
US 20070094734A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0094734 A1

Mangione-Smith et al. (43) Pub. Date: Apr. 26, 2007

(54) MALWARE MUTATION DETECTOR Publication Classi?cation

(76) Inventors: William H. Mangione-Smith, (51) Int. Cl.
Kirkland, WA (US); VWani P. G06F 12/14 (2006.01)
RoychoWdhury, Los Angeles, CA (U S); H04L 9/32 (2006.01)
Jesse S.A. Bridgewater, Los Angeles, G06F 11/00 (2006.01)
CA (US) G06F 11/30 (2006.01)

G06F 12/16 (2006.01)
Correspondence Address: G06F 15/18 (2006.01)
Vista IP Law Group LLP G08B 23/00 (2006.01)
9th Floor
2040 Main street (52) US. Cl. 726/24; 713/188
Irvine, CA 92614 (US)

(21) Appl. No.: 11/537,443
_ (57) ABSTRACT

(22) F1led: Sep. 29, 2006

Related US. Application Data
Amethod for classifying polymorphic computer software by

(60) Provisional application No. 60/721,639, ?led on Sep. extracting features from a suspect ?le and comparing the
29, 2005. extracted features to features of known classes of softWare.

5 5

25

Wireless

Laptop

Patent Application Publication Apr. 26, 2007 Sheet 1 0f 2

/’>| Start I
100

V

105 -———> identify binary file to be
classified

110 f’
Extract high-level code

115 J’

V

Apply inverse peephole
transformations

7

Construct basic blocks 120\/
7

Determine control flow
graph

V

130 I’
Simplify control flow
graph

V

Build control tree 131/
V

Extract features

V

145 4"’ Classify features

1
Classify binary file

FIG. 1

US 2007/0094734 A1

155

Patent Application Publication Apr. 26, 2007 Sheet 2 0f 2 US 2007/0094734 A1

5 5

20 \ j

Wireless

Laptop

FIG. 2

US 2007/0094734 A1

MALWARE MUTATION DETECTOR

REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to US. Provisional
Patent Application No. 60/721,639 (“the ’639 Provisional
Application”), ?led Sep. 29, 2005, titled “Polymorphic
Software Identi?cation”. The contents of the ’639 Provi
sional Application are incorporated by reference as if set
forth fully herein.

FIELD OF THE INVENTION

[0002] The present invention relates generally to the
detection of polymorphic software, and in a preferred
embodiment to the detection of polymorphic computer soft
ware threats.

BACKGROUND OF THE INVENTION

[0003] The computing industry is constantly battling to
detect and disable software designed for malicious purposes.
We refer to all such malicious software as “malware,” and
this includes, but is not limited to, viruses, worms, back
doors, Trojan Horses, and combinations thereof. The most
common method of detecting malware is known as signature
matching, which involves identifying a unique ?ngerprint
associated with a particular malware or set of malware, and
then checking a suspect ?le for the known ?ngerprint.
Typically, the signatures are simple strings or regular expres
srons.

[0004] However, malware authors have developed meth
ods to circumvent signature matching by creating malware
that changes its form, or mutates, from one instance to
another. We refer to this as polymorphism. Malware authors
may create various mutations of a particular malware by
using a mutation engine, which is software that transforms/
mutates an original malware (referred to herein as a parent
malware) into a new malware (referred to herein as a child
malware) to avoid signature matching, but nonetheless
ensures the child malware maintains the malicious function
ality of the parent malware. Various methods of this muta
tion include: basic block randomization; basic block split
ting; decoy instruction insertion; decoy basic block
insertion; peephole transformations; constant hiding; sub
routine synthesis; branch target hiding; spectrum modi?ca
tion, and entry point obscuring. Known mutation engines
include ADMmutate, CLET, and JempiScodes. We believe
the ?rst fully polymorphic WINDOWS 32-bit malware was
the Win95/Marburg virus released in 1998. Although poly
morphism has manifested itself to date most often in viruses,
other types of malware may also be polymorphic. For
example, Agobot (also known as Gaobot or Phatbot) is a
known polymorphic worm.

[0005] The software security industry has responded to
polymorphic threats by using a process sometimes referred
to as “generic decryption”, in which emulators are used to
allow execution and inspection of suspect ?les in a con
trolled environment. Basically, a software model of an
operating environment is developed, and the suspect ?le
(potential malware) is then run in the model environment
where the emulator monitors its execution. But this
approach is typically dif?cult to implement in practice and
relatively easy to circumvent. For example, the emulation
may be cost-prohibitive. Additionally, the malware may be

Apr. 26, 2007

able to detect that it is running in an emulated environment
and therefore terminate before delivering its payload. As
such, a mutation detector may never identify the signature,
and erroneously conclude the suspect malware is not a
threat.

[0006] A promising approach to identifying polymorphic
software has been developed by researchers at the Univer
sity of Wisconsin, in which the structural attributes of a
particular polymorphic attack are characterized by an
automaton. The suspect ?le is analyzed, and the basic blocks
and control ?ow path are determined. The instructions are
then annotated with semantic information, and the control
?ow path and control tree are compared to the automaton
that characterized the speci?c malware. This approach has
the potential to undo the effects of some of the malware
community’s circumvention techniques (e.g., peephole
transformations, basic block randomization, and decoy basic
block insertion), but requires signi?cant computation time,
and also requires each polymorphic threat to be manually
characterized.

[0007] Therefore, an alternative malware mutation detec
tor is desirable to enable the computer security industry to
identify polymorphic malware.

SUMMARY OF THE INVENTION

[0008] The present invention includes a method for clas
sifying/categorizing polymorphic computer software by
extracting features from a suspect ?le, and comparing the
extracted features to features of known classes of software
(e.g., known malware). In essence, a suspect ?le is remapped
into a feature space thereby allowing classi?cation of the
suspect ?le by comparison of selected features from the
suspect ?le to the features of known ?les in the feature
space. For practical use, an effective mutation detector
should have low false positive and low false negative. We
have found that with the features identi?ed herein, and based
on Bayesian classi?cation techniques, our invention meets
these requirements.

[0009] The process of our invention attempts to overcome
various mutation engine camou?age techniques (described
herein), so that the features extracted represent the true
functionality of the suspect ?le. A preferred embodiment of
the method of the present invention begins by converting the
suspect ?le into high-level code (such as assembly code),
from which the basic blocks of code are then constructed.
Optional steps, such as applying an inverse peephole trans
formation to the high-level code, may be used in certain
situations. A control ?ow graph of the basic blocks of code
is constructed, and simpli?ed in certain situations, from
which a control tree is built. Features are then extracted from
the high-level code, and used to classify the suspect ?le. The
features we extract include OPCODE, MARKOV, Data
Dependence Graph (DDG), and/or STRUCT, all de?ned
herein.

[0010] The present invention may incorporate social net
working technology, which may also take advantage of
Bayesian classi?cation techniques. This would allow a ?rst
network node to query other network nodes for information
the other nodes may have about the suspect ?le, and/or for
the other nodes to perform their own independent classi?
cation of the suspect ?le and report back to the ?rst node
(and other network nodes). The information may be related

US 2007/0094734 A1

only to speci?c features, and not necessarily include a
conclusive classi?cation of the suspect ?le. Thus, as a neW
classi?cation feature is determined based on a high reliabil
ity match against a neW ?le, the neW feature may be
distributed across a peer-to-peer or other network, globally
increasing the e?iciency of the classi?cations. Furthermore,
a mutation engine may be used to generate child malWare
from a knoWn malWare, and features may be extracted from
the child malWare to further populate the feature space
Within the parent malWare group. This “seeding” of the
feature space helps the present invention detect polymorphic
malWare potentially before it even makes its Way into the
computing public.
[0011] Since the classi?cation engine is preferably based
on Bayesian statistics, the actual classi?cation time is rela
tively loW. Furthermore, because of the nature of Bayesian
statistics, in this preferred embodiment the data ?oW analy
sis used for feature extraction does not need to be exact and
conservative. In essence, using Bayesian techniques alloWs
for faster imprecise algorithms may be used.

[0012] One aspect of the present invention thus includes:
identifying the suspect binary ?le to be classi?ed; converting
the suspect binary ?le into a high-level code; extracting
features from the high-level code; and classifying the sus
pect binary ?le into one of a plurality of groups based on the
features extracted. In a preferred embodiment the folloWing
steps are also performed: constructing basic blocks of code
from the high-level code; determining a control ?oW graph
of the basic blocks of code; and building a control tree from
the control ?oW graph. The features may be classi?ed prior
to the suspect binary ?le being classi?ed, and certain tech
niques (such as inverse peephole transformation, and/or
sliding WindoW technique) may be applied to the suspect
binary ?le before constructing its basic blocks. The features
list may be sent across a netWork by a ?rst netWork node for
processing by other netWork nodes, and then the ?rst net
Work node may receive a response from another netWork
node indicating Whether the features list corresponds to any
one of a plurality of groups (e.g., knoWn malWare), after
Which the suspect ?le may be classi?ed based at least
partially on the response from the other netWork node. The
result of the classi?cation may then be saved and used for
reporting back to other netWork nodes that may send future
queries.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a ?owchart shoWing a method of the
present invention.

[0014] FIG. 2 is a typical system diagram of a netWork that
may be used to implement the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0015] The method of the present invention is used to
classify polymorphic computer softWare, by extracting fea
tures from a suspect ?le and comparing the extracted fea
tures to features of knoWn classes of softWare. The method
produces practical results in part because of the feature
space We have de?ned (i.e., the features We have chosen to
extract), and in part based on the use of Bayesian statistics.
That is, Within accepted probabilities, a child malWare
exhibits the same set of features as its parent malWare. Thus,

Apr. 26, 2007

once a parent malWare has been positively identi?ed, its
features can be mapped to the feature space and added to the
set of knoWn malWare Within the feature space (or a more
speci?c set, e.g., MalWare-X), and a child malWare then
Would likely be identi?ed as such once its features are
extracted and compared to the parent malWare.

[0016] As explained above, the malWare community has
developed many camou?age techniques in an attempt to
help their polymorphic malWare avoid detection by signa
ture-matching mutation detectors. FolloWing are some of the
mutation engine camou?age techniques that are used or that
may be used. This list is not complete, but merely illustra
tive. These methods may be used in combination and With
other methods by malWare authors to make signature detec
tion extremely di?icult. The methods are:

[0017] Basic Block Randomization. This involves ran
domly reordering the basic blocks of a program, thus poten
tially breaking apart signatures Which span multiple basic
blocks in the parent malWare. The Win32/Ghost and BadBoy
viruses use this technique. Although a “basic block ” is a
term of art, brie?y We describe it as an “atomic” unit of code,
in that it contains only sequential linear code. Thus, a basic
block may be simply a single instruction, or a series of
consecutive linear instructions. Studies have shoWn that a
typical basic block of code on average includes ?ve instruc
tions.

[0018] Basic Block Splitting. This involves splitting a
basic block into tWo or more portions, thus potentially
breaking apart signatures Which are in a single block in the
parent malWare.

[0019] Decoy Instruction Insertion. This involves insert
ing useless instructions (i.e., dead code) Within an opera
tional instruction sequence of a basic block, thus also
potentially breaking apart signatures Which are in a single
block in the parent malWare.

[0020] Decoy Basic Block Insertion. This involves insert
ing useless entire basic blocks, Which may impede data ?oW
analysis (discussed herein) of a mutation detector.

[0021] Peephole Transformations. This is similar to peep
hole optimizations used by many compilers, in Which short
sequences of code Within a basic block are replaced With
more e?icient code. HoWever, in this case the malWare
author is not concerned about e?iciency, but rather simply
intends to replace a sequence of code With another func
tionally equivalent sequence, thus potentially breaking apart
signatures Which are in a single block in the parent malWare.

[0022] Constant Hiding. This involves encryption of the
constants in the compiler (e.g., using an XOR) combined
With the corresponding decrypter in the executable code, to
potentially avoid signature detection based on constant
identi?cation. The Evol virus uses this technique.

[0023] Subroutine Synthesis. This involves extracting a
sequence of basic blocks from a program and replacing them
placing them in a neW subroutine called in their place. This
impedes mutation detectors that rely on subroutine analysis.

[0024] Branch Target Hiding. This involves generating a
custom subroutine containing a table of branch targets
Within the body of the calling subroutine. The calling
subroutine could then replace some or all branch instructions
With a call to the neW subroutine and provide the index of the
appropriate target.

US 2007/0094734 A1

[0025] Spectrum Modi?cation. This involves “whitening”
the spectral ?ngerprint of a program by adding compensa
tion code, thus impeding mutation detectors that rely on
spectral properties of a program for identi?cation.

[0026] Entry point obscuring. Since signature-based
detection schemes must perform detailed regular-expression
matching against a database with thousands of signatures,
some anti-virus software limits its searching to the begin
ning and end of the suspect ?les. While most malware
originally attached to the beginning or end of a ?le, more
recently malware may reside at any location within a suspect
?le. Furthermore, the malware may be set to execute at an
arbitrary point in time during the program execution.

[0027] The invention will now be described in detail, in
association with the accompanying drawings. Turning to
FIG. 1, a ?owchart shows a method of classifying a suspect
binary ?le into one of a plurality of groups based on features,
according to the present invention. The method starts at step
100, and at step 105 the suspect binary ?le to be classi?ed
is identi?ed. This may be nothing more than having the ?le
available and making a decision to classify the ?le. At step
110, the suspect binary ?le is converted into high-level code,
or in other words, the high-level code is extracted from the
suspect ?le. Here, high-level refers to any human-cogniZable
code, including assembly language. Typically this may be
performed using a dis-assembler, decompiler, or the like.

[0028] Once the high-level code is obtained, an “inverse
peephole transformation” step may be optionally performed,
as seen at step 115. This process attempts to undo the effects
of the mutation engine’s peephole transformations. In a
theoretical ideal application, all peephole transformations
would be undone. However, practically, this is an iterative
process that is stopped based upon set criteria such as the
number of transformations identi?ed. In a preferred embodi
ment, the basic blocks of code are then constructed from the
high-level code as seen at step 120. Techniques for doing
this are known in the art. Although the basic blocks may
sometimes be dif?cult to identify precisely and thoroughly,
the construction of the basic blocks can typically be accom
plished to an acceptable degree of certainty due to use of
Bayesian statistics.

[0029] If the basic blocks of code are constructed, a
control ?ow graph of the basic blocks of code may be
determined, as seen at step 125. Doing so will help undo
many camou?age transformations that may have obscured
the control ?ow path, such as decoy basic block insertion.
Although sometimes difficult, this step is well-known in the
computer science ?eld and may be accomplished without
undue experimentation. The control ?ow graph may be
optionally simpli?ed, as seen at step 130. For example, an
initial control ?ow graph that includes a ?rst instruction after
an IF condition and a second instruction after a THEN

condition, may be simpli?ed into a graph that includes the
?rst instruction in one instance and the second instruction in
the other instance, without regard to which instance results
from the IF and which from the THEN, since the distinction
is not computationally signi?cant.

[0030] If a control ?ow graph is determined, then at step
135, a control tree may be built from the control ?ow graph,
representing the control structure of the suspect ?le/program
(e.g., accounting for IF-THEN-ELSE constructs, case state
ments, and the like.) This too may be performed using

Apr. 26, 2007

techniques known in the art. Once the control tree is built,
the stage is now set for the features to be extracted from the
suspect ?le. Of course, the stage would be set even after step
110 in certain situations. The features are extracted at step
140, and is explained in more detail below.

[0031] Once the features are extracted, then optionally
they may be classi?ed, as seen at step 145. The totality of
feature classi?cation may then be used to classify the
suspect binary ?le into one of a plurality of groups based on
the features extracted, as seen at step 150. Or if the features
are not classi?ed themselves, they can nonetheless be used
to classify the suspect binary ?le as a whole at step 150.
Classi?cation may be as simple as choosing between two
groups4one is known malware and the other is not known
malware. Or there may be three groupsiknown malware,
known not to be malware, and unknown. There of course
may be any number of groups, which may include numerous
individual groups of speci?c types of malware, and/or
numerous groups representing various degrees of con?dence
that a suspect binary ?le within the group is or is not
malware. The classi?cation process should improve over
time as the set of known malware is mapped into the feature
space. Thus, each time a new malware is identi?ed by the
security industry, it may be mapped into the feature space to
further populate the feature space for future classi?cations.
Once the suspect ?le is classi?ed, the process ends at step
155.

[0032] The classi?cation at step 145 may also involve help
from other network nodes, e.g., other computers in a net
work that are participating in the malware detection. For
example, in addition to or alternatively from a particular
mutation detector performing the classi?cation itself, the
mutation detector may send the extracted features (or a
subset of them) across a network for evaluation by one or
more of its peers. The evaluation at a peer node may then
return the result of classi?cation, i.e., an indication as to
whether the feature(s) corresponds to any one of a plurality
of groups, and the mutation detector may then classify the
suspect binary ?le into one of the plurality of groups based
at least partially on the response from the peer node. Of
course, the mutation detector may still use the results of its
own classi?cation. In either case, the mutation detector may
then save the result of the classi?cation, and at a subsequent
time when queried by one of its peers as to similar features
of a new suspect ?le, send the result of the classi?cation to
the querying peer. The mutation detector may also send the
results of the classi?cation out over the network without a
query, to help its peers populate their classi?cation database
proactively.
[0033] Referring back now to step 140, the following
features of the suspect ?le may be extracted: 1) OPCODE;
2) MARKOV; 3) Data Dependence Graph (DDG); and 4)
STRUCT. Each of these will now be described. For illus
tration purposes, presume the following example code
sequence from the INTEL IA32 (i.e., x86) instruction set is
in a parent polymorphic malware that has already been
identi?ed as such:

[0034] a. movl % eax, % esi

[0035] b. incl % esi

[0036] c. incl % eax

[0037] d. movb 8132 (% esp, % eax), % al

US 2007/0094734 A1

[0038]
[0039] f. movl % esi, % eax

e. testb % al, % al

[0040] g.je.LBBmaini6l

[0041] OPCODE

[0042] We refer to this feature as “OPCODE,” because it
considers simply the Op-Codes of the high-level code (i.e.,
operational instructions Without regard to the arguments).
Thus, using the example code above, the Op-Codes
extracted Would be movl, inc, movb, testb, and je. Consid
ering only Op-Codes Without regard to arguments helps
avoid some mutation engine camou?age techniques in
Which register use is perrnutated. Proprietary software may
be used for extracting OPCODE features, but such softWare
is knoWn in the art.

[0043] The types of consideration may include simply
determining Whether a speci?c Op-Code or class of Op
Codes is present, and/or determining the quantitative distri
bution of each speci?c Op-Code or class of Op-Codes Within
the suspect ?le and/ or Within each basic block of the suspect
?le. Using the OPCODE feature has the potential of Working
Well in situations Wherein the distribution of Op-Codes is
distinct Within a particular polymorphic class of malWare,
Which is the case for many real-World polymorphic sets of
malWare. Furthermore, the computational requirements for
extracting the OPCODE feature are very loW. Typically, the
OPCODE feature Will be Weighted evenly When used in
combination With other features. For example, if the speci?c
OPCODE feature identi?ed is the fact that on average, each
basic block of the suspect ?le contains 2 incl instructions,
then the Bayesian classi?cation engine Will assign a Weight
of l to that feature. OPCODE does not consider the relative
or actual order of the instructions, only their existence and
perhaps quantities.

[0044] MARKOV

[0045] The MARKOV feature is similar to the OPCODE
feature in that MARKOV considers Op-codes, but
MARKOV further considers the speci?c order of the Op
codes. This feature is useful because, for example, When a
move instruction Writes to a register that is then incre
mented, the move Will precede the increment instruction in
all mutated versions of the code (child malWare), presuming
peephole transformations have been undone. Thus, there is
an embedded or inherent execution sequence Within a mal

Ware (and its children malWare), and When this sequence is
extracted as the MARKOV feature it can then be matched
against the sequences that are characteristic of the knoWn
polymorphic parent malWare.

[0046] In a preferred embodiment, the MARKOV features
are extracted by ?rst ?nding all ordering information form
the Op-code sequence. For example, starting With the ?rst
instruction in the sample code above, there are sequences
such as: 1) movl; 2) movl, inc; 3) movl, inc incl; movl, testb;
and many others. In fact, in a sequence of n Op-codes, it
should be apparent there are 2n-l MARKOV features. So
using the example code above, Which has a sequence of 7
Op-codes, there are 127 MARKOV features. Comparatively,
there are only 7 Op-code features counting each Op-code as
a feature. lntuitively, the signi?cance of a MARKOV feature
should increase With its length, and so We prefer to assign a

Apr. 26, 2007

Weight of 22n to each MARKOV feature of length n give
more Weight to longer matches.

[0047] Data Dependence Graph

[0048] This third type of feature considers the combina
tion of Op-codes and the partial order of them. We refer to
this as a “Data Dependence Graph” feature or DDG feature,
and it re?ects computational structure and relationships
inherent in the underlying program code of a suspect ?le. We
consider Which instructions produce data values that are read
by subsequent instructions. This information is useful about
the How of data through the program computations. Features
are extracted by ?nding a set of graphs in a data dependence
graph Which are rooted at instructions that are not dependent
on any other instructions. Again referring to the sample code
above, the tWo root instructions are a and b. The graph
associated With a includes all instructions other than b, While
the graph associated With b includes only instructions b and
f. Each of the aforementioned graphs implies a partial order
among the instructions contained Within them. The combi
nation of Op-codes and the partial order of them becomes
the DDG feature to use to match against the DDG features
of knoW polymorphic malWare.

[0049] STRUCT

[0050] One limitation of DDG features is that they Will not
appear in child malWare if aggressive basic block splitting is
applied. For example, if the basic block shoWn in the sample
parent malWare code above is broken after instructions b, c,
d, or e, to create a child malWare, then neither of the DDG
features of the child malWare Will completely match the
parent malWare DDG feature for this block. This limitation
of the DDG feature motivated the fourth feature Which We
call STRUCT. STRUCT features are constructed from the
entire control How graph, and thus are able to cross basic
block boundaries and negate the impact of basic block
splitting. STRUCT also constructs a control tree of the
suspect binary ?le, and extracts features from the tree. The
tree is constructed by analyZing the control How graph and
?nding logical program structures, such as a sequence of
basic blocks, various types of loops, lF-THEN-ELSE state
ments, and case statements. For example, With this repre
sentation it is possible to search for a sequence of ?ve
instructions that compute a key identifying function and are
knoWn to exist Within an arm of a case statement, even if the
instructions are arti?cially divided into multiple basic blocks
and the entire case statement contains thousands of instruc
tions.

[0051] Thus, using one or more of the above features of a
suspect ?le, either alone or in combination With each other,
and assigning various Weights to the features Which match
against a knoWn set of polymorphic malWare, We can, using
Bayesian techniques, determine to a satisfactory degree of
probability Whether the suspect ?le is a child malWare of one
of the knoWn polymorphic parent malWares for Which
features have already been extracted.

[0052] To overcome the effect of Entry point obscuring,
our invention may be implemented using a sliding WindoW
technique to extract the features. This technique analyZes the
suspect ?le in portions, i.e., Wherein the length of a portion
of code being analyZed is considered the WindoW. After a
?rst portion of code is analyZed, then the WindoW slides to
the next portion Which may overlap the ?rst portion. Pref

US 2007/0094734 A1

erably the window length remains the same throughout this
sliding window technique. In one embodiment, only the
most recent 100 features from the suspect ?le under analysis
are maintained. Using this technique, the percent of match
ing features would likely increase during the analysis of the
suspect ?le when the sliding window was in a position
corresponding to the entry point of the child malware. A
con?dence score may be calculated as log(probability in
set)—log(probability not in set), and a low pass ?lter may be
used on the output of a sliding window analysis to achieve
even greater overall classi?cation.

[0053] As previously described, the present invention may
incorporate social networking technology, which may also
take advantage of Bayesian classi?cation techniques. This
would allow a ?rst network node to query other network
nodes for information the other nodes may have about the
suspect ?le, and/ or for the other nodes to perform their own
independent classi?cation of the suspect ?le and report back
to the ?rst node (and other network nodes). The information
may be related only to speci?c features, and not necessarily
include a conclusive classi?cation of the suspect ?le. Thus,
as a new classi?cation feature is determined based on a high
reliability match against a new ?le, the new feature may be
distributed across a peer-to-peer or other network, globally
increasing the ef?ciency of the classi?cations. Furthermore,
a mutation engine may be used to generate child malware
from a known malware, and features may be extracted from
the child malware to further populate the feature space
within the parent malware group. This “seeding” of the
feature space helps the present invention detect polymorphic
malware potentially before it even makes its way into the
computing public.

[0054] The present invention may be performed manually,
or automatically, or using both manual and automatic means.
It may be implemented in software, ?rmware, hardware, or
combinations thereof. Here, we use the term “software” to
represent all of the aforementioned. The software embody
ing the present invention may reside on any ?xed medium
(including computer readable permanent storage), and be
executed locally, remotely, over a network, or using any
other means available. For example, the software may be
implemented on a router/switch in a network, on a PC or
device at the end of a wireless network, or at a PC/PDA
device at the end of a wireless link.

[0055] A typical network environment in which the
present invention may be implemented is shown in FIG. 2.
Generally, the network may be any type of network using
any network topology, and may include wireless, wired,
intranet, intemet, the Internet, a local area network and the
like. For example, FIG. 2 shows Personal Computers 5 and
6, PDAs 10, a laptop 15, a cell phone 20, and use ofa router
25. All may be connected through a wireless network 30
directly or through other means such as a router 25. The
wireless network itself is connected to the Internet 35. We
are not aware of any network limitations to implementation
of the present invention.

[0056] While the invention is susceptible to various modi
?cations, and alternative forms, speci?c examples thereof
have been shown in the drawings and are herein described
in detail. It should be understood, however, that the inven
tion is not to be limited to the particular forms or methods
disclosed, but to the contrary, the invention is to cover all

Apr. 26, 2007

modi?cations, equivalents and alternatives falling within the
spirit and scope of the appended claims. As an example,
though the methods have been shown and described in
reference to malware, the present invention may be used to
detect polymorphic software that is not necessarily malware.

What is claimed is:
1. A method of classifying a suspect binary ?le into one

of a plurality of groups based on features, the method
comprising:

a) identifying the suspect binary ?le to be classi?ed;

b) converting the suspect binary ?le into a high-level
code;

c) extracting features from the high-level code; and

d) classifying the suspect binary ?le into one of a plurality
of groups based on the features extracted.

2. The method of claim 1, wherein the features are
classi?ed prior to the suspect binary ?le being classi?ed.

3. The method of claim 1, further comprising the steps of:
a) constructing basic blocks of code from the high-level
code; b) determining a control ?ow graph of the basic blocks
of code; and c) building a control tree from the control ?ow
graph.

4. The method of claim 3, wherein an inverse peephole
transformation is applied to the suspect binary ?le before the
step of constructing basic blocks.

5. The method of claim 3, wherein the control ?ow graph
is simpli?ed before the step of constructing the control tree.

6. The method of claim 1, wherein one of the features is
an OPCODE feature.

7. The method of claim 1, wherein one of the features is
a MARKOV feature.

8. The method of claim 7, wherein one of the features is
an OPCODE feature.

9. The method of claim 8, wherein the MARKOV feature
has a length of n and is weighted 22”, and the OPCODE
feature is weighted evenly.

10. The method of claim 3, wherein one of the features is
a Data Dependence Graph feature.

11. The method of claim 3, wherein one of the features is
a STRUCT feature.

12. The method of claim 1, wherein one of the plurality
of groups corresponds to known malware.

13. The method of claim 1, further comprising the step of
using a sliding window technique to extract the features.

14. The method of claim 1, wherein the classifying of the
suspect binary ?le comprises using Bayesian classi?cation
techniques.

15. A method of classifying a suspect binary ?le into one
of a plurality of groups based on features, the method
comprising:

a) identifying the suspect binary ?le to be classi?ed;

b) converting the suspect binary ?le into a high-level
code;

c) extracting features from the high-level code to create a
features list, said features selected from the group
consisting of an OPCODE feature, a MARKOV fea
ture, a Data Dependence Graph feature, and a STRUCT
feature;

d) sending the features list to a ?rst network node;

US 2007/0094734 A1

e) receiving a response from the ?rst network node
indicating Whether the features list corresponds to any
one of a plurality of groups; and

f) classifying the suspect binary ?le into one of the
plurality of groups based at least partially on the
response from the ?rst netWork node; and

g) saving a result of the classi?cation.
16. The method of claim 15, further comprising the steps

of: a) constructing basic blocks of code from the high-level
code; b) determining a control How graph of the basic blocks
of code; and c) building a control tree from the control How
graph.

17. The method of claim 16, Wherein one of the plurality
of groups corresponds to knoWn malWare.

18. The method of claim 17, further comprising sending
the result of the classi?cation to a second netWork node.

19. The method of claim 16, Wherein the classifying of the
suspect binary ?le comprises using Bayesian classi?cation
techniques.

20. The method of claim 16, Wherein the MARKOV
feature has a length of n and is Weighted 22“, Whereas the
OPCODE feature is Weighted evenly.

21. The method of claim 16, further comprising the step
of using a sliding WindoW technique to extract the features.

22. Computer softWare stored on a computer readable
medium, programmed to classify a suspect binary ?le into
one of a plurality of groups based on features by performing
the folloWing steps:

a) identifying the suspect binary ?le to be classi?ed;

Apr. 26, 2007

b) converting the suspect binary ?le into a high-level
code;

c) extracting features from the high-level code; and

d) classifying the suspect binary ?le into one of a plurality
of groups based on the features extracted.

23. The computer softWare of claim 22, further pro
grammed to: a) construct basic blocks of code from the
high-level code; b) determine a control How graph of the
basic blocks of code; and c) build a control tree from the
control How graph.

24. The computer softWare of claim 22, Wherein one of
the features is an OPCODE feature.

25. The computer softWare of claim 22, Wherein one of
the features is a MARKOV feature.

26. The computer softWare of claim 23, Wherein one of
the features is a Data Dependence Graph feature.

27. The computer softWare of claim 23, Wherein one of
the features is a STRUCT feature.

28. The computer softWare of claim 23, Wherein one of
the plurality of groups corresponds to knoWn malWare.

29. The computer softWare of claim 23, further pro
grammed to use a sliding WindoW technique to extract the
features.

30. The computer softWare of claim 23, Wherein the
classifying of the suspect binary ?le comprises using Baye
sian classi?cation techniques.

