tion code, thus impeding mutation detectors that rely on 
spectral properties of a program for identi?cation. 

[0026] Entry point obscuring. Since signature-based 
detection schemes must perform detailed regular-expression 
matching against a database with thousands of signatures, 
some anti-virus software limits its searching to the begin 
ning and end of the suspect ?les. While most malware 
originally attached to the beginning or end of a ?le, more 
recently malware may reside at any location within a suspect 
?le. Furthermore, the malware may be set to execute at an 
arbitrary point in time during the program execution. 

[0027] The invention will now be described in detail, in 
association with the accompanying drawings. Turning to 
FIG. 1, a ?owchart shows a method of classifying a suspect 
binary ?le into one of a plurality of groups based on features, 
according to the present invention. The method starts at step 
100, and at step 105 the suspect binary ?le to be classi?ed 
is identi?ed. This may be nothing more than having the ?le 
available and making a decision to classify the ?le. At step 
110, the suspect binary ?le is converted into high-level code, 
or in other words, the high-level code is extracted from the 
suspect ?le. Here, high-level refers to any human-cogniZable 
code, including assembly language. Typically this may be 
performed using a dis-assembler, decompiler, or the like. 

[0028] Once the high-level code is obtained, an “inverse 
peephole transformation” step may be optionally performed, 
as seen at step 115. This process attempts to undo the effects 
of the mutation engine’s peephole transformations. In a 
theoretical ideal application, all peephole transformations 
would be undone. However, practically, this is an iterative 
process that is stopped based upon set criteria such as the 
number of transformations identi?ed. In a preferred embodi 
ment, the basic blocks of code are then constructed from the 
high-level code as seen at step 120. Techniques for doing 
this are known in the art. Although the basic blocks may 
sometimes be dif?cult to identify precisely and thoroughly, 
the construction of the basic blocks can typically be accom 
plished to an acceptable degree of certainty due to use of 
Bayesian statistics. 

[0029] If the basic blocks of code are constructed, a 
control ?ow graph of the basic blocks of code may be 
determined, as seen at step 125. Doing so will help undo 
many camou?age transformations that may have obscured 
the control ?ow path, such as decoy basic block insertion. 
Although sometimes difficult, this step is well-known in the 
computer science ?eld and may be accomplished without 
undue experimentation. The control ?ow graph may be 
optionally simpli?ed, as seen at step 130. For example, an 
initial control ?ow graph that includes a ?rst instruction after 
an IF condition and a second instruction after a THEN 

condition, may be simpli?ed into a graph that includes the 
?rst instruction in one instance and the second instruction in 
the other instance, without regard to which instance results 
from the IF and which from the THEN, since the distinction 
is not computationally signi?cant. 

[0030] If a control ?ow graph is determined, then at step 
135, a control tree may be built from the control ?ow graph, 
representing the control structure of the suspect ?le/program 
(e.g., accounting for IF-THEN-ELSE constructs, case state 
ments, and the like.) This too may be performed using 
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techniques known in the art. Once the control tree is built, 
the stage is now set for the features to be extracted from the 
suspect ?le. Of course, the stage would be set even after step 
110 in certain situations. The features are extracted at step 
140, and is explained in more detail below. 

[0031] Once the features are extracted, then optionally 
they may be classi?ed, as seen at step 145. The totality of 
feature classi?cation may then be used to classify the 
suspect binary ?le into one of a plurality of groups based on 
the features extracted, as seen at step 150. Or if the features 
are not classi?ed themselves, they can nonetheless be used 
to classify the suspect binary ?le as a whole at step 150. 
Classi?cation may be as simple as choosing between two 
groups4one is known malware and the other is not known 
malware. Or there may be three groupsiknown malware, 
known not to be malware, and unknown. There of course 
may be any number of groups, which may include numerous 
individual groups of speci?c types of malware, and/or 
numerous groups representing various degrees of con?dence 
that a suspect binary ?le within the group is or is not 
malware. The classi?cation process should improve over 
time as the set of known malware is mapped into the feature 
space. Thus, each time a new malware is identi?ed by the 
security industry, it may be mapped into the feature space to 
further populate the feature space for future classi?cations. 
Once the suspect ?le is classi?ed, the process ends at step 
155. 

[0032] The classi?cation at step 145 may also involve help 
from other network nodes, e.g., other computers in a net 
work that are participating in the malware detection. For 
example, in addition to or alternatively from a particular 
mutation detector performing the classi?cation itself, the 
mutation detector may send the extracted features (or a 
subset of them) across a network for evaluation by one or 
more of its peers. The evaluation at a peer node may then 
return the result of classi?cation, i.e., an indication as to 
whether the feature(s) corresponds to any one of a plurality 
of groups, and the mutation detector may then classify the 
suspect binary ?le into one of the plurality of groups based 
at least partially on the response from the peer node. Of 
course, the mutation detector may still use the results of its 
own classi?cation. In either case, the mutation detector may 
then save the result of the classi?cation, and at a subsequent 
time when queried by one of its peers as to similar features 
of a new suspect ?le, send the result of the classi?cation to 
the querying peer. The mutation detector may also send the 
results of the classi?cation out over the network without a 
query, to help its peers populate their classi?cation database 
proactively. 
[0033] Referring back now to step 140, the following 
features of the suspect ?le may be extracted: 1) OPCODE; 
2) MARKOV; 3) Data Dependence Graph (DDG); and 4) 
STRUCT. Each of these will now be described. For illus 
tration purposes, presume the following example code 
sequence from the INTEL IA32 (i.e., x86) instruction set is 
in a parent polymorphic malware that has already been 
identi?ed as such: 

[0034] a. movl % eax, % esi 

[0035] b. incl % esi 

[0036] c. incl % eax 

[0037] d. movb 8132 (% esp, % eax), % al 
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[0038] 
[0039] f. movl % esi, % eax 

e. testb % al, % al 

[0040] g.je.LBBmaini6l 

[0041] OPCODE 

[0042] We refer to this feature as “OPCODE,” because it 
considers simply the Op-Codes of the high-level code (i.e., 
operational instructions Without regard to the arguments). 
Thus, using the example code above, the Op-Codes 
extracted Would be movl, inc, movb, testb, and je. Consid 
ering only Op-Codes Without regard to arguments helps 
avoid some mutation engine camou?age techniques in 
Which register use is perrnutated. Proprietary software may 
be used for extracting OPCODE features, but such softWare 
is knoWn in the art. 

[0043] The types of consideration may include simply 
determining Whether a speci?c Op-Code or class of Op 
Codes is present, and/or determining the quantitative distri 
bution of each speci?c Op-Code or class of Op-Codes Within 
the suspect ?le and/ or Within each basic block of the suspect 
?le. Using the OPCODE feature has the potential of Working 
Well in situations Wherein the distribution of Op-Codes is 
distinct Within a particular polymorphic class of malWare, 
Which is the case for many real-World polymorphic sets of 
malWare. Furthermore, the computational requirements for 
extracting the OPCODE feature are very loW. Typically, the 
OPCODE feature Will be Weighted evenly When used in 
combination With other features. For example, if the speci?c 
OPCODE feature identi?ed is the fact that on average, each 
basic block of the suspect ?le contains 2 incl instructions, 
then the Bayesian classi?cation engine Will assign a Weight 
of l to that feature. OPCODE does not consider the relative 
or actual order of the instructions, only their existence and 
perhaps quantities. 

[0044] MARKOV 

[0045] The MARKOV feature is similar to the OPCODE 
feature in that MARKOV considers Op-codes, but 
MARKOV further considers the speci?c order of the Op 
codes. This feature is useful because, for example, When a 
move instruction Writes to a register that is then incre 
mented, the move Will precede the increment instruction in 
all mutated versions of the code (child malWare), presuming 
peephole transformations have been undone. Thus, there is 
an embedded or inherent execution sequence Within a mal 

Ware (and its children malWare), and When this sequence is 
extracted as the MARKOV feature it can then be matched 
against the sequences that are characteristic of the knoWn 
polymorphic parent malWare. 

[0046] In a preferred embodiment, the MARKOV features 
are extracted by ?rst ?nding all ordering information form 
the Op-code sequence. For example, starting With the ?rst 
instruction in the sample code above, there are sequences 
such as: 1) movl; 2) movl, inc; 3) movl, inc incl; movl, testb; 
and many others. In fact, in a sequence of n Op-codes, it 
should be apparent there are 2n-l MARKOV features. So 
using the example code above, Which has a sequence of 7 
Op-codes, there are 127 MARKOV features. Comparatively, 
there are only 7 Op-code features counting each Op-code as 
a feature. lntuitively, the signi?cance of a MARKOV feature 
should increase With its length, and so We prefer to assign a 
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Weight of 22n to each MARKOV feature of length n give 
more Weight to longer matches. 

[0047] Data Dependence Graph 

[0048] This third type of feature considers the combina 
tion of Op-codes and the partial order of them. We refer to 
this as a “Data Dependence Graph” feature or DDG feature, 
and it re?ects computational structure and relationships 
inherent in the underlying program code of a suspect ?le. We 
consider Which instructions produce data values that are read 
by subsequent instructions. This information is useful about 
the How of data through the program computations. Features 
are extracted by ?nding a set of graphs in a data dependence 
graph Which are rooted at instructions that are not dependent 
on any other instructions. Again referring to the sample code 
above, the tWo root instructions are a and b. The graph 
associated With a includes all instructions other than b, While 
the graph associated With b includes only instructions b and 
f. Each of the aforementioned graphs implies a partial order 
among the instructions contained Within them. The combi 
nation of Op-codes and the partial order of them becomes 
the DDG feature to use to match against the DDG features 
of knoW polymorphic malWare. 

[0049] STRUCT 

[0050] One limitation of DDG features is that they Will not 
appear in child malWare if aggressive basic block splitting is 
applied. For example, if the basic block shoWn in the sample 
parent malWare code above is broken after instructions b, c, 
d, or e, to create a child malWare, then neither of the DDG 
features of the child malWare Will completely match the 
parent malWare DDG feature for this block. This limitation 
of the DDG feature motivated the fourth feature Which We 
call STRUCT. STRUCT features are constructed from the 
entire control How graph, and thus are able to cross basic 
block boundaries and negate the impact of basic block 
splitting. STRUCT also constructs a control tree of the 
suspect binary ?le, and extracts features from the tree. The 
tree is constructed by analyZing the control How graph and 
?nding logical program structures, such as a sequence of 
basic blocks, various types of loops, lF-THEN-ELSE state 
ments, and case statements. For example, With this repre 
sentation it is possible to search for a sequence of ?ve 
instructions that compute a key identifying function and are 
knoWn to exist Within an arm of a case statement, even if the 
instructions are arti?cially divided into multiple basic blocks 
and the entire case statement contains thousands of instruc 
tions. 

[0051] Thus, using one or more of the above features of a 
suspect ?le, either alone or in combination With each other, 
and assigning various Weights to the features Which match 
against a knoWn set of polymorphic malWare, We can, using 
Bayesian techniques, determine to a satisfactory degree of 
probability Whether the suspect ?le is a child malWare of one 
of the knoWn polymorphic parent malWares for Which 
features have already been extracted. 

[0052] To overcome the effect of Entry point obscuring, 
our invention may be implemented using a sliding WindoW 
technique to extract the features. This technique analyZes the 
suspect ?le in portions, i.e., Wherein the length of a portion 
of code being analyZed is considered the WindoW. After a 
?rst portion of code is analyZed, then the WindoW slides to 
the next portion Which may overlap the ?rst portion. Pref 
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erably the window length remains the same throughout this 
sliding window technique. In one embodiment, only the 
most recent 100 features from the suspect ?le under analysis 
are maintained. Using this technique, the percent of match 
ing features would likely increase during the analysis of the 
suspect ?le when the sliding window was in a position 
corresponding to the entry point of the child malware. A 
con?dence score may be calculated as log(probability in 
set)—log(probability not in set), and a low pass ?lter may be 
used on the output of a sliding window analysis to achieve 
even greater overall classi?cation. 

[0053] As previously described, the present invention may 
incorporate social networking technology, which may also 
take advantage of Bayesian classi?cation techniques. This 
would allow a ?rst network node to query other network 
nodes for information the other nodes may have about the 
suspect ?le, and/ or for the other nodes to perform their own 
independent classi?cation of the suspect ?le and report back 
to the ?rst node (and other network nodes). The information 
may be related only to speci?c features, and not necessarily 
include a conclusive classi?cation of the suspect ?le. Thus, 
as a new classi?cation feature is determined based on a high 
reliability match against a new ?le, the new feature may be 
distributed across a peer-to-peer or other network, globally 
increasing the ef?ciency of the classi?cations. Furthermore, 
a mutation engine may be used to generate child malware 
from a known malware, and features may be extracted from 
the child malware to further populate the feature space 
within the parent malware group. This “seeding” of the 
feature space helps the present invention detect polymorphic 
malware potentially before it even makes its way into the 
computing public. 

[0054] The present invention may be performed manually, 
or automatically, or using both manual and automatic means. 
It may be implemented in software, ?rmware, hardware, or 
combinations thereof. Here, we use the term “software” to 
represent all of the aforementioned. The software embody 
ing the present invention may reside on any ?xed medium 
(including computer readable permanent storage), and be 
executed locally, remotely, over a network, or using any 
other means available. For example, the software may be 
implemented on a router/switch in a network, on a PC or 
device at the end of a wireless network, or at a PC/PDA 
device at the end of a wireless link. 

[0055] A typical network environment in which the 
present invention may be implemented is shown in FIG. 2. 
Generally, the network may be any type of network using 
any network topology, and may include wireless, wired, 
intranet, intemet, the Internet, a local area network and the 
like. For example, FIG. 2 shows Personal Computers 5 and 
6, PDAs 10, a laptop 15, a cell phone 20, and use ofa router 
25. All may be connected through a wireless network 30 
directly or through other means such as a router 25. The 
wireless network itself is connected to the Internet 35. We 
are not aware of any network limitations to implementation 
of the present invention. 

[0056] While the invention is susceptible to various modi 
?cations, and alternative forms, speci?c examples thereof 
have been shown in the drawings and are herein described 
in detail. It should be understood, however, that the inven 
tion is not to be limited to the particular forms or methods 
disclosed, but to the contrary, the invention is to cover all 
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modi?cations, equivalents and alternatives falling within the 
spirit and scope of the appended claims. As an example, 
though the methods have been shown and described in 
reference to malware, the present invention may be used to 
detect polymorphic software that is not necessarily malware. 

What is claimed is: 
1. A method of classifying a suspect binary ?le into one 

of a plurality of groups based on features, the method 
comprising: 

a) identifying the suspect binary ?le to be classi?ed; 

b) converting the suspect binary ?le into a high-level 
code; 

c) extracting features from the high-level code; and 

d) classifying the suspect binary ?le into one of a plurality 
of groups based on the features extracted. 

2. The method of claim 1, wherein the features are 
classi?ed prior to the suspect binary ?le being classi?ed. 

3. The method of claim 1, further comprising the steps of: 
a) constructing basic blocks of code from the high-level 
code; b) determining a control ?ow graph of the basic blocks 
of code; and c) building a control tree from the control ?ow 
graph. 

4. The method of claim 3, wherein an inverse peephole 
transformation is applied to the suspect binary ?le before the 
step of constructing basic blocks. 

5. The method of claim 3, wherein the control ?ow graph 
is simpli?ed before the step of constructing the control tree. 

6. The method of claim 1, wherein one of the features is 
an OPCODE feature. 

7. The method of claim 1, wherein one of the features is 
a MARKOV feature. 

8. The method of claim 7, wherein one of the features is 
an OPCODE feature. 

9. The method of claim 8, wherein the MARKOV feature 
has a length of n and is weighted 22”, and the OPCODE 
feature is weighted evenly. 

10. The method of claim 3, wherein one of the features is 
a Data Dependence Graph feature. 

11. The method of claim 3, wherein one of the features is 
a STRUCT feature. 

12. The method of claim 1, wherein one of the plurality 
of groups corresponds to known malware. 

13. The method of claim 1, further comprising the step of 
using a sliding window technique to extract the features. 

14. The method of claim 1, wherein the classifying of the 
suspect binary ?le comprises using Bayesian classi?cation 
techniques. 

15. A method of classifying a suspect binary ?le into one 
of a plurality of groups based on features, the method 
comprising: 

a) identifying the suspect binary ?le to be classi?ed; 

b) converting the suspect binary ?le into a high-level 
code; 

c) extracting features from the high-level code to create a 
features list, said features selected from the group 
consisting of an OPCODE feature, a MARKOV fea 
ture, a Data Dependence Graph feature, and a STRUCT 
feature; 

d) sending the features list to a ?rst network node; 
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e) receiving a response from the ?rst network node 
indicating Whether the features list corresponds to any 
one of a plurality of groups; and 

f) classifying the suspect binary ?le into one of the 
plurality of groups based at least partially on the 
response from the ?rst netWork node; and 

g) saving a result of the classi?cation. 
16. The method of claim 15, further comprising the steps 

of: a) constructing basic blocks of code from the high-level 
code; b) determining a control How graph of the basic blocks 
of code; and c) building a control tree from the control How 
graph. 

17. The method of claim 16, Wherein one of the plurality 
of groups corresponds to knoWn malWare. 

18. The method of claim 17, further comprising sending 
the result of the classi?cation to a second netWork node. 

19. The method of claim 16, Wherein the classifying of the 
suspect binary ?le comprises using Bayesian classi?cation 
techniques. 

20. The method of claim 16, Wherein the MARKOV 
feature has a length of n and is Weighted 22“, Whereas the 
OPCODE feature is Weighted evenly. 

21. The method of claim 16, further comprising the step 
of using a sliding WindoW technique to extract the features. 

22. Computer softWare stored on a computer readable 
medium, programmed to classify a suspect binary ?le into 
one of a plurality of groups based on features by performing 
the folloWing steps: 

a) identifying the suspect binary ?le to be classi?ed; 
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b) converting the suspect binary ?le into a high-level 
code; 

c) extracting features from the high-level code; and 

d) classifying the suspect binary ?le into one of a plurality 
of groups based on the features extracted. 

23. The computer softWare of claim 22, further pro 
grammed to: a) construct basic blocks of code from the 
high-level code; b) determine a control How graph of the 
basic blocks of code; and c) build a control tree from the 
control How graph. 

24. The computer softWare of claim 22, Wherein one of 
the features is an OPCODE feature. 

25. The computer softWare of claim 22, Wherein one of 
the features is a MARKOV feature. 

26. The computer softWare of claim 23, Wherein one of 
the features is a Data Dependence Graph feature. 

27. The computer softWare of claim 23, Wherein one of 
the features is a STRUCT feature. 

28. The computer softWare of claim 23, Wherein one of 
the plurality of groups corresponds to knoWn malWare. 

29. The computer softWare of claim 23, further pro 
grammed to use a sliding WindoW technique to extract the 
features. 

30. The computer softWare of claim 23, Wherein the 
classifying of the suspect binary ?le comprises using Baye 
sian classi?cation techniques. 


