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Abstract of the Dissertation

Regularized Deterministic Annealing EM for

Hidden Markov Models

by

Robert A. Granat

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2004

Professor Vwani Roychowdhury, Chair

It is well known that maximum likelihood optimization of hidden Markov models

(HMMs) suffers from the problem of local maxima. Applications of HMMs to

date have focused primarily on areas, such as speech recognition and protein se-

quence analysis, where a priori knowledge can be used to constrain the problem

and thereby avoid local maxima. We tackle the problem of optimizing HMMs in

situations where such a priori information is not available. Our motivating prob-

lem is that of applying HMMs to analysis of geophysical time series, but these

circumstances are common in many types of scientific analysis. We present evi-

dence that the problem is not addressed by existing methodologies, and present an

alternative approach based on the use of the deterministic annealing expectation-

maximization (EM) algorithm. We address the major weakness of the annealing

method by designing statistical priors that regularize the solution away from par-

ticular local maxima in which there are redundant states. We present an analysis

of the performance of the method on both synthetic and field instrument data,

demonstrating the superior ability of the method to avoid local maxima as com-

pared to the standard and deterministic annealing EM algorithms. In addition

xv



we present mathematical analysis showing that for common data types there is

an exponential lower bound on the number of HMM local maxima. We conclude

by showing results of the method as applied to the analysis of several geophysical

data sets.
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CHAPTER 1

Introduction

In this work we address problems that occur when using the maximum likeli-

hood criteria for optimization of hidden Markov model (HMM) parameters. In

particular, we are concerned with the well known problem of locally maximum

solutions. We posit that even though hidden Markov models have enjoyed con-

siderable practical success in a number of application areas, the local maximum

problem remains a significant barrier to more general application of HMMs.

Successful applications of HMM technology can be found in areas includ-

ing speech synthesis and recognition for continuous output HMMs, and protein

matching and analysis for discrete output HMMs. In these domains the local

maxima problem has primarily been addressed by the addition of explicit and

implicit constraints that act to reduce the number of free model parameters.

These methods include restrictions on the form of the state-to-state transition

probability matrix [JR85, FL89, MWP00], restrictions on the form of the out-

put distributions [EDR89], and parameter tying [BN90, YW94, BM01]. These

constraints are supported by extensive knowledge about the underlying system

being modeled. For instance, in speech analysis, we know not only the rules of

language that govern the ordering of sounds and words [LH89, Lee90] but also

the details of the actual physical process which generates sound waves [JR91].

Our motivating problem is of a different nature. We wish to perform ex-

ploratory analysis of scientific data where the physics of the underlying system

1



is uncertain and a matter of ongoing discovery and debate. This means that not

only do we lack any basis for generating constraints, but also that we actively

want to avoid restricting the solution, since that may bias it away from discover-

ing interesting science. Nevertheless we are motivated to use HMMs in this kind

of analysis because in many cases the physical evidence suggests that the under-

lying system does in fact undergo distinct state changes that can be modeled by

a discrete hidden variable.

As an example of this kind of exploratory research we applied HMMs to anal-

ysis of time series measurements of geophysical systems. These measurements

are collected by a variety of instruments, for instance global positioning system

(GPS) based measurements of ground displacement or seismographic measure-

ments of surface velocity. The data collected by these sensors is only peripheral to

the actual physical system itself – we cannot measure displacement and velocity

any significant distance beneath the earth’s crust, for example.

In this context we explored the number of local maxima encountered by the

expectation-maximization (EM) algorithm in the absence of constraints. Em-

pirical testing on our sample data sets revealed that the EM method encounters

large numbers of local maxima even for modestly sized data sets and models with

few states. Since we were unable to use approaches reliant on domain knowledge,

we turned to more general optimization techniques. Our chosen approach was to

use the deterministic annealing EM method [UN98], which employs an annealing

effect to suppress local maxima early in the optimization process. Our applica-

tion of the deterministic annealing method to unsupervised training of HMMs

resulted in a significant improvement over the baseline EM method. However, we

also discovered that the annealing method tends to get stuck in a certain set of

systemic local maxima which are characterized by the existence redundant states

2



with identical output distributions. To address this issue, we designed statistical

priors that act to bias the solution away from these systemic local maxima. Use

of this regularization scheme along with the deterministic annealing method re-

sulted in a greatly improved ability to avoid local maxima as compared to both

the baseline and deterministic annealing EM methods. Since this was done with-

out introducing a bias against any specific characteristic of the data, we were

able to perform the optimization without influencing the scientific results.

1.1 Experimental Data

To facilitate our explanations throughout this work we intersperse results of ex-

periments performed using two particular data sets. The first of these, which

we designate clar, consists of global positioning system (GPS) derived relative

displacement measurements in three dimensions (north-south, east-west, and ver-

tical) collected daily over about two years spanning 1998-1999. These GPS mea-

surements were collected by the Claremont, California station of the Southern

California Integrated Geodetic Network (SCIGN), which is dedicated to studying

the relationship of crustal deformation to earthquake processes. We choose this

particular data set because it contains certain clear signals of deformation pro-

cesses which have been identified by scientists, thereby providing some measure

of ground truth against which we can evaluate models fit to this data. The left

side of figure 1.1 shows this data set. Note the slow, recovering displacement

around days 100-200 and the sudden east-west jump on day 626. The former is

the result of ground water pumping and subsequent refilling of a local aquifer,

the latter is an effect of the 1999 Hector Mine earthquake (magnitude 7.1). We

can also observe several more subtle signals, for instance the increased noise and

the beginning and end of the time window and the small east-west shift around

3
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Figure 1.1: Two experimental data sets used in this work. Left: The data set clar,

collected daily by a GPS station in Claremont, California. Note the unusual ground

water pumping signal around days 100-200, and the abrupt shift caused by the 1999

Hector Mine earthquake on day 626. Right: The synthetic data set step, with a known

ground truth.

day 450.

The clar data set is an excellent example of our target scientific data, but

it lacks a definative ground truth in terms of both its statistical properties and

underlying state assignment. We therefor introduce a synthetic data set which

we designate step. This one-dimensional data set consists of a series of discrete

steps with integer values from 1 to 10 to which has been added uniform random

noise with values on [−0.4, +0.4]. The order of the steps has been randomly

shuffled. This data set can be seen on the right side of figure 1.1.
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Figure 1.2: Classification results for a six-state HMM trained on the data set clar

using the standard EM method. Note that classes (states) 1 and 6 are learning noise

rather than any actual mode of the signal.

1.2 Preview of Results

We now present a brief preview of the results of our method, highlighting the

advantage in performance it enjoys over the basic EM technique. Figures 1.2,

1.3, and 1.4 show several classification results produced by HMMs trained on

the Claremont, California GPS data set clar using the standard EM method.

In each case a different random initialization of the model parameters was used,

resulting in a different solution each time. The model solutions differ consid-

erably from one another, resulting in very different state sequence assignments

(which are interpreted as observation classifications). We contrast this with

the classification result shown in figure 1.5. This was the only solution found in

a thousand applications of our regularized deterministic annealing EM training

method, each also employing a different random parameter initialization. This

solution is not only stable across different initializations, but also of higher qual-

ity, correctly identifying both the ground water pumping signal and the Hector

Mine earthquake signal.
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Figure 1.3: Classification results for a six-state HMM trained on the data set clar

using the standard EM method. Note that the method fails to separate the signal into

classes before and after the east-west shift around day 450.
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Figure 1.4: Classification results for a six-state HMM trained on the data set clar

using the standard EM method. Note that class 6 is learning noise rather than any

actual mode of the signal.

1.2.1 Science Results

We used the capabilities of our model optimization technique to investigate long-

range fault interactions. Long range fault interactions are currently an important

area of study in geophysics, but to date evidence of such interactions has been
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Figure 1.5: Classification results for a seven-state HMM trained on the data set clar

using the regularized deterministic annealing EM method.

scarce and their nature not understood. Using our method, we are able to find

evidence of such interactions in two geophysical data sets. The first of these

data sets is a record of seismicity in Southern California, in which the location

(latitude, longitude, depth) and magnitude is recorded. We used our method

to fit a 25-state hidden Markov model to this data and observed that transition

probability between states 1 and 22 was 0.7136, implying a strong correlation

between the events. Since the state 1 earthquakes (see figure 1.6) were deep

earthquakes along the coast side of the San Andreas fault system and the state

22 earthquakes (shown in figure 1.7) were events over 50km away in the northern

part of the Sierre Nevada fault system, long-distance stress transfer was strongly

implied.

We also used our method to fit six-state hidden Markov models to 127 time

series of surface displacement spanning 1998-1999 collected by a network of geode-

tic sensors in Southern California. We then looked for correlations between state
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Figure 1.6: Earthquakes assigned to state 1 of a hidden Markov model trained on the

Southern California seismic record (1960-1999).

changes across different stations; a large number of correlated state changes would

imply the existence of a region-wide event with an effect across multiple fault sys-

tems. The result of these correlation measurements can be seen in figure 1.8. The

large peak on day 652 corresponds to the strong Hector Mine earthquake of 1999,

but there are no other large earthquakes during this time period. The implica-
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Figure 1.7: Earthquakes assigned to state 22 of a hidden Markov model trained on

the Southern California seismic record (1960-1999).

tion is that there are other, aseismic effects that are taking place on a regional,

inter-fault scale. We note also the significant reduction of noise obtained by our

method (red) as opposed to the standard EM optimization method (blue).
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Figure 1.8: Coincident state changes for six-state HMMs trained using standard EM

(blue) and regularized deterministic annealing EM (red) on signals from each of 127

SCIGN GPS stations.

1.3 Outline

We begin this work in Chapter 2 with a review of the mathematics of hidden

Markov models. We present the maximum likelihood optimization problem for

HMMs and describe in detail the derivation of the expectation-maximization

procedure for solving that problem. We continue with a similar discussion of finite

mixture models and mixed continuous HMMs. This sets up the mathematical

framework we will use for the remainder of our discussion, putting in context our

modifications to the standard EM approach.

In Chapter 3 we discuss the maximum likelihood objective function, its bound-

edness, and its applicability to exploratory scientific research. We discuss meth-

ods for determining the number of local maxima in the objective function and

advocate an empirical approach that uses the Hamming distance between the

individually most likely state sequence assignments to determine the number of
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Figure 1.9: Classification result of a six state HMM trained on the data set clar.

States 4 and 5 are identical, resulting in state 5 becoming an empty state. (“E” in the

legend denotes an empty state).

local maxima. Applying this method to our test data sets, we discover that the

number of local maxima rises rapidly with model size when using the standard

EM approach.

Chapter 4 introduces the deterministic annealing EM method, first presenting

the general mathematics of the approach, and then applying it in the specific to

the optimization of hidden Markov models. We discuss the performance of the

method on our test data sets and analyze its behavior during the optimization

process. We conclude that although the method delivers significant improvement

over baseline EM optimization, it suffers from a tendency to be stuck in local max-

ima where there are redundant states with identical output distributions. These

identical output distributions usually have the effect of producing an “empty”

state to which no observations are assigned, as shown in figure 1.9.

We identify these data-independent systemic local maxima as being the chief

11



difficulty encountered by the deterministic annealing method (later in Chapter 7

we demonstrate that there are an exponential number of such maxima).

This provides us with the motivation to develop statistical priors that bias

the solution away from these systemic local maxima, while still retaining good

properties from an optimization perspective. We present these priors in Chapter

5. In practice, the priors appear in the optimization procedure as regulariza-

tion/penalty terms that modify the so-called Q-function maximized in the “M”-

step of the EM algorithm. We present several priors that are applied to the initial

state probability distribution, the state-to-state probability distribution, and ei-

ther discrete or Gaussian output probability distributions. Each prior comes with

a weighting term that controls the degree to which it modifies the original objec-

tive function. We derive bounds on these weighting parameters that guarantee

concavity of the Q-function and thereby the ability to find a unique maximum

during the “M”-step.

Results of combining deterministic annealing with our regularization scheme

are presented in Chapter 6. We demonstrate that the two approaches together

deliver greatly superior performance than either alone. We discuss the strengths

and weaknesses of the approach, and suggest some ways in which the procedure

could be improved through combination with other complementary techniques.

We return to a more mathematical approach in Chapter 7, in which we present

analysis of the local maxima of the likelihood function for HMMs and construct

locally maximum solutions with redundant states. Using these constructions, we

show that number of locally maximum solutions of this form is provably bounded

below by an exponential for common data types.

Concluding this work is a presentation in Chapter 8 of scientific results pro-

duced through application of the method to several geophysical data sets. These

12



data sets are currently in use for analysis of Southern California seismic activity,

and consist of seismic catalogs, GPS-based measurements of surface deformation,

and seismographic velocity signals. We show how our approach is able to aid

scientific understanding of earthquake systems.

13



CHAPTER 2

Hidden Markov Models

We begin with a review of hidden Markov models (HMMs). We describe the

structure of HMMs and pose finding the maximum likelihood HMM for a given

observation sequence as a non-convex optimization problem. We then review the

most common optimization method used to solve this problem, the expectation-

maximization (EM) algorithm, and detail its application to HMMs, laying the

mathematical groundwork for our later improvements. Lastly, we describe the

relationship between hidden Markov models and a similar class of models, finite

mixture models.

A hidden Markov model is a statistical model for ordered data. The observed

data is assumed to have been generated by a unobservable statistical process of a

particular form. This process is such that each observation is coincident with the

system being in a particular state. Furthermore it is a first order Markov process:

the next state is dependent only the current state. The model is completely

described by the initial state probabilities, the first order Markov chain state-

to-state transition probabilities, and the probability distributions of observable

outputs associated with each state.
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Figure 2.1: A representation of the hidden Markov model, with hidden nodes in

underlying system states q, and observable variables O.

2.1 Notation

Our notation is similar to that employed by Rabiner [Rab89] and is as follows:

a hidden Markov model λ with N states is composed of a vector of initial state

probabilities π = (π1, . . . , πN ), a matrix of state-to-state transition probabilities

A = (a11, . . . , aij, . . . , aNN), and the observable output probability distributions

B = (b1, . . . , bN ). The observable outputs can be either discrete or continuous.

In the discrete case, the output probability distributions are denoted by bi(m),

where m is one of M discrete output symbols. In the continuous case, the output

probability distributions are denoted by bi(y, θi1, . . . , θij , . . . , θiM) where y is the

real-valued observable output (scalar or vector) and the θijs are the parameters

describing the output probability distribution. For the normal distribution we

have bi(y, µi, Σi). An observation sequence O of length T is denoted O1O2 · · ·OT

and a state sequence Q of the model is denoted q1q2 · · · qT .

2.2 Model optimization problem

In this section we concentrate on maximizing the likelihood of the observation

sequence given the model, P (O|λ); this is the maximum likelihood objective func-
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tion. However, many other objective functions have been proposed for hidden

Markov models, including the state-optimized joint likelihood for the observations

and underlying state sequence [JR90], maximum mutual information (MMI),

[BBS86] minimum discrimination information (MDI) [EDR89], and maximum

classification error (MCE) [CLJ94]. Of these, all but the first require labeled

training examples on which to train the models, making them inappropriate for

our targeted application domains. The first, used as the basis for the so-called

“segmental K-means” algorithm, suffers from similar initialization-dependent lo-

cal maxima issues as does the more common maximum likelihood criteria, and

so we skip an independent analysis of it in this work.

For the series of observations O = O1O2 · · ·OT , we consider the possible

model state sequences Q = q1q2 · · · qT to which this series of observations could

be assigned. For a given fixed state sequence Q, the probability of the observation

sequence O is given by

P (O|Q, λ) =
T
∏

t=1

P (Ot|qt, λ). (2.1)

Assuming statistical independence of observations,

P (O|Q, λ) = bq1(O1)bq2(O2) · · · bqT
(OT ). (2.2)

The probability of the given state sequence Q is

P (Q|λ) = πq1aq1q2aq2q3 · · ·aqT−1qT
. (2.3)

The joint probability of O and Q is the product of the above, so that

P (O, Q|λ) = P (O|Q, λ)P (Q|λ), (2.4)

and the probability of O given the model is obtained by summing this joint

probability over all possible state sequences Q:

P (O|λ) =
∑

all Q=q1q2···qT

πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT
bqT

(OT ). (2.5)
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We can pose the optimization of P (O|λ) as a non-convex optimization prob-

lem:

Maximize : P (O|λ)

Subject to :

N
∑

i=1

πi = 1

πi ≥ 0, i = 1, . . . , N
N
∑

j=1

aij = 1, i = 1, . . . , N

aij ≥ 0, i = 1, . . . , N, j = 1, . . . , N
M
∑

m=1

bi(m) = 1, i = 1, . . . , N

bi(m) ≥ 0, i = 1, . . . , N, m = 1, . . . , M. (2.6)

Note that the above is for the discrete output case. In the case of continuous

outputs, the last two constraints are replaced by
∫

Y

bi(y)dy = 1, i = 1, . . . , N

bi(y) ≥ 0, i = 1, . . . , N, y ∈ Y. (2.7)

This problem is often presented in terms of the equivalent problem of maximizing

the log likelihood log P (O|λ). The most common method for solving this problem

is the expectation-maximization (EM) algorithm [DLR77], although alternative

approaches exist, such as those employing genetic algorithms [KCM01] recursive

predictive error techniques [CKM94], or gradient projection [HC93].

2.3 Expectation-Maximization

We can pose the EM algorithm generally as follows: we wish to maximize a

likelihood P (λ) where λ is a set of model parameters. Given p(x, λ), a positive

real-valued function on x × Λ measurable in x for fixed λ with measure µ, we
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define

P (λ) = E[p(x, λ)|λ] =

∫

X

p(x, λ)dµ(x) (2.8)

and

Q(λ, λ′) = E[log p(x, λ′)|λ] =

∫

X

p(x, λ) log p(x, λ′)dµ(x), (2.9)

where λ′ is also a set of model parameters on Λ. Here x is the so-called hidden

variable, while p(x, λ) is often referred to as the complete data likelihood. The

function Q is often referred to as the Q-function. Note that the function p may

be a function of observable outputs y as well as the parameters of the model λ,

so we have p(x, y, λ). In this case, the integrals are over X → Y(X ).

Assume Q(λ, λ) ≥ Q(λ, λ) for some set of model parameters λ. Then P (λ) ≥

P (λ). Proof:

log P (λ)/P (λ) = log

∫

X

p(x, λ)dµ(x)/P (λ)

= log

∫

X

[p(x, λ)dµ(x)/P (λ)]p(x, λ)/p(x, λ)

≥

∫

X

[p(x, λ)dµ(x)/P (λ)] log[p(x, λ)/p(x, λ)]

= (P (λ))−1[Q(λ, λ) − Q(λ, λ)] ≥ 0.

From this we can show that for a transformation F that if F(λ) is a critical point

of Q(λ, λ′) as a function of λ′, then the fixed points of F are critical points of P .

This gives us the EM algorithm:

1. Start with k = 0 and pick a starting λ(k).

2. Calculate Q(λ(k), λ) (expectation step).

3. Maximize Q(λ(k), λ) over λ (maximization step). This gives us the trans-

formation F .
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4. Set λ(k+1) = F(λ(k)). If Q(λ(k+1), λ) − Q(λ(k), λ) is below some threshold,

stop. Otherwise, go to step 2.

Note that this method is inherently sensitive to the initial conditions λ(0), and

only guarantees eventual convergence to a local maxima of the objective function,

not the global maximum. Nevertheless, it is widely used in practice and often

achieves good results.

2.4 Optimization procedure for the HMM

We now present the specific instance of the EM algorithm for calculating the

optimal HMM parameters, based on that first suggested by Baum and colleagues

[Bau72, BE67, BP66, BPS70, BS68]. For the hidden Markov model, we have the

complete data likelihood

p(Q, O, λ) = πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT
bqT

(OT ), (2.10)

with P (λ) = E[p(q, O, λ)|λ] defined as in (2.5). If we let z be a set of state-

indicator indicator vectors z = (z1, . . . , zT ) such that zit = 1 if qt = i, zit = 0

otherwise, then we can represent this as

N
∑

i=1

zi1 log πi +

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

zitzj,t+1 log aij +

N
∑

i=1

T
∑

t=1

zit log bi(Ot). (2.11)

From this we can calculate

Q(λ(k), λ) =
N
∑

i=1

τ
(k)
i1 log πi +

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt log aij +

N
∑

i=1

T
∑

t=1

τ
(k)
it log bi(Ot) (2.12)

where

τijt = P (Zit = 1, Zj,t+1 = 1|O, λ) t = 1, . . . , T − 1, (2.13)

τit = P (Zit = 1|O, λ) t = 1, . . . , T, (2.14)

and Z is a probabilistic component indicator variable analogous to z.
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2.4.1 HMM Q-function Maximization

We wish to maximize Q(λ(k), λ) over λ at each EM iteration. We can view Q as

the sum of three separable components, Q = Q1 + Q2 + Q3:

Q1(λ
(k), λ) =

N
∑

i=1

τ
(k)
i1 log πi, (2.15)

Q2(λ
(k), λ) =

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt log aij , (2.16)

Q3(λ
(k), λ) =

N
∑

i=1

T
∑

t=1

τ
(k)
it log bi(Ot). (2.17)

Maximization of each component may be pursued separately. However, a direct

solution by calculation of the critical points of the first two components is not

possible. For instance,

∂Q1

∂πi

=
∂
∑N

i=1 τ
(k)
i1 log πi

∂πi

=
τ

(k)
i1

πi

= 0 (2.18)

is clearly not useful, and derivatives of Q2 fare similarly.

Instead we solve the general convex optimization problem

Minimize : f(x) = −

N
∑

i=1

ci log xi

Subject to :
N
∑

i=1

xi = 1, (2.19)

with constants ci ≥ 0. First, we calculate the Lagrangian

L(x, ν) = −

N
∑

i=1

ci log xi + ν(

N
∑

i=1

xi − 1), (2.20)

which has a maximum in the xis at xi = ci/ν. The dual problem is then

Maximize : g(ν) = −

N
∑

i=1

ci log(ci/ν) +

N
∑

i=1

ci − ν. (2.21)
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The maximum of the dual problem can be found by setting the derivative equal

to zero and solving. We find that ν∗ =
∑N

i=1 ci is the maximum, with g(ν∗) =

−
∑N

i=1 ci log(ci/
∑N

i=1 ci). Since f(x) = g(ν∗) is feasible with xi = ci/
∑N

i=1 ci,

this is the minimizing solution to the primal problem.

2.4.1.1 Maximization of Initial Probabilities

Since τi1 is dependent only on the first observation, we can calculate using Bayes’

Theorem:

τi1 =
πibi(O1)

∑N
j=1 πjbj(O1)

. (2.22)

Our solution to (2.19) gives us the values πi which maximize Q1:

πi =
τ

(k)
i1

∑N
j=1 τ

(k)
i1

= τ
(k)
i1 =

π
(k)
i b

(k)
i (O1)

∑N
j=1 π

(k)
j b

(k)
j (O1)

. (2.23)

2.4.1.2 Maximization of Transition Probabilities

Similarly, we can use the solution to (2.19) to give us the values aij which maxi-

mize Q2:

aij =

∑T−1
t=1 τ

(k)
ijt

∑N
j=1

∑T−1
t=1 τ

(k)
ijt

. (2.24)

Noting that τit =
∑N

j=1 τijt for t = 1, . . . , T − 1, we have

aij =

∑T−1
t=1 τ

(k)
ijt

∑T−1
t=1 τ

(k)
it

. (2.25)

2.4.1.3 Maximization of Discrete Output Distributions

If the outputs of the model are discrete, we can apply our solution to (2.19) once

more by noting that

Q3 =

N
∑

i=1

T
∑

t=1

M
∑

m=1

τ
(k)
it δ(Ot − m) log bi(m), (2.26)
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and therefor the output probability distributions that maximize Q3 are

bi(m) =

∑T
t=1 τ

(k)
it δ(Ot − m)
∑T

t=1 τ
(k)
it

. (2.27)

where m is a possible discrete output symbol.

2.4.1.4 Maximization of Continuous Output Distributions

If the outputs of the model are continuous, then there is no general explicit

formula for the maximum value of the output distribution parameters. However,

for certain special forms of the output distribution, the maximizing values can be

calculated analytically. For example, in the case of multivariate Gaussian output

distributions (bi(y) = n(det(Σi))
−1/2 exp(−(y − µi)

T Σ−1
i (y − µi)/2), where n is a

normalizing factor), we have:

Q3 =

N
∑

i=1

T
∑

t=1

τ
(k)
it

(

log n −
1

2
log det(Σi) −

1

2
(Ot − µi)

T Σ−1
i (Ot − µi)

)

=
N
∑

i=1

T
∑

t=1

τ
(k)
it

(

log n −
1

2
log det(Σi) −

1

2
(mi − µi)

T Σ−1
i (mi − µi)

−
1

2
(Ot − mi)

T Σ−1
i (Ot − mi)

)

,

(2.28)

where mi =
∑T

t=1 τ
(k)
it Ot/

∑T
t=1 τ

(k)
it . Let

Si =

∑T
t=1 τ

(k)
it (Ot − mi)(Ot − mi)

T

∑T
t=1 τ

(k)
it

. (2.29)

Then

Q3 =

T
∑

t=1

N
∑

i=1

τ
(k)
it

(

log n +
1

2
log det(Σ−1

i )

−
1

2
(mi − µi)

T Σ−1
i (mi − µi) −

1

2
Tr Σ−1

i Si

)

. (2.30)

22



Since Σi is positive definite, we see that Q3 is maximized in the µis when

µi = mi =

∑T
t=1 τ

(k)
it Ot

∑T
t=1 τ

(k)
it

. (2.31)

Given this maximizing solution for µi, we can solve for Σi directly by taking the

derivative. For a D-by-D matrix A, let the matrix B be such that

{B}ij = cofji(A). (2.32)

Then we have

AB = det(A)I

B = det(A)A−1

{B}ij = det(A){A−1}ij, (2.33)

and therefore

∂ det(A)

∂{A}ij
=

∂

∂{A}ij

D
∑

i=1

{A}ij cofij(A) = cofij(A) = {B}ji = det(A){A−1}ji,

(2.34)

and
∂ log det(A)

∂{A}ij
= {A−1}ji. (2.35)

Using these relations, we calculate the derivative of Q3 with respect to each

element of the Σ−1
i s (neglecting constant factors) and set the result equal to zero:

∂Q3

∂{Σ−1
i }ab

= {Σi}ba − {Si}ba = 0. (2.36)

From this we see that Q3 has a critical point in the Σis at

Σi = Si =

∑T
t=1 τ

(k)
it (Ot − µ

(k+1)
i )(Ot − µ

(k+1)
i )T

∑T
t=1 τ

(k)
it

. (2.37)

Since Q3 is concave this is a global maximum.
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2.4.2 Forward-Backward Procedure

We have seen how to maximize the model parameters given the probabilities τit

and τijt, but how do we calculate these quantities at each iteration of the EM

algorithm? To do so, we make use of the lattice structure of the HMM to perform

an iterative calculation known as the forward-backward procedure. Consider the

forward variable αt(i) defined as

αt(i) = P (O1 · · ·Ot, Zit = 1|λ). (2.38)

This is the probability of observing the partial sequence O1 · · ·Ot and that the

system is in state i at time t, given the model λ. We can solve for αt(i) inductively

as follows:

1. Initialization:

α1(i) = πibi(O1), i = 1, . . . , N. (2.39)

2. Induction:

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1), t = 1, . . . , T − 1,

j = 1, . . . , N. (2.40)

This is an O(N2T ) computation. Note that it also gives us an efficient way to

calculate the value of the objective function, since

P (O|λ) =
N
∑

i=1

αT (i). (2.41)

As the second part of the forward-backward procedure, we consider the back-

ward variable βt(i) defined as

βt(i) = P (Ot+1 · · ·OT |Zit = 1, λ). (2.42)
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This is the probability of observing the partial sequence Ot+1 · · ·OT , given that

the system is in state i at time t and the model λ. Once again we can solve for

βt(i) inductively:

1. Initialization:

βT (i) = 1, i = 1, . . . , N. (2.43)

2. Induction:

βt(i) =
N
∑

j=1

aijbj(Ot+1)βt+1(j), t = T − 1, . . . , 1,

i = 1, . . . , N. (2.44)

This is also an O(N2T ) computation.

Now we can calculate the probabilities τit and τijt using the forward and

backwards variables.

τit = P (Zit = 1|O, λ)

=
P (Zit = 1|O, λ)P (O|λ)

P (O|λ)

=
P (Zit = 1|λ)

P (O|λ)

=
P (O1 · · ·Ot, Zit = 1|λ)P (Ot+1 · · ·OT |Zit = 1, λ)

P (O|λ)

=
αt(i)βt(i)

P (O|λ)

=
αt(i)βt(i)

∑N
i=1 αt(i)βt(i)

(2.45)

is the probability of being in state i at time t, given the observation sequence

and the model. Note that we can use τit to solve for the individually most likely

state qt at time t, as

qt = argmax
1≤i≤N

(τit), t = 1, . . . , T. (2.46)
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We can also calculate τijt, the probability of being in state i in time t and

state j at time t + 1, given the model and the observation sequence. Using our

definitions of the forward-backward variables, we can write

τijt = P (Zit = 1, Zj,t+1 = 1|O, λ)

=
P (Zit = 1, Zj,t+1 = 1, O|λ)

P (O|λ)

=
P (O1 · · ·Ot, Zit = 1|λ)P (Ot+1 · · ·OT , Zj,t+1 = 1|Zit = 1, λ)

P (O|λ)

=
αt(i)P (Ot+1, Zj,t+1 = 1|Zit = 1, λ)P (Ot+2 · · ·OT |Zj,t+1 = 1, λ)

P (O|λ)

=
αt(i)P (Zj,t+1 = 1|Zit, λ)P (Ot+1|Zit = 1, Zj,t+1 = 1, λ)βt+1(j)

P (O|λ)

=
αt(i)aijbj(Ot+1)βt+1(j)

∑N
i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

. (2.47)

2.5 Finite mixture models and HMMs

We now introduce a different class of models, finite mixture models, which are

related to hidden Markov models. A finite mixture model is also a statistical for

data, but it does not depend on any ordering of the observations (and ignores

any ordering should it exist). Finite mixture models are often combined with

hidden Markov models and an analysis of both can provide some insight into the

problem of local maxima.

2.5.1 Finite Mixture Models

A finite mixture model [TSM85] λfmm with R components is composed of the

mixture parameters w = (w1, . . . , wR) and the observation probability density

functions associated with each mixture component, br(m) for discrete output

symbols, or br(y, θr1, . . . , θrM) for continuous outputs. In general, we wish to
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solve the following problem:

Maximize :
T
∏

t=1

P (Ot|λfmm)

Subject to :

R
∑

r=1

wr = 1

wr ≥ 0, r = 1, . . . , R
M
∑

m=1

br(m) = 1, r = 1, . . . , R

br(m) ≥ 0, r = 1, . . . , R, m = 1, . . . , M. (2.48)

We can express the objective function in terms of the model parameters as follows:

T
∏

t=1

P (Ot|λfmm) =

T
∏

t=1

R
∑

r=1

wrbr(Ot). (2.49)

In the case of continuous outputs, the last constraint is replaced by

∫

Y

br(y)dy = 1, r = 1, . . . , R

br(y) ≥ 0, r = 1, . . . , R, y ∈ Y. (2.50)

Once again we use the EM method to solve this optimization problem [RW84].

We can represent the complete data log likelihood for the finite mixture model

as
R
∑

r=1

T
∑

t=1

zrt log wrbr(Ot) (2.51)

where z = (z1, . . . , zT ) is a set of component indicator vectors such that zrt = 1

if the observation is drawn from the rth mixture component, zrt = 0 otherwise.

From this we can calculate

Q(λfmm, λ
(k)
fmm) =

R
∑

r=1

T
∑

t=1

τ
(k)
rt log wrbr(Ot) (2.52)

where

τrt = P (Zrt = 1|Ot, λfmm) t = 1, . . . , T (2.53)
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and Z is a probabilistic component indicator variable analogous to z. We can

calculate τ
(k)
it via Bayes’ Rule:

τ
(k)
rt =

w
(k)
r b

(k)
r (Ot)

∑R
r=1 w

(k)
r b

(k)
r (Ot)

. (2.54)

We choose updates of wr and br that maximize Q. We can find the update for

wr using our solution to (2.19):

wr =

∑T
t=1 τ

(k)
rt

∑T
t=1

∑R
r=1 τ

(k)
rt

=
1

T

T
∑

t=1

τ
(k)
rt . (2.55)

To find the update rule for br we find the maximum directly via the derivative,

solving

∂LF

∂θrm

=
T
∑

t=1

τ
(k)
rt

∂

∂θrm

log br(Ot, θrm) = 0, (2.56)

which has no general analytical solution. As in the HMM case, for certain forms

of the output distribution an analytic solution is available.

2.5.1.1 HMMs as FMMs

The hidden Markov model can be seen as a special case of finite mixture model,

one in which there is a single observation O and NT mixture components, each

corresponding to a different state sequence Q. In this view we have

wQ = πq1aq1q2aq2q3 · · ·aqT−1qT
, (2.57)

bQ(O) = bq1(O1)bq2(O2) · · · bqT
(OT ). (2.58)

Optimization of the model posed in this way is of course difficult given the expo-

nential number of mixture components. Although this formulation is contrived in

the sense that it ignores the time ordered structure that allows efficient solution

via the forward-backward method, it nevertheless gives us some insight into why

the hidden Markov model optimization problem may be inherently more difficult
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than the finite mixture model optimization problem. And in fact, there is a very

real problem of an exponential number of HMM local maxima that we discuss in

detail in Chapter 7.

2.5.2 Mixture Hidden Markov Models

We can also construct a hidden Markov model whose state outputs are themselves

finite mixture models. Such models have found particularly widespread use in

the field of speech processing (see, for example, [JLS86]). We can formulate the

model as follows: if each finite state of the model has R mixture components,

then the model is λ = (π, A, w, B) where w = (w11, . . . , wNR), B = (b11, . . . , bNR)

and π and A retain their original meanings. Let W = (w1r1 , . . . , wNrN
) be some

choice of mixture components for each model state. Then for this model we have

P (O|λ) =
∑

all W,Q

πq1wq1rq1
bq1rq1

(O1)aq1q2wq2rq2
bq2rq2

(O2) · · ·

· · ·aqT−1qT
wqT rqT

bqT rqT
(OT ). (2.59)

Calculation of the forward and backward parameters proceeds as follows:

1. Initialization:

αt(i) = πi

R
∑

r=1

wirbir(O1), i = 1, . . . , N. (2.60)

βT (i) = 1, i = 1, . . . , N. (2.61)

2. Induction:

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

R
∑

r=1

wjrbjr(Ot+1), t = 1, . . . , T − 1,

j = 1, . . . , N. (2.62)

βt(i) =

N
∑

j=1

aij

(

R
∑

r=1

wjrbjr(Ot+1)

)

βt+1(j), t = T − 1, . . . , 1,

i = 1, . . . , N. (2.63)
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Derivation of this procedure follows that of the forward-backward procedure for

the standard hidden Markov model. Once the forward and backward variables

have been calculated, we can derive τit and τijt according to (2.45) and (2.47),

with the difference that

τijt =
αt(i)aij

(

∑R
r=1 wjrbjr(Ot+1)

)

βt+1(j)
∑N

i=1

∑N
j=1 αt(i)aijbj(Ot+1)βt+1(j)

. (2.64)

This allows us to re-estimate at π and A at each iteration using (2.23) and (2.24).

Now we have

τirt = P (Zirt = 1|O, λ)

= P (Zirt = 1|Zit = 1, O, λ)P (Zit|O, λ)

=
wirbir(Ot)

∑R
r=1 wirbir(Ot)

τit (2.65)

We can re-estimate the mixture weights according to:

wir =

∑T
t=1 τ

(k)
irt

∑R
r=1

∑T
t=1 τ

(k)
irt

=

∑T
t=1 τ

(k)
irt

∑T
t=1 τ

(k)
it

. (2.66)

Again there is no general form for the output distributions, but in the special

case of Gaussian outputs for each mixture model component we have,

µir =

∑T
t=1 τ

(k)
irt Ot

∑T
t=1 τ

(k)
irt

, (2.67)

Σir =

∑T
t=1 τ

(k)
irt (Ot − µ

(k+1)
i )(Ot − µ

(k+1)
i )T

∑T
t=1 τ

(k)
irt

. (2.68)

It is worth noting that this model reduces to a simple finite mixture model

in the case that the hidden Markov model has but one state. This means that

hidden Markov models and finite mixture models can be seen a special cases of

the each other.
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CHAPTER 3

Maximum Likelihood

It is well known that the maximum likelihood function for hidden Markov models

is unbounded above for many common continuous output distributions, including

members of the exponential family. Unbounded solutions occur when the prob-

ability mass of the output distributions becomes concentrated on one or several

observations.

Our first reaction to this property is pragmatic – we simply want to find

a way to avoid this kind of overfitting and make sure that we can find a non-

degenerate, bounded solution. One way to do this is to develop a modified, or

penalized, maximum likelihood function which is bounded. A generalized analysis

of this approach for the Gaussian mixture model case can be found in [CRI03]; the

necessary properties required of a penalty function presented therein extend to

hidden Markov models as well. In this work we employ HMMs with multivariate

Gaussian output distributions and use a conjugate prior (penalty function) as

described in [OT96]. This prior is a simplified Wishart density [Bun94] with the

form
∏N

i=1 exp(−ωΣ

2
TrΣ−1

i ). When employed in the expectation-maximization

(EM) algorithm, this term has the practical effect of adding the quantity ωΣ to

the diagonal elements of the covariance matrices at every iteration. We note that

without the use of this prior, the experiments and results presented later in this

work would not be possible. (Henceforth, we assume the use of this prior at all

times.)
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Our second, more considered, reaction is to ask whether we really do want to

be using the maximum likelihood objective function. This may seem strange, but

since in fact we desire a local, not a global maximum (since the global maximum

is unbounded), what makes us sure that the highest likelihood bounded solution

is really the “correct” solution? Consider the case in which we use constraints to

bound the solution. It’s certainly possible that the maximum likelihood solution

exists right on the constraint boundary as the optimization procedure pushes

the solution towards the unbounded global maximum, but one doubts that this

solution is desirable.

We suggest that the answer to this questions is application and paradigm

specific. For example, in the case of an automatic speech recognizer, we demand

definite classification results from the system and we have quantitative ways to

analyze performance. In the case of scientific exploration, however, the user (a

scientist) may wish to examine several different locally maximum model solu-

tions. From the scientist’s perspective, each may represent a potential science

result worthy of followup through experiment, field observation, and/or physics-

based analysis. We point to previous work applying HMMs to seismicity data

[GD02], as well as work applying finite mixture models to studies of solar physics

[TPM02] and other fields [SIG99, SC98] as examples of work conducted under

this paradigm. In such cases we don’t necessarily want to find the single solution

with the highest likelihood, but rather a set of quality solutions (see [CL99] for an

example of such in the case of DNA sequence analysis). If we merely reduce the

number of candidate solutions enough, we will have achieved our goals. In this

case if the number of local maxima found by the optimization method is O(10)

that is usually sufficient. Of course, we do not actively avoid finding a single

solution, in such cases it is merely necessary that we have sufficient confidence in

the result.
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Having established our objective when modeling such data, we now turn to

the actual problem of model optimization. Optimizing the HMM model parame-

ters is a non-linear, non-convex problem requiring an iterative solution. The most

common method for solving this problem is the expectation-maximization (EM)

algorithm [DLR77], although alternative approaches exist, such as those employ-

ing genetic algorithms [KCM01], recursive predictive error techniques [CKM94],

or gradient projection [HC93]. Our question is, if we only wish to find set of rea-

sonable local maxima solutions, is this basic EM approach sufficient? To answer

this we need to be able to determine the number of locally maximum solutions

found by EM. Simple comparison of model parameters to determine equivalence is

ineffective in practice due to variations caused by differing initializations and the

limitations of finite precision arithmetic. Previous work has emphasized the use

of likelihood to determine model distance and thereby whether different solutions

correspond to the same local maximum [RJL85, HKM99, HKM00]. While this

can provide some insight, experimentation reveals that there are often consider-

able differences between models with very close likelihoods. Figure 3.1 shows the

classification results for two ten state models trained on the data set step. Al-

though the model solutions have similar log likelihoods, the classification results

differ considerably: in the left hand classification, the third and eighth steps have

been split into two classes, while the sixth, seventh, and ninth steps have been

grouped into a single class; in the right hand classifaction, the fourth and seventh

steps have each been split into two classes and the first, second, and tenth steps

grouped into a single class.

The implication of such results is that we need an alternative method for

determining the distance between model solutions. Our approach is to use the

Hamming distance between the individually most likely state assignments for the

observation sequence (i.e., the classification results) as defined in equation (2.46).
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Figure 3.1: Left: Classification results for a ten state HMM for data set step. Log

likelihood = 234.371. Right: Classification results for a ten state HMM for data set

step. Log likelihood = 233.369.

We use a linear assignment method based on bipartite graph matching [FF56] to

resolve equivalent state permutations. Using this metric, we consider solutions

with distance greater than zero to be different maxima. This means that models

that produce identical classification sequences are considered to be the same local

maxima, even if the model parameters are not identical. To determine the number

of maxima found by an algorithm when applied to a particular data set, we can

run repeated trials with uniform random initializations of the model parameters

and count the number of different solutions based on this criterion. At this point

it is necessary to note that while the EM algorithm only guarantees convergence

to a critical point of the objective function and can even converge to local minima

for some objective functions [ACK93], in practice convergence to other than a

local maxima is extremely rare. A simple check of relative log likelihoods across

test results should be sufficient to identify such unusual cases. In any event in

practice it is the fixed points of the optimization method that are at issue in the
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Figure 3.2: Left: Number of local maxima for the data set step for HMMs with up

to ten states. Right: Number of local maxima for the data set clar for HMMs with

up to ten states.

absence of a local maxima test that can be applied upon convergence.

While this approach does not guarantee identification of all local maxima, we

can have confidence in the results if after some number of tests the number of

identified local maxima fails to increase. Figure 3.2 shows the results of such tests

using the standard EM method for the step and clar data sets. While these

results are for 1000 trial applications of the method, the number of local maxima

ceased increasing after about 200 trials in both cases. We observe that there are a

large number of local maxima, even for the two state model, and that the number

of local maxima increases rapidly with model size. This indicates that the EM

algorithm alone is insufficient for our needs. To address this problem we turn to

the method of deterministic annealing, which offers a non-problem specific way

to avoid local maxima.
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CHAPTER 4

Deterministic Annealing

Deterministic annealing is a technique based on the principles of statistical me-

chanics that can be used to modify the EM method to mitigate its inherent

sensitivity to initial conditions. Deterministic annealing uses the principle of

maximum entropy to specify an alternative posterior probability density for the

hidden variables. This allows us to define a new effective cost function depending

on the temperature; this new cost function is analogous to the thermodynamic

free energy. Maximization of the likelihood at a given temperature is achieved

via minimization of this cost function. Deterministic annealing differs from simu-

lated annealing [KGV83], in which a stochastic search is performed on the energy

surface, in that the cost function is deterministically optimized at each temper-

ature.

Use of deterministic annealing has been proposed for vector quantization

[RGF92] and for clustering problems [BK93, Won93]. Yuille and colleagues

[YSU94] showed that the EM algorithm can be used in conjunction with determin-

istic annealing. Recently the deterministic annealing technique has been applied

to a variety of problems [Ros98]. The particular framework we present here was

first applied by Ueda and Nakano to mixture density estimation problems [UN94]

and then extended to the general case [UN98], and involves a reformulation of

the EM algorithm so that it incorporates deterministic annealing.

How does the annealing process help in avoidance of local maxima? In effect,
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the method involves optimizing over a series of smoothed approximations to the

original objective function. By slowly increasing the computational temperature

parameter γ, the effect of each observation is gradually localized. At γ = 1,

the parameterized Q-function is equivalent to the original Q-function for the

problem. We start the algorithm at a γmin such that the modified objective

function has a single maximum in λ. We thereafter assume that at each new γ,

the global maximum of the new objective function is close to that at the previous

temperature, so that the method tracks the global maximum as γ increases. In

cases where this assumption does not hold true, the method will fail to track the

global optimum.

Our application of the deterministic annealing method to HMM optimization

was is similar to that presented by Rose and Rao [RR01] but differs in some

important respects. First, it is not a supervised training method, and optimizes

the likelihood rather than the minimum classification error. Second, it employs

EM rather than gradient descent at each temperature.

In the introduction of the deterministic annealing method that follows, we

parallel the presentation of the material in [UN98], with some modifications for

clarity. Recall from our discussion of the EM algorithm that we have

P (λ, y) =

∫

X

p(x, y, λ)dµ(x)

Q(λ, λ′) =

∫

X

p(x|y, λ) log p(x, y, λ′)dµ(x).

Now we define a new function using the posterior f(x|y):

E(λ) = −

∫

X

f(x|y) log p(x, y, λ)dµ(x), (4.1)

so that if f(x|y) = p(x|y, λ) then minimization of E is equivalent to maximization

of Q. Since we lack prior knowledge about f we use the principle of maximum
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entropy to specify the probability. That is, we wish to solve the maximization

problem

Maximize : S = −

∫

X

f(x|y) log f(x|y)dµ(x)

Subject to :

∫

X

f(x|y)dµ(x) = 1

f(x|y) ≥ 0
∫

X

f(x|y) log p(x, y, λ)dµ(x) = −E. (4.2)

To solve this problem we construct the Lagrangian

LS(f, λ) = −

∫

X

f(x|y) log f(x|y)dµ(x)

+ ν

(
∫

X

f(x|y)dµ(x) − 1

)

+ γ

(
∫

X

f(x|y) log p(x, y, λ)dµ(x) + E

)

. (4.3)

The variation of LS, δLS, due to the variation of f, δf , is

δLS =

∫

X

(

−1 − log f(x|y) + ν + γ log p(x, y, λ)
)

δfdµ(x). (4.4)

Since at the maximum δLS = 0 regardless of the value of δf , we have

−1 − log f(x|y) + ν + γ log p(x, y, λ) = 0, (4.5)

and so

f(x|y) = exp
(

1 − ν − γ log p(x, y, λ)
)

. (4.6)

Integrating both sides over X and noting the problem constraints yields

exp(1 − ν) =
1

∫

X
exp
(

γ log p(x, y, λ)
) . (4.7)

Eliminating the variable ν we obtain

f(x|y) =
exp
(

γ log p(x, y, λ)
)

∫

X
exp
(

γ log p(x, y, λ)
) , (4.8)
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which is a Gibbs distribution with partition function

Z =

∫

X

exp
(

γ log p(x, y, λ)
)

dµ(x). (4.9)

Given this partition function we can define the free energy as a cost function

depending on the temperature:

F (γ, λ) = −
1

γ
log Z

= −
1

γ
log exp

(

γ log p(x, y, λ)
)

dµ(x). (4.10)

We note from (4.8) that

−
1

γ
log

∫

X

pγ(x, y, λ)dµ(x) = − log p(x, y, λ) +
1

γ
log f(x|y, λ). (4.11)

Taking the conditional expectation with respect to the distribution f , we have

−
1

γ
log

∫

X

pγ(x, y, λ)dµ(x) = U(γ, λ) −
1

γ
S(γ, λ), (4.12)

where

U(γ, λ) = Ef [− log p(x, y, λ)|y] = −

∫

X

f(x|y) log p(x, y, λ)dµ(x), (4.13)

S(γ, λ) = Ef [− log f(x|y, λ)|y] = −

∫

X

f(x|y) log f(x|y)dµ(x). (4.14)

So we can write

F (γ, λ) = U(γ, λ) −
1

γ
S(γ, λ). (4.15)

It is known that at equilibrium a thermodynamic system settles into a config-

uration that minimizes its free energy. Therefore we consider the problem of

minimizing F at a fixed temperature γ > 0. To perform the minimization, we

perform an iterative algorithm very similar to the EM algorithm. Let λ′ be an

estimate of λ. Then taking the conditional expectation given y and λ′ we have

F (γ, λ) = U(γ, λ|λ′) −
1

γ
S(γ, λ|λ′), (4.16)
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where

U(γ, λ|λ′) = Ef [− log p(x, y, λ)|y, λ′] = −

∫

X

f(x|y, λ′) log p(x, y, λ)dµ(x),

(4.17)

and

S(γ, λ|λ′) = Ef [− log f(x|y, λ)|y, λ′] = −

∫

X

f(x|y, λ′) log f(x|y)dµ(x). (4.18)

Then if λ = λ minimizes U(γ, λ|λ′), then F (γ, λ) ≤ F (γ, λ′), where equality

holds if and only if both U(γ, λ|λ′) = U(γ, λ′|λ′) and f(x|y, λ) = f(x|y, λ′).

Proof:

F (γ, λ)−F (γ, λ′) =
(

U(γ, λ|λ′)−U(γ, λ′|λ′)
)

+
1

γ

(

S(γ, λ′|λ′)−S(γ, λ|λ′)
)

. (4.19)

Since U(γ, λ|λ′) is a minimum, we have

U(γ, λ|λ′) − U(γ, λ′|λ′) ≤ 0. (4.20)

And since

S(γ, λ′|λ′) − S(γ, λ|λ′) =

∫

X

f(x|y, λ′) log

(

f(x|y, λ)

f(x|y, λ′)

)

dµ(x)

≤ log

∫

X

f(x|y, λ′)

(

f(x|y, λ)

f(x|y, λ′)

)

dµ(x)

= log

∫

X

f(x|y, λ)dµ(x) = log 1 = 0, (4.21)

we therefore have

F (γ, λ) − F (γ, λ′) ≤ 0. (4.22)

From this we can show that for a transformation F that if F(λ) is a critical

point of U(γ, λ|λ′) as a function of λ′, then the fixed points of F are critical

points of F . This suggests that we can minimize the free energy using an iterative

algorithm in which we minimize the function U(γ, λ, λ′) at each step. The method
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is identical to the EM algorithm, except that the function Q is replaced by U . A

deterministic annealing EM algorithm uses this method as an internal step, and

proceeds as follows:

1. Set γ = γmin > 0.

2. Start with k = 0 and pick a starting λ(k).

3. Calculate

U(γ, λ|λ(k)) = −

∫

X

log p(x, y, λ)
pγ(x, y, λ(k))

∫

X
pγ(x, y, λ(k))dµ(x)

dµ(x)

4. Minimize U(γ, λ|λ(k)) over λ. This gives us the transformation F .

5. Set λ(k+1) = F(λ(k)). If U(γ, λ|λ(k+1)) − U(γ, λ|λ(k)) is below some thresh-

old, go on to step 6. Otherwise, go to step 3.

6. Increase γ. If γ < 1, go to step 3. Otherwise, stop.

4.1 Deterministic annealing for HMMs

We can apply the deterministic annealing algorithm to hidden Markov models in

a straightforward way. At each temperature we optimize over the function

U(γ, λ|λ(k)) =

N
∑

i=1

τ
(k)
i1 (γ) log πi +

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt (γ) log aij

+

N
∑

i=1

T
∑

t=1

τ
(k)
it (γ) log bi(Ot), (4.23)

where

τit(γ) =
αt(i, γ)βt(i, γ)

∑N
i=1 αt(i, γ)βt(i, γ)

(4.24)

τijt(γ) =
αt(i, γ)aγ

ijb
γ
j (Ot+1)βt+1(j, γ)

∑N
i=1

∑N
j=1 αt(i, γ)aγ

ijb
γ
j (Ot+1)βt+1(j, γ)

. (4.25)
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The modified forward and backward variables α(γ) and β(γ) are calculated by a

modification of the standard iteratitive procedure:

1. Initialization:

αt(i, γ) = πγ
i bγ

i (O1), i = 1, . . . , N. (4.26)

βT (i, γ) = 1, i = 1, . . . , N. (4.27)

2. Induction:

αt+1(j, γ) =

[

N
∑

i=1

αt(i, γ)aγ
ij

]

bγ
j (Ot+1), t = 1, . . . , T − 1,

j = 1, . . . , N. (4.28)

βt(i, γ) =

N
∑

j=1

aγ
ijb

γ
j (Ot+1)βt+1(j, γ), t = T − 1, . . . , 1,

i = 1, . . . , N. (4.29)

Figure 4.1 shows the results of 1000 tests of the deterministic annealing

method applied to the synthetic data set step. For these tests we used three

different annealing schedules, each with a fixed rate ∆γ. We observe that the

application of the method results in a large reduction in the number of local

maxima. However, at first glance it appears that, counter to our intuition, the

faster annealing schedules are producing better results than our slowest schedule.

On closer examination, however, we see that in fact these slower schedules are

producing extremely low likelihood solutions. In these cases, almost the entire

time series is being assigned to a single state. This points to a fundamental prob-

lem with the deterministic annealing method, despite the encouraging results

produced by the slow annealing schedule.

The core of this problem is caused by the fact that the deterministic annealing

method is subject to being caught in certain types of local maxima where the

42



1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Model Size N

E
x
p

e
ri
m

e
n

ta
l 
N

u
m

b
e

r 
o

f 
L

o
c
a

l 
M

a
x
im

a

1 2 3 4 5 6 7 8 9 10
−50

0

50

100

150

200

250

300

Model Size N

M
a

x
im

u
m

 L
o

g
 L

ik
e

li
h

o
o

d
 A

c
ro

s
s
 T

e
s
ts

Figure 4.1: Left: Number of experimentally determined local maxima for HMMs with

varying numbers of hidden states applied to the data set step. Right: Maximum log

likelihood among all experiments for HMMs with varying numbers of hidden states

applied to the data set step. Blue squares show results for the baseline HMM with

standard EM optimization; magenta stars results with schedule ∆γ = 0.1, green circles

results with schedule ∆γ = 0.01; red triangles results with schedule ∆γ = 0.001.

output distributions are close or identical. These redundant states are often

“empty,” that is, no observations are assigned according to equation (2.46). This

effect occurs with the standard EM approach (examples of which are shown in

figure 4.2) but the problem is more pronounced with deterministic annealing.

This issue was discussed in detail for the case of naive Bayes networks by

Whiley and Titterington [WT02]; that analysis extends straightforwardly to the

HMM case as well. Intuitively, consider what happens if one starts with γmin = 0.

Then we have τit(γ) = 1/N and τijt(γ) = 1/N2 and so πi = 1/N , aij = 1/N ,

and bi = bj for all i, j. Since this is a local maxima of the objective function

for 0 ≤ γ ≤ 1, this will then be the (undesirable) final solution for the model
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Figure 4.2: Top: Classification results of a six state HMM trained on the data set

step using baseline EM. Bottom: Classification results of a six state HMM trained on

the data set clar using baseline EM. “E” in the legend denotes an empty state.

parameters. (This solution is analogous to the equally weighted independence

model for naive Bayes networks.) While it may it appear that this problem

can be circumvented by restricting γmin > 0, this in turn implies that the final

optimization solution is once again sensitive to the initial values of the model
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parameters. One might think that simply setting γmin close to zero would be

sufficient to address this issue, but experiment has shown that if γmin is too small,

the solution still converges undesirably as if γmin = 0. Our observations lead us to

suspect that for low γ where the HMM objective function is concave, the global

maximum is in fact the equally weighted independence model. Ueda and Nakano

suggest addressing local maxima issues by calculating an estimate of the Hessian

at stationary points and perturbing the solution via line search in the direction

of the eigenvectors corresponding to the negative eigenvalues of the Hessian.

Since this is computationally expensive they suggest as an alternative a random

perturbation of the solution; it is this approach we use in our implementation.

Our experiments indicate that this perturbation does help to some extent, but

is not sufficient to solve the problem. This agrees with the results presented by

Whiley and Titterington for naive Bayes networks. We therefor seek to modify

the basic deterministic annealing approach to address this weakness.
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CHAPTER 5

Regularization

The analysis of the preceding section indicates that many local maxima of the de-

terministic annealing EM method are located where the states are underutilized,

in other words where bi = bj . Our response to this is to design regularization

terms that act to push the optimization procedure away from these parts of the

parameter space.

While the use of statistical priors has seen widespread use in many areas (for

instance, in the optimization of neural networks) their use in the optimization

of hidden Markov models has been somewhat less common. Statistical priors for

hidden Markov models have been used most frequently in applications to DNA

sequencing and analysis. Training data in such cases is often limited, and so to

discourage overtraining a prior is applied to the discrete output distributions.

These priors are most often Dirichlet type or similar, and act to smooth and

flatten the distributions, pushing the solution away from simply copying the

distribution of observed symbols in the training sequences. For an example of

such, see [CL99]. Statistical priors have also been used to bias the initial and state

transition parameters of the model. McGuire et. al. [MWP00] apply HMMs to

phylogenetic analysis and claim to use a prior that represents a priori knowledge

about the difficulty of changing topology during a recombination event. The prior

targets therefor targets the state to state transition probabilities of the model.

Only the revised update rule for the transition probabilities is presented, however,
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and the originating prior is somewhat unclear. This update rule is

aij = ωδij + (1 − ω)
T
∑

t=1

τ
(k)
it /T, (5.1)

where δij is the Kronecker delta function and ω is a weighting factor. Brand

[Bra99] proposed applying an entropic prior to the initial and state transition

probabilities of continuous output HMMs with the goal of driving those prob-

abilities towards 0 or 1 and thereby facilitating the trimming of states. Brand

observed good results from this method in experiment, but our own application of

the method to the data sets step, clar, and others were much less successful. In

particular, we observed that use of the prior resulted in the elimination of states

even when N was less than the ground truth for the system. An even greater

difficulty, however, was the fact that use of the entropic prior resulted in a mixed

concave/convex Q-function in π and A, making the optimization procedure as a

whole problematic.

This last difficulty encountered in employing the method of Brand highlights

the fact that it is important not only to design priors that accurately reflect

the available a priori knowledge about the system, but also to make sure that

the resulting regularized optimization problem remains tractable. This is the

guiding philosophy of this work and we take particular care to make sure that the

regularized Q-function is concave in all cases. This takes on particular importance

because the priors we use generate positive terms which are added to the Q-

function. This contrasts with the more common regularization approach in which

the terms introduce bias by penalizing the solution (i.e., negative terms would

be added to a maximization problem). The concavity condition and resulting

weight constraints ensure that the solution, while biased, is still bounded.

Recall that for the HMM, the Q-function is constructed by taking the expec-
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tation

E[log p(q, O, λ′)|λ] =

∫

Q→O(Q)

p(q, O, λ) log p(q, O, λ′)dµ(q) (5.2)

where to avoid confusion of notation q is the state sequence hidden variable with

domain Q and O is the domain of the observations O. If we apply the prior p(λ)

to p(q, O, λ) we generate a new Q-function

Q′(λ, λ′) = E[log p(q, O, λ′)p(λ′)|λ]

=

∫

Q→O(Q)

p(q, O, λ)[log p(q, O, λ′) + log p(λ′)]dµ(q)

= Q(λ, λ′) +

∫

Q→O(Q)

p(q, O, λ) log p(λ′)dµ(q)

= Q(λ, λ′) + [log p(λ′)]P (λ|O). (5.3)

Since we maximize Q′(λ, λ′) with respect to λ′ at each EM iteration, the value

of the objective function P (λ|O) here can be treated as a multiplicative constant

factor on the regularization term log p(λ′). In practice, due to the difficulty of

calculating P (λ|O) at each iteration we abstract it into a constant weighting

factor ω which appears as part of the prior itself.

To review, the Q-function for the HMM which is maximized during each EM

iteration is

Q(λ, λ(k)) =
N
∑

i=1

τ
(k)
i1 log πi +

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt log aij +

N
∑

i=1

T
∑

t=1

τ
(k)
it log bi(Ot).

Since this is separable in π, A, and B, we can divide this into the sum of three

functions: Q1(π), Q2(A), and Q3(B). We can regularize each of these separable

functions in turn.

5.1 Initial and state transition terms

We note that when output distributions are identical, often related transition

probabilities are zero or unity. In other words, if bi = bj , it is likely that akj =
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0, k = 1, . . . , N (or vise versa). Although we consider the output distributions to

be the dominating factor promoting state redundancy (a supposition supported

by an early study on the relative parameter sensitivity of HMMs by Rabiner et. al.

[RJL85]), we cannot neglect the initial and state-to-state transition probabilities

as a factor. (Related analysis can be found in Chapter 7.) Since in any case

biasing these probabilities away from zero and unity can be done with at little

cost, we propose the Dirichlet-type unnormalized priors

P1(π) =
N
∏

i=1

π
ωQ1
i , (5.4)

P2(A) =

N
∏

i=1

N
∏

j=1

a
ωQ2
ij , (5.5)

where ωQ1, ωQ2 > 0. This has the effect of adding log barrier regularization terms

to Q1 and Q2 so that

Q′
1(λ, λ(k)) =

N
∑

i=1

τ
(k)
i1 log πi + ωQ1

N
∑

i=1

log πi, (5.6)

Q′
2(λ, λ(k)) =

N
∑

i=1

N
∑

j=1

T−1
∑

t=1

τ
(k)
ijt log aij + ωQ2

N
∑

i=1

N
∑

i=1

log aij . (5.7)

We see from this that ωQ1, ωQ2 > 0 can be viewed as weighting terms. Our update

rules for the EM iteration are then

πi =
π

(k)
i b

(k)
i (O1) + ωQ1

∑N
j=1 π

(k)
j b

(k)
j (O1) + NωQ1

, (5.8)

aij =

∑T−1
t=1 τ

(k)
ijt + ωQ2

∑T−1
t=1 τ

(k)
it + NωQ2

, (5.9)

and so the elements of π and A cannot lie in {0, 1}.
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5.2 Output distribution terms

As we note in section 2.4.1.4, there is no general optimization procedure for output

distributions. Likewise, there is also no general regularization term that exists

to assist in avoiding the condition where bi = bj . However, for particular forms

of the output distribution regularization terms can be devised. We present three

candidate regularization terms, one for discrete output distributions based on the

inner product, and two for Gaussian output distributions based, respectively, on

the Mahalanobis and Euclidean distance metrics.

5.2.1 Discrete output terms

For discrete output distributions we propose a regularization term based on the

inner product:

Q′
3 =

N
∑

i=1

T
∑

t=1

M
∑

m=1

τ
(k)
it δ(Ot − m) log bi(m) − ωQ3

N
∑

i=1

N
∑

j=1

M
∑

m=1

bi(m)bj(m) (5.10)

for which the associated prior is

P3(B) =

N
∏

i=1

N
∏

j=1

M
∏

m=1

e−ωQ3
bi(m)bj (m) (5.11)

and where ωQ3 > 0 is a weighting factor. We can find the update rule for this

modified function by constructing the Lagrangian

LQ′

3
(b, ν) =

N
∑

i=1

T
∑

t=1

M
∑

m=1

τ
(k)
it δ(Ot − m) log bi(m)

− ωQ3

N
∑

i=1

N
∑

j=1

M
∑

m=1

bi(m)bj(m) +
N
∑

i=1

νi

( M
∑

m=1

bi(m) − 1

)

, (5.12)

and taking its derivative:

∂LQ′

3

∂bi(m)
=

∑T
t=1 τ

(k)
it δ(Ot − m)

bi(m)
− 2ωQ3

N
∑

j=1

bj(m) + νi. (5.13)

50



Setting this equal to zero we have

bi(m) =

∑T
t=1 τ

(k)
it δ(Ot − m)

−νi + 2ωQ3

∑N
j=1 bj(m)

, (5.14)

so by summing both sides over m we get

M
∑

m=1

∑T
t=1 τ

(k)
it δ(Ot − m)

−νi + 2ωQ3

∑N
j=1 bj(m)

= 1 (5.15)

and so we have NM +N equations for a like number of unknowns. We note that

∂2Q′
3

∂bi(m)∂bj(k)
=



















−
PT

t=1 τ
(k)
it δ(Ot−m)

b2i (m)
− 2ωQ3 if i = j and m = k

−2ωQ3 if i 6= j and m = k

0 otherwise

. (5.16)

For the function to be concave, the Hessian H with partial derivative elements

presented in equation (5.16) must be negative definite. In other words,

M
∑

m=1

N
∑

i=1

(

−x2
i,m

∑T
t=1 τ

(k)
it δ(Ot − m)

b2
i (m)

− 2ωQ3xi,m

N
∑

j=1

xj,m

)

< 0, for all x 6= 0

(5.17)

We note that
∑N

i=1 xi,m

∑N
j=1 xj,m ≤ N

∑N
i=1 x2

i,m. In addition, we also note that

for
∑N

i=1 xi,m

∑N
j=1 xj,m < 0, |

∑N
i=1 xi,m

∑N
j=1 xj,m| < N

∑N
i=1 x2

i,m. So we can

reduce the condition (5.17) to

M
∑

m=1

N
∑

i=1

x2
i,m

(

2NωQ3 −

∑T
t=1 τ

(k)
it δ(Ot − m)

b2
i (m)

)

≤ 0, for all x 6= 0, (5.18)

which implies that the function is concave for

ωQ3 ≤ min
i,m

∑T
t=1 τ

(k)
it δ(Ot − m)

2N
, (5.19)

as 0 ≤ bi(m) ≤ 1 for all i, m. This value is easily calculated at each EM iteration.

However, even given the concavity of Q′
3, simultaneous solution of equations

(5.14) and (5.15) is analytically difficult. From a practical implementation per-

spective, it is advantageous to use an iterative solver to find the maximizing
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values. In our implementation, we alternately solve for the νis and bi(m)s using

a Newton method to find the roots of (5.15). We note that because we do not

calculate the maximum directly that the resulting optimization is not in fact a

true EM approach. In this manner it is similar to the work presented by Noumeir

et. al. [NML95], in which an iterative Newton-Raphson method is used to find

the maximum at each iteration. As in that work, we stop our iteration if the

error is less than some limit and if Q(λ(k+1)|λ(k)) > Q(λ(k)|λ(k)). This latter

condition ensures that the method is at least a generalized EM (GEM) method

which guarantees convergence to a local maximum.

5.2.2 Gaussian output terms: Mahalanobis distance

We now present some candidate regularization terms designed for Gaussian out-

put distributions. Our first regularization term is based on the Mahalanobis

distance, and leads to the modified Q-function

Q′
3 =

N
∑

i=1

T
∑

t=1

τ
(k)
it

(

log n −
1

2
log det(Σi) −

1

2
(mi − µi)

T Σ−1
i (mi − µi)

−
1

2
(Ot − mi)

T Σ−1
i (Ot − mi)

+
ωQ3

2

N
∑

j=1

(µi − µj)
T Σ−1

i (µi − µj)

)

,

=

N
∑

i=1

T
∑

t=1

τ
(k)
it

(

log n −
1

2
log det(Σi) −

1

2
(Ot − mi)

T Σ−1
i (Ot − mi)

+
N
∑

j=1

1

2

(

(ωQ3 −
1

N
)µi − ωQ3µj +

1

N
mi

)T

Σ−1
i

(

(ωQ3 −
1

N
)µi − ωQ3µj +

1

N
mi

)

)

,

(5.20)
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where ωQ3 > 0 is a weighting factor and mi =
∑T

t=1 τ
(k)
it Ot/

∑T
t=1 τ

(k)
it as intro-

duced in section 2.4.1.4. The prior in this case is

P3(B) =

N
∏

i=1

N
∏

j=1

exp
(ωQ3

2
(µi − µj)

T Σ−1
i (µi − µj)

)

. (5.21)

Note that for the ease of subsequent manipulation and computation, we do not

properly account for the independence of the regularizing prior from the hidden

state variable. In theory this means that systems with highly skewed populations

of observations from each of the output distributions will be misrepresented in

this regularization scheme. In practice we have observed no evidence that this

effect has serious consequence. Nevertheless, for completeness we present the

modified Q-function resulting from the prior (5.21):

Q′
3 =

N
∑

i=1

T
∑

t=1

τ
(k)
it

(

log n −
1

2
log det(Σi) −

1

2
(mi − µi)

T Σ−1
i (mi − µi)

−
1

2
(Ot − mi)

T Σ−1
i (Ot − mi)

+
ωQ3

2
∑T

t=1 τ
(k)
it

N
∑

j=1

(µi − µj)
T Σ−1

i (µi − µj)

)

.

(5.22)

We therefor keep in mind that the regularized Q-function (5.20) is only an ap-

proximation.

To find the update rule for the means, we perform direct maximization via

the derivative. For ease of representation, we take vector derivatives, noting that

for a real valued matrix A and column vector x,

∂

∂x
(Ax) = A,

∂

∂xT
(Ax) = AT ,

∂

∂x
(xT Ax) = xT (A + AT ),

∂

∂xT
(xT Ax) = (A + AT )x. (5.23)

53



We then have

∂Q′
3

∂µT
i

=

N
∑

j=1

Σ−1
i

(

ωQ3 −
1

N

)(

(ωQ3 −
1

N
)µi − ωQ3µj +

1

N
mi

)

, (5.24)

and so we solve

(NωQ3 − 1)µi + mi − ωQ3

N
∑

j=1

µj = 0 (5.25)

simultaneously for i = 1, . . . , N . Let U = (µ1 · · ·µN) and M = (m1 · · ·mN) be

matrices formed from the column vectors µi and mi, and let 1N×N be an N -by-N

matrix of ones. The resulting system

U(ωQ31N×N + (1 − NωQ3)I) = M (5.26)

can be solved by any standard linear method. Note that solving this system of

equations gives us a critical point, which will only be the global maximum if the

function is concave in the means µi. Taking the second derivative of the modified

Q-function, we have

∂2Q′
3

∂µT
i ∂µj

=







Σ−1
i ((N − 1)ωQ3 − 1) if i = j

−Σ−1
i ωQ3 otherwise

. (5.27)

So the Hessian is

H = (NωQ3 − 1)I − ωQ31N×N . (5.28)

For the function to be concave, the Hessian must be negative definite. In other

words,

(NωQ3 − 1)

N
∑

i=1

x2
i − ωQ3

N
∑

i=1

xi

N
∑

j=1

xj < 0, for all x 6= 0. (5.29)

We note that
∑N

i=1 xi

∑N
j=1 xj ≤ N

∑N
i=1 x2

i and that for
∑N

i=1 xi

∑N
j=1 xj < 0,

|
∑N

i=1 xi

∑N
j=1 xj | < N

∑N
i=1 x2

i . So we can reduce the condition (5.29) to

(NωQ3 − 1)

N
∑

i=1

x2
i + NωQ3

N
∑

i=1

x2
i ≤ 0,

(2NωQ3 − 1)

N
∑

i=1

x2
i ≤ 0, for all x 6= 0, (5.30)
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and therefore the function is concave and has a global maximum for

ωQ3 ≤
1

2N
. (5.31)

Now that we have an EM update rule (5.26) for the means, we can determine

the update rule for the covariance matrices given the new means. Let

S ′
i =

∑T
t=1 τ

(k)
it (Ot − µ

(k+1)
i )(Ot − µ

(k+1)
i )T

∑T
t=1 τ

(k)
it

, (5.32)

Rij =

∑T
t=1 τ

(k)
it (µ

(k+1)
i − µ

(k+1)
j )(µ

(k+1)
i − µ

(k+1)
j )T

∑T
t=1 τ

(k)
it

. (5.33)

Then we can write

Q′
3 =

T
∑

t=1

N
∑

i=1

τ
(k)
it

(

log n +
1

2
log det(Σ−1

i ) −
1

2
Tr Σ−1

i S ′
i +

ωQ3

2

N
∑

j=1

Tr Σ−1
i Rij

)

.

(5.34)

Once again we can find the maximum directly via the derivative:

∂Q3

∂{Σ−1
i }ab

= {Σi}ba −
(

{S ′
i}ba − ωQ3

N
∑

j=1

{Rij}ba

)

= 0. (5.35)

From this we see that Q′
3 has a critical point at

Σi = S ′
i − ωQ3

N
∑

j=1

Rij . (5.36)

Since both the S ′
is and the Rijs are positive definite without restrictions, we

cannot pick an ωQ3 > 0 such that the maximization problem is concave in the

covariances. However, we also have the constraint that the covariance matri-

ces must be positive definite. In the unmodified EM method, this constraint is

implicit because the update step guarantees positive definiteness of the covari-

ances. However, we can add it explicitly here to address this problem. We note

that setting ωQ3 = 0 when updating the covariances is a reasonable compromise

in practice. Nevertheless, this difficulty in maintaining positive definite covari-

ance matrices suggests that using an alternate regularization function would be

preferable.
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5.2.3 Gaussian output terms: Euclidean distance

As a more practical alternative to the Mahalanobis distance based regularization

term, we devise on based on the squared Euclidean distance. This form of regu-

larization has a number of theoretical and computational advantages over using

the Mahalanobis distance, and is what we use in our software implementation

of the method. Nevertheless, it does lack the intuitive appeal of using the Ma-

halanobis distance, in which tight, low-variance output distributions exert less

pressure on their neighbors than more diffuse ones. The modified Q-function in

this case is

Q′
3 =

N
∑

i=1

T
∑

t=1

τ
(k)
it

(

log n −
1

2
log det(Σi) −

1

2
(mi − µi)

T Σ−1
i (mi − µi)

−
1

2
(Ot − mi)

T Σ−1
i (Ot − mi)

+
ωQ3

2

N
∑

j=1

(µi − µj)
T (µi − µj)

)

.

(5.37)

For which the associated prior is

P3(B) =

N
∏

i=1

N
∏

j=1

exp
(ωQ3

2
(µi − µj)

T (µi − µj)
)

. (5.38)

As in the case of the Mahalobis distance based prior, the regularized Q-function

(5.37) is an approximation which ignores the fact that the prior is independent

of the hidden variable. Once again, we found in practice that this theoretical

inaccuracy had little impact in practice.

To find the update rule for the means we once again take the derivative in
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the means:

∂Q′
3

∂µT
i

= Σ−1
i (mi − µi) +

N
∑

j=1

ωQ3

(

µi − µj

)

= Σ−1
i (mi − µi) − ωQ3

N
∑

j=1

µj + NωQ3µi. (5.39)

Setting the derivative to zero we have

Σ−1
i mi + (NωQ3I − Σ−1

i )µi = ωQ3

N
∑

j=1

µj for i = 1, . . . , N , (5.40)

which leads us to the system of equations
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1

. . .

Σ−1
N











M, (5.41)

which can be solved by any standard linear method given the covariances Σ−1
i .

We evaluate the conditions under which this solution is the global maximum by

calculating the Hessian:

∂2Q′
3

∂µT
i ∂µj

=







ωQ3(N − 1)I − Σ−1
i ((N − 1) if i = j

−Σ−1
i ωQ3 otherwise

, (5.42)

so

H =











NωQ3I − Σ−1
1

. . .

NωQ3I − Σ−1
N











−











IN×N · · · IN×N

...
. . .

...

IN×N · · · IN×N











. (5.43)
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If the Q-function is concave, then the Hessian H is negative definite, and so for

all nonzero column vectors x composed of stacked N × 1 vectors xi (noting that

Σi is positive definite for all i),

xT Hx < 0
N
∑

i=1

xT
i

(

NωQ3I − Σ−1
i

)

xi − ωQ3

N
∑

i=1

xT
i

N
∑

j=1

xj < 0

2NωQ3

N
∑

i=1

xT
i xi −

N
∑

i=1

xT
i Σ−1

i xi ≤ 0

2NωQ3

N
∑

i=1

xT
i xi −

N
∑

i=1

xT
i xi||Σ

−1
i || ≤ 0

ωQ3 ≤
||Σ−1

i ||

2N
. (5.44)

This gives us a condition on ωQ3 for the Q-function to have a global maxima in

the means. To find the maximum in the covariances, we take the derivatives of

(5.37) in the components of Σ−1
i and set them equal to zero, which gives us

Σi =

∑T
t=1 τ

(k)
it (Ot − µi)(Ot − µi)

T

∑T
t=1 τ

(k)
it

. (5.45)

This is a global maximum since the Q-function is concave as a function of the

covariances Σi. To find the means and covariances we need to solve equations

(5.41) and (5.45) simultaneously. This can be done by using the approxima-

tion Σi = Si in equation (5.41) as an initial guess and then iterating between

equations (5.41) and (5.45) until the solution converges. In practice, it is often

sufficient merely to approximate Σi as Si when calculating the means without

any attempt at iterative convergence whatsoever. As in the case of our discrete

output regularization, this iterative rather than direct maximization forces us to

characterize the method as a generalized EM algorithm rather than a pure EM

approach. Nevertheless, provided we ensure that the Q-function never decreases

in value, we can guarantee convergence to a local maxima.
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We summarize various priors, their associated regularization terms and the

corresponding constraints on the weighting terms necessary to guarantee con-

cavity of the Q-function in tables 5.1 and 5.2. Note that for the Mahalanobis

distance the constraint only guarantees concavity in the means.

Prior
∏N

i=1 π
ωQ1
i

Regularization term ωQ1

∑N
i=1 log πi

Prior
∏N

i=1

∏N
j=1 a

ωQ2
ij

Regularization term ωQ2

∑N
i=1

∑N
i=1 log aij

Prior
∏N

i=1

∏N
j=1

∏M
m=1 e−ωQ3

bi(m)bj (m)

Regularization term −ωQ3

∑N
i=1

∑N
j=1

∑M
m=1 bi(m)bj(m)

Prior
∏N

i=1

∏N
j=1 exp

(

ωQ3

2
(µi − µj)

T Σ−1
i (µi − µj)

)

Regularization term
∑N

i=1

∑T
t=1 τ

(k)
it

(ωQ3

2

∑N
j=1(µi − µj)

T Σ−1
i (µi − µj)

)

Prior
∏N

i=1

∏N
j=1 exp

(

ωQ3

2
(µi − µj)

T (µi − µj)
)

Regularization term
∑N

i=1

∑T
t=1 τ

(k)
it

(ωQ3

2

∑N
j=1(µi − µj)

T (µi − µj)
)

Table 5.1: Priors and associated regularization terms.

Regularization Term Weight Constraint

ωQ1

∑N
i=1 log πi ωQ1 > 0

ωQ2

∑N
i=1

∑N
i=1 log aij ωQ2 > 0

−ωQ3

∑N
i=1

∑N
j=1

∑M
m=1 bi(m)bj(m) ωQ3 ≤ min

i,m

PT
t=1 τ

(k)
it δ(Ot−m)

2N

∑N
i=1

∑T
t=1 τ

(k)
it

(ωQ3

2

∑N
j=1(µi − µj)

T Σ−1
i (µi − µj)

)

ωQ3 ≤ 1/2N
∑N

i=1

∑T
t=1 τ

(k)
it

(ωQ3

2

∑N
j=1(µi − µj)

T (µi − µj)
)

ωQ3 ≤ ||Σ−1
i ||/2N

Table 5.2: Weight parameter constraints for various regularization terms.
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CHAPTER 6

Results and Discussion

Having established the theoretical basis for our approach, we now present some

results of using the combined deterministic annealing and regularization tech-

niques to train hidden Markov models. Once again, we use our two test data sets

as the basis for our discussion.

The results we present are for using the squared Euclidean distance based reg-

ularization described in the preceding chapter to train Gaussian output hidden

Markov models. In our experiments, we do not fix the value of ωQ3, but instead

set the value to the upper bound on convexity throughout the optimization pro-

cedure. That is, at each iteration ωQ3 = mini ||Σ
−1
i ||/2N . We note that because

of this recalculation of the regularization weight, our procedure is not in fact a

true EM optimization. However, our implementation does require that the log

likelihood function decrease at every iteration and satisfies the requirements of a

generalized expectation-maximization (GEM) method, guaranteeing convergence

to a local maxima. To bound the log likelihood function above, we use ωΣ = 10−6.

6.1 Experiment Design

For our experiments we ran each of seven training methods 1000 times on the test

data for every model size N = 1, . . . , 10. These training methods are (1) base-

line EM, (2) deterministic annealing EM (DAEM) alone with annealing schedule
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∆γ = 0.1, (3) DAEM alone with annealing schedule ∆γ = 0.01, (4) DAEM alone

with annealing schedule ∆γ = 0.001, (5-7) DAEM with regularization with the

same respective schedules as training methods 2-4. For each model size and train-

ing method, we counted the number of local maxima via the Hamming distance

between state assignments. As well, we determined the maximum log likelihood

across all 1000 training runs and gathered statistics of the log likelihood results,

calculating the mean and standard deviation. For all experiments, we initialized

the initial and state-to-state transition probabilities randomly from a uniform

distribution. Gaussian means were also initialized randomly from a uniform dis-

tribution, but covariances were generated according to Σ = QT WQ, where W

was a diagonal matrix with uniform random diagonal elements between zero and

one, and Q was the ”Q” portion of a QR transformation of a square matrix also

with uniform random elements between zero and one. (If the random matrix was

singular, new random matrices would be generated until a non-singular matrix

was created.) In preparation for training, the test data sets were shifted and

normalized along each dimension so that all observation values lay between zero

and one; this was to prevent relative dimension scaling effects from dominating

the training processes.

6.2 Synthetic Data Results

Figure 6.1 shows the results of the combined method on the data set step.

We note that the combined method has fewer local maxima than the annealing

method alone for all three annealing schedules – in fact, the combined method

has superior performance with schedule ∆β = 0.01 than the annealing method

alone has with ∆β = 0.001. In addition, the combined method allows for the use

of more rapid annealing schedules than are possible with deterministic annealing
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Figure 6.1: Experimental results for data set step. Left: Number of experimentally

determined local maxima. Right: Maximum log likelihood among all HMMs. Blue

squares show results for the baseline HMM with standard EM optimization; magenta

stars with schedule ∆γ = 0.1, green circles with schedule ∆γ = 0.01; red triangles with

schedule ∆γ = 0.001. Dashed lines are the results with deterministic annealing only,

solid lines are the results of the combined annealing and regularization technique.

alone, since the two slower schedules failed to produce useful results at all when

used in isolation. We observe also that the maximum log likelihood across all

trials of the combined method is very close to that found by the baseline EM

method. This gives us some assurance that the method is producing reasonable

solutions in the aggregate. Although the maximum log likelihood is lower for the

combined method for nine and ten state models, this is unsurprising considering

that the method does in fact optimize over a different objective function from

either the EM or deterministic annealing EM methods. Figure 6.2 shows the

mean log likelihood and the standard deviation of the log likelihood across all

tests for each model size. These results confirm the advantages of the combined

approach at the slowest annealing step, but also bring to light some difficulties
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Figure 6.2: Test results for data set step. Left: Mean log likelihood across all HMMs.

Right: Standard deviation of log likelihood across all HMMs. Blue squares show results

for the baseline HMM with standard EM optimization; magenta circles with schedule

∆β = 0.01; red triangles with schedule ∆β = 0.001. Dashed lines are the results with

deterministic annealing only, solid lines are the results of the combined annealing and

regularization technique.

encountered by the combined method when ∆γ = 0.01. This, combined with the

poor results of deterministic annealing alone with the faster schedules, suggests

that in general a conservative approach to annealing schedules is advisable.

Figure 6.3 compares classification results for a seven state model trained on

step using the deterministic annealing method only (left) and the annealing with

regularization (right). Each of these results is taken from the first of the 1000

tests performed on this data set. We see that with the annealing approach, the

method is suffering from a local maxima in which class outputs are identical, with

classes 1 and 4 unable to separate (what separation they do experience is due to

the forced perturbation of identical output distributions that we enforce in our
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Figure 6.3: Left: Classification result from test 1 using deterministic annealing EM

only for a seven state HMM trained on data set step. Right: Classification result from

test 1 using deterministic annealing with regularization for a seven state HMM trained

on data set step.

implementation).

We notice that as the number of model states rises above seven that even

for the regularized deterministic annealing method at the slowest schedule the

number of local maxima found rises rapidly. In figure 6.4 we present a sample

local maxima for N = 8 (left) and one for N = 9 (right). What we see is that

as in the example shown for N = 8 the local maxima are typically just the

result of various assignments of the steps to states. We have
(

10
8

)

= 45 possible

assignments, which is greater than the number of local maxima found. This is

unsurprising, given that certain combinations of steps are likely to deprecated

(for instance when a very low and very high step are in sequence). However,

for N = 9, we have
(

10
9

)

= 10, so the large number of local maxima cannot be

attributed to mere combinatorics. The example classification in figure 6.4 shows
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Figure 6.4: Left: Classification result from test 1 using regularized deterministic an-

nealing EM for an eight state HMM trained on data set step. Right: Classification

result from test 1 using the same method to train a nine state model.

a result very similar to that produced by the deterministic annealing method

alone and indicates that the regularization term is becoming ineffective at this

larger model size.

In order to address concerns that the EM method might be having difficulties

because the data contains insufficient transition probability statistics, we repeated

the tests described above on an extended data set of similar form. The data set,

which we designate stepstep, was created by repeating the same pattern of dis-

crete steps as in the data set step ten times, forming 1000 observations. Noise

with the same statistics was then added to the signal. We present the results of

our experiments in figure 6.5. We see that with this longer series that the perfor-

mance of the regularized deterministic annealing EM method actually improves

relative to standard EM, particularly with larger model sizes. Once again, the

annealing method fails completely for the two fastest annealing schedules.
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Figure 6.5: Experimental results for data set stepstep. Left: Number of experimen-

tally determined local maxima. Right: Maximum log likelihood among all HMMs. Blue

squares show results for the baseline HMM with standard EM optimization; magenta

stars with schedule ∆γ = 0.1, green circles with schedule ∆γ = 0.01; red triangles with

schedule ∆γ = 0.001. Dashed lines are the results with deterministic annealing only,

solid lines are the results of the combined annealing and regularization technique.

6.3 Field Data Results

In figure 6.6 we present results of the method as applied to the data set clar.

We see for this data set that the results are similar in trend to those from the

data set step. However, there are some key differences. In general, the number

of local maxima for both the annealing alone and the combined method are lower

than in the step case. In fact, we observe that for the combined method at the

slowest annealing schedule there are three or fewer maxima for N = 1, . . . , 6 and

only eleven solutions for N = 7, three of which comprise 92% of the experimen-

tal results. However, after this point there is an abrupt rise in the number of

experimentally determined local maxima. We propose that this rise is due to the
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Figure 6.6: Test results for data set clar. Left: Number of experimentally determined

local maxima. Right: Maximum log likelihood among all HMMs. Blue squares show

results for the baseline HMM with standard EM optimization; magenta circles with

schedule ∆β = 0.01; red triangles with schedule ∆β = 0.001. Dashed lines are the

results with deterministic annealing only, solid lines are the results of the combined

annealing and regularization technique.

fact that we have exceeded the true number of classes in the data set: since the

combined method acts to reduce the number of redundant maxima, if we exceed

the true number of maxima in the data set, then we expect radically worse re-

sults as the method forces the existence of additional, distinct classes. Figure

6.7 shows the mean and standard deviation of the log likelihood results for these

tests; these confirm our initial observations and parallel our observations on the

performance of the method for the test data set step.

Figure 6.8 displays a classification result of the combined method for N = 7

on the slowest annealing schedule. We see that the method has identified all

the major modes of the system including not only the before and after Hector
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Figure 6.7: Test results for data set clar. Left: Mean log likelihood across all HMMs.

Right: Standard deviation of log likelihood across all HMMs. Blue squares show results

for the baseline HMM with standard EM optimization; magenta circles with schedule

∆β = 0.01; red triangles with schedule ∆β = 0.001. Dashed lines are the results with

deterministic annealing only, solid lines are the results of the combined annealing and

regularization technique.

Mine earthquake states and the water pumping signal but also a number of more

subtle signals. Figure 6.9 shows classification results for N = 2, . . . , 6, again

learned using the slowest annealing schedule. Each classification is the only one

found by the method, since in each instance there was only a single maxima.

Note the steady progression of subdivision of the various features that can be

observed as the size of the model increases.

6.4 Altering Local Maxima Criteria

We also explored the effect of using a slightly less strict criteria for local maxima.

In this scheme, we consider models with a Hamming distance between individually
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Figure 6.8: Classification results for a seven-state HMM applied to the data set clar.

most likely state assignment sequences less than or equal to one to be at the same

local maxima. In other words, we make an exception for sequences that differ at a

single time point. The results of these experiments are summarized in figure 6.10;

we see that the results are essentially the same as those calculated by requiring

strict equality.

6.5 Discussion

Our combined deterministic annealing and regularization scheme appears to offer

significant advantages over both the baseline EM method and the deterministic

annealing method alone. Nevertheless, there are some significant limitations to

the method.

The deterministic annealing method tends to fail in cases where the high tem-

perature maxima is significantly separated in model parameter space from the

maxima of the original problem; the method tracks the early maxima smoothly
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Figure 6.9: Classification results for a two- through six-state HMMs applied to the

data set clar.
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Figure 6.10: Left: Number of local maxima for different methods applied to step with

relaxed local maxima criteria Hamming distance ≤ 1. Right: Number of local maxima

for different methods applied to clar with relaxed local maxima criteria Hamming

distance ≤ 1. Blue squares show results for the baseline HMM with standard EM

optimization; magenta circles with schedule ∆β = 0.01; red triangles with schedule

∆β = 0.001. Dashed lines are the results with deterministic annealing only, solid lines

are the results of the combined annealing and regularization technique.

and cannot jump to the more favorable solution. Our combined method shares

this weakness, as the regularization term does nothing to address this. It is pos-

sible that methods designed to escape local maxima, such as weight annealing

[ENF02] or split-and-merge methods [UNG00] could be combined with our ap-

proach to address this problem. However, these techniques remain untested on

hidden Markov models and their interactions with deterministic annealing and

regularization are uncertain.

We observe that regularization term does not actually solve the problem of

identical output distributions, but merely discourages them. When identical out-
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put distributions do occur, for instance in the early steps of the annealing process,

we are obliged to perturb the distributions in order to allow the regularization

term to work. To address this, in our implementation we check for identical out-

puts at each iteration and then randomly perturb the mean of one. Although

these are small perturbations (by default, each element of the perturbation vec-

tor is of order 10−3; observation data is dimension-wise shifted and normalized

to lie between 0 and 1), they nevertheless violate the claim that the annealing

procedure is in fact deterministic.

Our regularization scheme also carries with it the risk that it will modify the

objective function too much and push the solution away from the true optimum

of the original. Using small weighting terms for the regularization can reduce

this risk but reduces the efficacy of the regularization itself. Our preference is to

avoid fine-tuning of the weighting term on an application by application basis by

instead setting the weight to the maximum at each iteration, as this promotes

ease-of-use for non-expert users of the method. However, we recognize that there

are likely to be cases in which this produces inferior results. As we remark in the

preceding section in our discussion of the results for the data set clar, however,

this seeming problem may in fact have the unexpected benefit of indicating the

minimally representative number of states that describe the data. Systematic

study of this phenomena will be necessary before we can come to any definite

conclusions. Certainly, this phenomenon is not universal; we see that the number

of local maxima found by the method for the data set step starts increasing

rapidly well before the true number of states. These local maxima come about

for a number if reasons. Some of them are the result of different subsets of the

steps being combinatorially assigned to various states, while others are the result

of idiosyncrasies of data.
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Finally, we note that the method consumes a great deal more time than

standard EM optimization. Although the regularization carries with it only a

small amount of overhead, the annealing procedure can lengthen the computation

time considerably. Since the deterministic annealing EM performs a standard EM

maximization of the model parameters at each temperature, one might expect

that the computation time would increase inversely proportional to the annealing

schedule temperature step. However, the annealed cost function tends to be much

smoother than the original, particularly at higher temperatures. This results

in regions of the objective function that are quite flat; traversing such regions

using EM can take a great deal of time. When not in such flat regions, the

optimization procedure at a particular temperature tends to be much faster,

but in general the difficult temperatures dominate the computation time, often

requiring thousands of EM iterations to escape flat regions. As a result, the

deterministic annealing EM and regularized deterministic annealing EM methods

can easily take several orders of magnitude more time than the baseline EM

method. Fortunately, there several solutions that present themselves. Although

a cap on the number of EM iterations is not advisable, since that could prevent the

optimization procedure from reaching the true maximum for a given temperature,

variants and generalizations of the EM method designed to speed up convergence

instead. These include SAGE [FH94], AECM [LR94], and generalized conjugate-

gradient acceleration [JJ93]. In particular, the last of these seems well matched

to our problem escaping flat regions of the parameters space. However, the effect

of incorporating these methods lies beyond the scope of this work.
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CHAPTER 7

Local Maxima

In Chapter 3 we discussed the problem of local maxima in the likelihood function

of hidden Markov models and evaluated the extent of the problem on an exper-

imental basis. In this chapter, we approach the problem of local maxima on an

analytical basis. We construct local maxima of the HMM objective function in

both the initial and state-to-state transition probabilities as well as in the output

distributions. On result of this analysis is a confirmation that duplicated states

are potentially a significant cause of problems in optimization, independent of

the deterministic annealing EM algorithm. We do this by demonstrating that a

lower bound on the number of locally maximum solutions with redundant states

is exponential given certain assumptions about the observation sequence.

We begin our analysis by discussing the less pressing problem of local max-

ima in the initial and state-to-state transition probabilities, and then move on

the discuss local maxima in the output distributions for first discrete and then

continuous observation sequences.

7.1 Initial and Transition Probabilities

Our experimental observations of locally maximum solutions lead us to suspect

that solutions with initial or state-to-state transition probabilities of zero or unity

are associated with undesirable local maxima. We therefor consider a set of HMM
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parameters for which πi, aij ∈ {0, 1} for i, j = 1, . . . , N . Let Q∗ = q∗1 · · · q
∗
T be the

resultant state sequence determined by some particular π∗, A∗ chosen from this

set. Then

α(i) =







bq∗1
(O1) · · · bq∗t

(Ot) if i = q∗t

0 otherwise
, (7.1)

and

β(i) =







bq∗
T
(OT ) · · · bq∗t+1

(Ot+1) if i = q∗t

0 otherwise
, (7.2)

assuming that bq∗t
(Ot) > 0 for all t. This implies that

τit =







1 if i = q∗t

0 otherwise
, (7.3)

and that

τijt =







1 if i = q∗t and j = q∗t+1

0 otherwise
. (7.4)

From this we can derive the updates:

π
(k+1)
i =







1 if π
(k)
i = 1

0 otherwise
,

a
(k+1)
ij =







1 if a
(k)
ij = 1

0 otherwise
. (7.5)

As such, this solution is a fixed point of the EM transformation F , and therefore

a critical point of the likelihood P (O|λ). Since there are NN+1 different solutions

of this form, there are also at least that many critical points of the likelihood

function. However, many of these points in the parameter space will result in

the same output sequence (for example, all sequences generated by π1 = 1, a11 =

1 will be identical, regardless of the values of the other elements of A). The

distinguishable solutions each generate a deterministic sequence of states, which
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transitions from state to state until reaching a final repeating state i for which

aii = 1; if no such state is reached, then the pattern simply repeats until the

end of the observation sequence. We can count the number of sequences by

noting that for every number of utilized states greater than one there are two

possibilities: that the states will repeat or that the sequence will reach a final

repeating state. For example, with two states used, we can either repeat (e.g.,

Q = 121212 . . .) or move immediately into the repeating state (Q = 122222 . . .).

Assuming that T > N , then we have 1 +
∑N

n=2(n! + (n− 1)!) possible sequences.

However, if we ignore solutions which are permutations, we only have 2n − 1

unique sequences. Our conclusion is then that these types of local maxima are

not a serious problem for HMM optimization, and move on to consider local

maxima in the output distributions.

7.2 Output Distribution Functions

7.2.1 Discrete Output

We first consider the case in which the observation sequence is discrete. For this

data set let us propose a sequence of candidate values of the hidden underlying

state variable, Q∗ = q∗1 · · · q
∗
T , such that (1) Ot1 = Ot2 implies that q∗t1 = q∗t2 and

(2) q∗t 6= q∗t+1 if and only if Ot 6= Ot+1. In other words, the state changes only

when the observation sequence changes, and each state is associated with a unique

set of observations. Figure 7.1 shows a simple example of such an observation

sequence, with the state transitions marked by vertical lines.

We claim that a model λ∗ = argmax
λ

P (O|λ, Q∗) is then a critical point of the

likelihood function. Let Si be the set of observation symbols associated with the

state i, i.e. qt = i implies Ot ∈ Si. Furthermore, let Lm =
∑T

t=1 δ(Ot −m) be the
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Figure 7.1: Example of discrete data set with state assignments such that state tran-

sitions occur only between different output symbols.

incidence of the symbol m in the data. Then define

Li =
∑

m∈Si

Lm. (7.6)

For ease of presentation but without loss of generality, assume that the obser-

vations Ot ∈ Si are sequential for each state i. Then the locally maximum model

λ∗ is such that

π∗
i =







1 if O1 ∈ Si

0 otherwise
, b∗i (m) =







Lm

Li
if m ∈ Si

0 otherwise
,

a∗
ij =































Li−1
Li

if i = j and OT /∈ Si

1
Li

if Ot ∈ Si and Ot+1 ∈ Sj for some t

1 if i = j and OT ∈ Si

0 otherwise

.

(7.7)
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For λ∗ we have forward-backward parameters

α1(i) =







LO1

Li
if O1 ∈ Si

0 otherwise
,

αt+1(i) =



















αt(i)
Li−1
Li

LOt+1

Li
if Ot, Ot+1 ∈ Si

αt(j)
1
Lj

LOt+1

Li
if Ot ∈ Sj, Ot+1 ∈ Si for i 6= j

0 otherwise

,

βT (i) = 1,

βt(i) =



















βt+1(i)
Li−1
Li

LOt+1

Li
if Ot, Ot+1 ∈ Si

βt+1(j)
1
Li

LOt+1

Lj
if Ot ∈ Si, Ot+1 ∈ Sj for i 6= j

0 otherwise

. (7.8)

From these we calculate

τit =







1 if Ot ∈ Si

0 otherwise
, τijt =







1 if Ot ∈ Si, Ot+1 ∈ Sj

0 otherwise
. (7.9)

Since this implies that our update rules are

π
(k+1)
i = τi1

PN
j=1 τi1

= π∗
i , a

(k+1)
ij =

PT−1
t=1 τijt

PN
j=1

PT−1
t=1 τijt

= a∗
ij ,

bi(m)(k+1) =
PT

t=1 τitδ(Ot−m)
PT

t=1 τit
= b∗i (m),

(7.10)

we see that the model λ∗ is a critical point of the EM method.

We show that this fixed point is a true local maximum of the log likelihood

function by calculating the Hessian. We have

∂2 log P (O|λ∗)

∂π2
i

= −
1

π∗
i
2 ,

∂2 log P (O|λ∗)

∂a2
ii

= −
Li

a∗
ii

2 ,

∂2 log P (O|λ∗)

∂a2
ij

= −
1

a∗
ij

2 if Ot ∈ Si and Ot+1 ∈ Sj for some t,

∂2 log P (O|λ∗)

∂bi(m)2
= −

Lm

b∗i (m)2 if m ∈ Si, (7.11)
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and all the 2nd-order cross derivative terms are equal to zero. Since the Hessian

is diagonal with exclusively negative elements, it is negative definite and the

solution a local maximum.

As an illustrative example, consider the sequence O = 112233 of length T = 6,

on which we train a model of size N = 2. Consider

λ1 =



















π =





1

0



 , A =





0 1

0 1



 , b1 =











1

0

0











, b2 =











1/5

2/5

2/5





























,

λ2 =



















π =





1

0



 , A =





1/2 1/2

0 1



 , b1 =











1

0

0











, b2 =











0

1/2

1/2





























,

λ3 =



















π =





1

0



 , A =





2/3 1/3

0 1



 , b1 =











2/3

1/3

0











, b2 =











0

1/3

2/3





























,

which correspond respectively to the optimal model parameters for presumed un-

derlying state sequences Q1 = 122222, Q2 = 112222, and Q3 = 111222. Then

P (O|λ1) = 0.00512, P (O|λ2) = 0.015625, P (O|λ3) = 0.01, so λ2 is a local max-

imum. A second local maximum exists with model parameters corresponding

to Q = 111122, as well as a third local maximum corresponding to the entire

sequence being in the same state. We ignore an additional three local maxima

which are morphologically equivalent to these.

We note that for S unique segments there are
(

S−1
N−1

)

local maxima of the form

λ∗ utilizing all N states, since we choose N − 1 of the S − 1 possible transitions

between segments as our state transition points. We futher note that this same

analysis holds true for all models for which less than the full number of states are

utilized. In these cases we have duplicate output distributions so that bi = bj for
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certain i 6= j. Including these there are
∑N

n=1

(

S−1
n−1

)

local maxima of this form

for this data set and model size N . If S ≥ N , then
∑N

n=1

(

S−1
n−1

)

≥ 2N−1, so the

lower bound on the number of local maxima is exponential in the model size.

7.2.2 Continuous Output

In our discussion of hidden Markov models with continuous output distribu-

tions, we first consider a relatively simple case in which the underlying signal

is generated by an R-state HMM λ† with output distributions B† such that if

b†i (Ot, θ
†
i ) > 0 then b†j(Ot, θ

†
j + δθ†j) = 0 for i 6= j, where δθ†j , ||δθ

†
j || ≥ 0 is any

small perturbation of the output distribution parameters. In other words, the

output distributions have distinct and separated domains. We will see that our

analysis of this case parallels that of the discrete output distribution case.

For the series of observations generated by this HMM, we consider as our

solution an N -state HMM for which the output distribution of a given state bi is

a finite mixture of the output distributions of the generating HMM λ†. That is,

bi =

R
∑

r=1

wirb
†
r. (7.12)

For N = R, we propose a sequence of candidate values of the underlying state

variable Q∗ = q∗1 · · · q
∗
T such that b†i (Ot) > 0 implies that q∗t = i. We then claim

that a model λ∗ = argmax
λ

P (O|λ, Q∗) is then a critical point of the likelihood

function. Let Si be the set of observations associated with the state i, i.e. qt = i

implies Ot ∈ Si. Furthermore, let Li = |Si|. For ease of presentation but without

loss of generality, assume that the observations Ot ∈ Si are sequential for each
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state i. Then the locally maximum model λ∗ is such that

π∗
i =







1 if O1 ∈ Si

0 otherwise
, w∗

ir =







1 if i = r

0 otherwise
,

a∗
ij =































Li−1
Li

if i = j and OT /∈ Si

1
Li

if Ot ∈ Si and Ot+1 ∈ Sj for some t

1 if i = j and OT ∈ Si

0 otherwise

.

(7.13)

For λ∗ we have forward-backward parameters

α1(i) =







b†i (O1) if O1 ∈ Si

0 otherwise
,

αt+1(i) =



















αt(i)
Li−1
Li

b†i (Ot+1) if Ot, Ot+1 ∈ Si

αt(j)
1
Lj

b†i (Ot+1) if Ot ∈ Sj, Ot+1 ∈ Si for i 6= j

0 otherwise

,

βT (i) = 1,

βt(i) =



















βt+1(i)
Li−1
Li

b†i (Ot+1) if Ot, Ot+1 ∈ Si

βt+1(j)
1
Li

b†j(Ot+1) if Ot ∈ Si, Ot+1 ∈ Sj for i 6= j

0 otherwise

.(7.14)

From these we calculate (following section 2.5.2)

τit =







1 if Ot ∈ Si

0 otherwise
, τijt =







1 if Ot ∈ Si, Ot+1 ∈ Sj

0 otherwise
,

τirt =







1 if i = r and Ot ∈ Si

0 otherwise
.

(7.15)

This implies that our update rules are

π
(k+1)
i = τi1

PN
j=1 τi1

= π∗
i , a

(k+1)
ij =

PT−1
t=1 τijt

PN
j=1

PT−1
t=1 τijt

= a∗
ij ,

w
(k+1)
ir =

PT
t=1 τirt

PT
t=1 τit

= w∗
ir,

(7.16)
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and so we see that the model λ∗ is a critical point of the EM method. We can

show that this is a local maximum by calculating the Hession as in section 7.2.1.

Now consider an alternate sequence of candidate values of the underlying state

variable Q∗ such that b†i (Ot) > 0 implies that q∗t = i for i = 1, . . . , N − 1 and

b†R(Ot) > 0 implies that q∗t = N − 1. In other words, we are attributing observed

outputs produced by states R−1 and R of the generating model to a single class.

We then claim that a model λ∗ = argmax
λ

P (O|λ, Q∗) is then a critical point

of the likelihood function. Let Si and Li retain their definitions based on the

preceding section. For ease of presentation but without loss of generality, assume

that the observations Ot ∈ Si are sequential for each state i and that for some

Ot, Ot ∈ SN−1 and Ot+1 ∈ SN (that is, states N − 1 and N of the generating

model are sequential). Then the locally maximum model λ∗ is such that

π∗
i =



















1 if O1 ∈ Si, 1 ≤ i < N

1 if i = N − 1 and O1 ∈ SN

0 otherwise

,

w∗
ir =























































1 if i = r, 1 ≤ i < N − 1

LN−1

LN−1+LN
if i = r = N − 1

LN

LN−1+LN
if i = N − 1, r = N

LN−1

LN−1+LN
if i = N, r = N − 1

LN

LN−1+LN
if i = r = N

0 otherwise

,

82



a∗
ij =



















































































Li−1
Li

if i = j, 1 ≤ i < N − 1 and OT /∈ Si

LN−1+LN−1
LN−1+LN

if i = j = N − 1 and OT /∈ SN

1
Li

if Ot ∈ Si and Ot+1 ∈ Sj for some t

1
LN−1+LN

if Ot ∈ SN and Ot+1 ∈ Sj for some t, j < N − 1

1 if i = j, 1 ≤ i < N and OT ∈ Si

1 if i = j = N − 1 and OT ∈ SN

1 if i = j = N

0 otherwise

. (7.17)

For λ∗ we have forward-backward parameters

α1(i) =































b†i (O1) if O1 ∈ Si and 1 ≤ i < N − 1

LN−1

LN−1+LN
b†N−1(O1) if O1 ∈ SN−1 and i = N − 1

LN

LN−1+LN
b†N (O1) if O1 ∈ SN and i = N − 1

0 otherwise

,

αt+1(i) =


























































































αt(i)
Li−1
Li

b†i (Ot+1)
if Ot, Ot+1 ∈ Si

and 1 ≤ i < N − 1

αt(i)
LN−1+LN−1

LN−1+LN

LN−1

LN−1+LN
b†N−1(Ot+1)

if Ot, Ot+1 ∈ SN−1

and i = N − 1

αt(i)
LN−1+LN−1
LN−1+LN

LN

LN−1+LN
b†N (Ot+1)

if Ot ∈ SN−1 ∪ SN , Ot+1 ∈ SN

and i = N − 1

αt(N − 1)LN−1+LN−1
LN−1+LN

b†i (Ot+1)
if Ot ∈ SN , Ot+1 ∈ Si

for 1 ≤ i < N − 1

αt(j)
1
Lj

LN−1

LN−1+LN
b†N−1(Ot+1)

if Ot ∈ Sj, Ot+1 ∈ SN−1

for i = N − 1, 1 ≤ j < N − 1

αt(j)
1
Lj

b†i (Ot+1) if Ot ∈ Sj, Ot+1 ∈ Si for i 6= j

0 otherwise

,
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βT (i) = 1,

βt(i) =


























































































βt+1(i)
Li−1
Li

b†i (Ot+1)
if Ot, Ot+1 ∈ Si

and 1 ≤ i < N − 1

βt+1(i)
LN−1+LN−1
LN−1+LN

LN−1

LN−1+LN
b†N−1(Ot+1)

if Ot, Ot+1 ∈ SN−1

and i = N − 1

βt+1(i)
LN−1+LN−1
LN−1+LN

LN

LN−1+LN
b†N (Ot+1)

if Ot ∈ SN−1 ∪ SN , Ot+1 ∈ SN

and i = N − 1

βt+1(j)
LN−1+LN−1
LN−1+LN

b†j(Ot+1)
if Ot ∈ SN , Ot+1 ∈ Sj

for 1 ≤ j < N − 1

βt+1(N − 1) 1
Lj

LN−1

LN−1+LN
b†N−1(Ot+1)

if Ot ∈ Si, Ot+1 ∈ SN−1

for j = N − 1, 1 ≤ i < N − 1

βt+1(j)
1
Li

b†j(Ot+1) if Ot ∈ Si, Ot+1 ∈ Sj for i 6= j

0 otherwise

.

(7.18)

From these we calculate

τit =







1 if Ot ∈ Si and 1 ≤ i < N

0 otherwise
,

τijt =







1 if Ot ∈ Si, Ot+1 ∈ Sj and 1 ≤ i < N, 1 ≤ j < N

0 otherwise
,

τirt =







1 if i = r, Ot ∈ Si, and 1 ≤ i < N

0 otherwise
. (7.19)

This implies that our update rules are once again

π
(k+1)
i = τi1

PN
j=1 τi1

= π∗
i , a

(k+1)
ij =

PT−1
t=1 τijt

PN
j=1

PT−1
t=1 τijt

= a∗
ij ,

w
(k+1)
ir =

PT
t=1 τirt

PT
t=1 τit

= w∗
ir,

(7.20)

and so we see that the model λ∗ is also a critical point of the EM method. (Once

again, we can show this is a local maximum as in section 7.2.1.) We also see that

we can continue this process of attributing observations produced by multiple
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states of the generating model to a single state of a trained model to generate

more locally maximum solutions. As in the discrete output case, we therefor have
∑N

n=1

(

R−1
n−1

)

local maxima of this form for this data and model size N . If R ≥ N ,

then
∑N

n=1

(

R−1
n−1

)

≥ 2N−1, so the lower bound on the number of local maxima is

exponential in the model size.

85



CHAPTER 8

Science Applications

In this chapter we show the results of the regularized deterministic annealing EM

method applied to the analysis of several geophysical data sets. We demonstrate

that the method allows for innovative investigative approaches and that it offers

significant advantages over the conventional EM algorithm. Our three applica-

tion data sets all relate to the study of the Southern California earthquake fault

system, but the general techniques we present are generally applicable to similar

data sources.

8.1 SCIGN GPS

The Southern California Integrated Geodetic Network (SCIGN) is composed of

over 250 global positioning system (GPS) stations that measure crustal deforma-

tion. In the future, it is expected that SCIGN will become part of the Plate

Boundary Observatory (PBO), which will consist of over 1000 GPS stations

spread across the western United States. The SCIGN stations integrate GPS

position measurements daily in order to calculate displacement relative to the

beginning of some epoch. Installation of SCIGN was completed in mid-2001,

however our analysis focuses on data collected during a period somewhat over

two years spanning 1998-2000, and so data from only 127 stations is available.

In Chapter 6 we presented results of our method applied to a single SCIGN
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GPS station in Claremont, California. In this study, we are interested in detecting

geophysical events with geographically disperse signatures and therefor wish to

use the entire network. As background to our study we note that while earthquake

events are of course of considerable interest, recently the geophysics community

has become interested in aseismic events linked to crustal block motion or stress

transfer between earthquake faults. These types of events have been observed in

a few instances [MW03, RD03, MW02, MWS02, MMJ02, HHK99, HMT97], but

detections remain rare due to the subtlety of the signals. We hope to observe

evidence of not only seismic but also aseismic events in the SCIGN data.

To do this, we extract GPS signals from all 127 available stations in a 820 day

window. When GPS displacement values for a given station are not available on

a particular day due to signal dropout or incomplete installation, we assume a

zero displacement measurement for that day at that station. We note that since

actual measurements are almost never of zero displacement, this in effect adds an

additional “dropout” class to the data. Our next step is to train N -state hidden

Markov models on each of these GPS signals. Since the GPS signals have similar

statistics to one another, we can use the results of our experiments on the data

set clar to estimate the model size. We see that there were less than three local

maxima for N < 7, eleven maxima for N = 7, and that the number of maxima

rises rapidly after that. So we can guess that a good number of states to use

would be in the range of 5-7, with an additional state added to account for the

dropout class. Once all models of a particular size have been trained on each

of the GPS time series, we can use the models to perform state assignments of

each observation. We suspect that interesting geophysical events will manifest

themselves as changes in the signals across multiple GPS stations, so we look for

correlations in state changes across the network.
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Figure 8.1: Coincident state changes for six-state HMMs trained on signals from each

of 127 SCIGN GPS stations.

Figure 8.1 shows the number of coincident state changes across all observation

days with training done with six-state models. We see that there are a number

of strong peaks indicating correlated state changes. Of note is the strong peak

on day 652, which corresponds to the Hector Mine earthquake visible as an E-W

displacement jump in the clar data. We also observe that there is an increasing

trend in the average number of coincident state transitions; this is because of the

increasing number of stations coming on line during the observation period. In

figure 8.2 we compare the results of using the baseline EM algorithm (blue) for

training the HMMs used in this study against the results of using the regularized

deterministic annealing EM training (red). We see that the noise level in the

coincident state transition signal is significantly reduced by employing the latter

method. We compare the coincident state changes against the earthquake record

during the same time period in figure 8.3. We see that correlations across the

GPS network (blue) are only strongly correlated with an earthquake event (red)
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Figure 8.2: Coincident state changes for six-state HMMs trained using standard EM

(blue) and regularized deterministic annealing EM (red) on signals from each of 127

SCIGN GPS stations.

in the case of the aforementioned Hector Mine earthquake. There are no other

strong earthquakes in the time window studied. The implication of this is that the

regional activity indicated by the state transition correlations is either an aseismic

effect or the result of subtle long-range interactions between small (magnitude

<= 4.0) events.

8.2 Seismicity

Our next application of the method is to Southern California seismicity data.

This data is available from the Southern California Earthquake Center (SCEC)

and consists of a record of earthquake times and locations from 1932 to the

present, along with annotations describing the quality of event locations and

magnitude estimates. Because of limitations in technology, early events are often

unreliable and the catalog incomplete and so we only use data collected from
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Figure 8.3: Comparison of coincident state changes for six-state HMMs trained using

the regularized deterministic annealing EM (blue) and the Southern California earth-

quake record (red). Earthquake magnitudes, exaggerated by a factor of 10 for visibility,

are presented on the vertical axis.

1960 onward. Even during this time period earthquake recording technology still

limits the reliability of information and so we only consider events of magnitude

3.0 or above.

For the purpose of our investigation, we consider each earthquake to be a time

series observation. Since events are not evenly spaced in time, we consider the

series to be happening in “event time” and use the actual event time in calculating

two derived attributes, the time since the previous event and the time to the next

event. For convenience we use a time window of January 1st, 1960 to December

31st, 1999 and so the values of these derived time attributes are readily available

for the first and last observations in the series. The other four attributes we

consider for each observation are the x and y positions (calculated with respect

to a standard reference latitude and longitude), the depth, and the magnitude.
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We wish to use a hidden Markov model to classify the earthquake events

into distinct classes of self-similar events and investigate relationships between

classes indicated by the state-to-state transition probabilities. For this kind of

work it is often useful to restrict analysis to events of magnitude four or above,

since relationships between large events can otherwise be lost due to intervening

smaller events resulting from background fault activity.

As an example of this kind of analysis, we present some results of a 25-state

HMM applied to the time series of seismic events magnitude four and above in

Southern California, neglecting time interval information. Figures 8.4-8.6 shows

earthquake observations classified as belonging to three states of the HMM. For

each state, the locations of earthquakes assigned to that state are shown as circles

overlaid on a fault map of Southern California; the California coastline and the

borders of the Salton Sea are shown in blue. Circle size corresponds to earthquake

magnitude (rounded up). In figure 8.4 are shown earthquakes assigned to state

1. These are small, deep events associated with activity along the San Andreas

fault network but biased towards the California coast. In figure 8.5 are shown

earthquakes assigned to state 19. These are larger, shallower events readily iden-

tified as aftershocks of the San Simeon earthquake of 1952 (magnitude 6.0). In

figure 8.6 are shown earthquakes assigned to state 22. These are earthquakes

scattered around the northern part of the Sierra Nevada fault system, often oc-

curring in sequence. Some may be aftershocks of the Owens Valley earthquake

of 1980 (magnitude 6.2). Our particular interest in these three states lies in the

fact that a1,19 = 0.2864 and a1,22 = 0.7136. In other words, events in state 1

are precursors to events in states 19 and 22. While this is natural for the two

northernmost events in state 1, which precede events in state 19 and may be part

of the Parkfield quake aftershock series, it is unusual that events occurring in the

coastal part of the San Andreas fault system should precede events in the north-
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Figure 8.4: Earthquakes assigned to state 1 of a hidden Markov model trained on the

Southern California seismic record (1960-1999).

ern Sierra Nevadas. This implies that there may be long range stress transfer

between the two fault systems.
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Figure 8.5: Earthquakes assigned to state 19 of a hidden Markov model trained on

the Southern California seismic record (1960-1999).

8.3 Seismic Waveforms

The final geophysics application of the method we present is to waveform data

collected by the Southern California TriNet broadband seismic network. The in-

struments in this array measure device “counts” corresponding to surface velocity
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Figure 8.6: Earthquakes assigned to state 22 of a hidden Markov model trained on

the Southern California seismic record (1960-1999).

at the instrument location in each of three directions. During an earthquake these

sensors record velocity waveforms, typically characterized by a strong peak fol-

lowed by ringing harmonics and secondary peaks caused by different seismic wave

types or by reflected and/or diffracted versions of the waves. However, even in

the absence of a seismic event these instruments constantly record ground mo-
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tion. Because of the large volume of data, which is collected at up to 20Hz, the

data collected between earthquake events has been largely unexplored. Our study

focuses on examining this part of the data, with the intent being to identify and

catalog aseismic events that occur on a minutes to hours time scale. These events

can be seen most clearly in the frequency spectrum of the seismic signal. Figure

8.7, reproduced from [KK96], shows an example of the kind of signal in which we

are interested. The low-frequency signal, labeled III, appears immediately before

the Landers earthquake of 1992. This example also provides us with additional

motivation in this study since it implies that some aseismic events may be earth-

quake precursors (see also [MW02]). We note that other, non-geophysical events

of interest can also be observed in this data. For example in [TKA04] evidence

is presented of slow traveling atmospheric pressure wave that can be observed in

data from the TriNet seismic array.

Our approach is to find examples of unusual events manually and use them to

train a hidden Markov model, which is in turn used to search through the stored

data archives for similar events. This will enable the creation of an event catalog

that can be used for the study of aseismic events and their role in the earthquake

cycle. As the first step in this endeavor, we test the HMM training method on

selected example events.

For this work we used TriNet instrument data sampled at 10Hz and low-pass

filtered at 1Hz. For a given window of interest, a spectrogram of each dimension

of the data was produced using a window 1024 samples in length, stepped through

the time series at 128 sample intervals. The result of this procedure was a set of

three time series with 1/128th the number of observations of the original signal

and values at each of 512 frequencies for each observation. To reduce the dimen-

sionality of the data, the singular value decomposition of each of the three time
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Figure 8.7: On the left is a time-spectra plot (spectrogram) showing the Landers

earthquake of 1992. Key signals appearing before the earthquake are circled. (I) is a

local earthquake, (II) is a teleseismic event, (III) is an aseismic event that may be the

result of precursory activity. On the right are the actual TriNet time series which have

been processed to form the spectrogram. A suspicious tilt signal appears approximately

20 minutes prior to the main shock.
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series was calculated and the top 15 most significant components of each were

extracted (the number 15 was selected according the knee in the singular values).

These 15 component series were then combined to form a single 45 dimensional

time series. This was the training data for the HMM.

In figure 8.8 we show individually most likely state assignment results for a

hidden Markov model trained on data collected at a TriNet station in Pasadena,

California in January 2001. The data, collected over approximately two days, was

processed in the manner described in the preceding paragraph to provide a prin-

ciple component spectrogram for training (45 dimensions, 12000+ observations).

In the figure he state classes have been projected onto a 128:1 downsampled ver-

sion of the original signal. The usual signal of interest is a period of low-frequency

“fuzz” in the North-South and East-West dimensions that persists in the approx-

imate period between samples 3000 and 7000 (about fourteen hours). Also visible

are noise spikes in the vicinity of samples 5000, 7500, and 10000. The first and

last of these spikes are the result of a known man-made noise source that appears

in the recordings for this instrument on Monday through Friday mornings. The

oscillation in the vertical component is the ocean tide. We see that the HMM,

trained using our regularized deterministic annealing EM method, is able to suc-

cessfully classify the background signal (red), the noise spikes (light and dark

blue), and the signal of interest (as a combination of three states labeled with

green, yellow, and purple). We contrast this result with the results of HMMs

trained using the standard EM method and three different random parameter

initializations presented in figure 8.9. We see that the standard EM method has

a great deal of difficulty identifying the various signals in the time series and that

the classification results for different initializations are quite different from one

another.
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Figure 8.8: Results of application of an HMM trained using regularized deterministic

annealing EM to an unusual long-duration signal in Pasadena, California. The HMM

classifies the background signal as one class (red), noise spikes as two classes (light

and dark blue), and the long-duration signal itself as a mixture of the remaining three

classes.
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Figure 8.9: Three instances of the results of applying an HMM trained using standard

EM to an unusual long-duration signal in Pasadena, California. Note the differences

in classification results between the three different initializations.
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CHAPTER 9

Conclusions

This work focused on the problem of applying hidden Markov models (HMMs)

to exploratory analysis of scientific data sets. Unlike previous applications of

HMMs, for instance to speech recognition or protein analysis, exploratory data

analysis is by its very nature antithetical to the application of knowledge based

constraints to the HMM optimization problem. In other application domains,

such constraints are used to overcome the well-known local maxima problem of

model optimization. In their absence, we devised an alternative optimization

approach based on fundamental statistics and principles of efficient optimization.

Our first step was to verify the extent of the local maxima problem for hidden

Markov models in the absence of constraints. To do this, we developed an em-

pirical approach to estimating the number of local maxima for a given problem.

Unlike previous approaches which employed log likelihood measures to differ-

entiate between solutions, we focused on using the Hamming distance between

solution state assignments to distinguish models and identify local maxima. This

allowed us to avoid confusion in cases in which different models had similar likeli-

hoods. Using this approach, we were able to show that even for simple problems

the number of local maxima rises rapidly with the number of model states. In ad-

dition, we were able to perform theoretic analysis demonstrating that the number

of HMM local maxima is exponential in the number of states for certain common

data types.
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To address this problem, we proposed the use of the deterministic anneal-

ing expectation-maximization (EM) method for the HMM optimization prob-

lem. This general optimization approach breaks down the original optimization

problem into a series of sub-problems, each occurring at a successively cooler

computational temperature. The computational temperature alters the origi-

nal problem objective functions so that at the hottest temperature the objective

function is flat, while at the coldest temperature it is equivalent to the original

objective function. Gradual lowering of the temperature allows the solution to

track important features while ignoring noise and surface complexity present in

the original objective function. We showed that applying this method to HMMs

yielded significant improvement over the basic EM method, but that determin-

istic annealing EM had a tendency to find locally maximum solutions in which

there were redundant states.

In response to this difficulty, we developed several statistical priors designed to

discourage solutions with redundant states. These worked by creating barriers in

the objective function around such local maxima. In the modified EM algorithm,

these priors manifested themselves as regularization terms added to the so-called

Q-function maximized during the M-step. The effect of each regularization term

was controlled by a tunable weighting parameter. Upper bounds on the weighting

parameters guaranteeing concavity of the modified Q-function were calculated in

each case.

Tests of the regularization method showed that while it had only minor effect

used on its own, when combined with deterministic annealing EM its impact

was very significant. Performance of the combined method on both our real and

synthetic test data sets, as measured by empirical count of the number of locally

maximum solutions, was considerably improved over the standard EM method.
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Having demonstrated the success of the approach on our test data, we then

applied the method to three geophysics data sets currently used in scientific inves-

tigation of earthquake fault interactions and the earthquake cycle. These three

data sets were (1) surface displacement measurements collected by a network of

GPS sensors in Southern California, (2) a 40-year record of seismic activity in

Southern California, and (3) high-frequency surface velocity measurements col-

lected by a network of broadband seismic stations in Southern California. In each

case, we were able to show the success of the method in classifying observations

and identifying previously unknown physical phenomena related to earthquake

processes.
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