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ON OPTIMAL DEPTH THRESHOLD CIRCUITS FOR
MULTIPLICATION AND RELATED PROBLEMS

KAI-YEUNG SIU AND VWANI P. ROYCHOWDHURY$

Abstract. Let LTd denote the class of functions that can be computed by depth-d threshold
circuits with polynomial size and polynomially bounded integer weights. Using the results in [M.
Goldman, J. Hstad, and A. Razborov, in Proc. 7th Annual Conference on Structure in Complexity
Theory], [M. Goldman and M. Karpinski, Constructing depth d + 1 majority circuits that simulate

depth d threshold circuits, unpublished] we show that multiple sum is in LT2, and multiplication

and division are in LT3. Moreover, it follows from the lower-bound results in [A. Hajnal et al.,
IEEE Sympos. Foundations of Comput. Sci., 28 (1987), pp. 99-110], IT. Hofmeister and P. Pudlk,
Forschungbericht Nr. 477 Uni Dortmund, 1992] that these threshold circuits are optimal in circuit
depth. The authors also indicate that these techniques can be applied to construct polynomial-size
depth-3 threshold circuits for powering and depth-4 threshold circuits for multiple product.

Key words, threshold circuits, linear threshold functions, multiplication, division, arithmetic
functions

AMS subject classifications. 68Q15, 68Q05, 68Rxx

1. Introduction. In this paper, we consider the power of small-depth thresh-
old circuits in computing arithmetic functions such as multiple sum, multiplication,
division, and powering. Threshold circuits are unbounded fan-in Boolean circuits in
which each gate computes a linear threshold function. A linear threshold function
f(X) is a Boolean function such that

1
f(X) sgn(F(X)) 0

F(X) >_ o,
if F(X) < O,

where

n

F(X) wi xi + wo.
i=1

The real coefficients wi are commonly referred to as the weights of the threshold
function. It is well known that the weights can be chosen to be integers [11].

However, the magnitudes of the integers can be exponentially large in the number
of inputs. The size of a circuit is the number of gates. If the number of gates in a
threshold circuit is polynomially bounded, then so is the number of wires in the circuit,
and vice versa. Unless otherwise specified, we assume in the following discussions that
all the weights in the threshold circuits are integers (possibly exponential) and that
the sizes of the threshold circuits are polynomially bounded.
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OPTIMAL DEPTH THRESHOLD CIRCUITS 285

An important open problem in circuit complexity theory is to find an explicit
function that cannot be computed in constant-depth polynomial-size threshoId cir-
cuits. The first attempt toward solving this problem was made by Hajnal et al. [6].
They showed that the INNER PRODUCT MOD 2 function (x Ayl).. "(xn Aye)
can be computed in linear-size depth-3 threshold circuit but requires exponential-size
depth-2 threshold circuit to compute, when the weights are polynomially bounded in-
tegers. This result gives a separation of the class of depth-2 polynomiM-size threshold
circuits from the class of depth-3 polynomial-size threshold circuits, when the weights
are polynomially bounded.

Using the notation of [12], let us denote the class of depth-d polynomial-size
threshold circuits where the weights are polynomially bounded by LTd and the cor-
responding class where the weights are unrestricted by LTd. Then the e.xponent...al
lower bound result on INNER PRODUCT MOD 2 in [6] implies that LT2 LT3.
As another consequence of this lower bound result, we can show that multiplication
and division [9] of two n-bit integers also require exponentiM-size depth-2 threshold
circuits with polynomially bounded weights to compute. In [7] Hstad and Goldmann
proved an exponential lower bound on the size of depth-3 threshold circuits with the
restriction that the bottom fan-in of the circuit is small. However, no exponential
lower bound result on the size of depth-2 threshold circuits is known when there is no
restriction on the size of the weights.

It is implicit in [3] that a constant-depth threshold circuit with arbitrary weights
can be simulated by another constant-depth threshold circuit with polynomially
bounded weights at the expense of at most a polynomial increase in size. To study
the exact relationship between the depths of threshold circuits with arbitrary weights
and with polynomially bounded weights, Siu and Bruck [12] showed that any depth-d
threshold circuit can be simulated by a depth-(2d+ 1) threshold circuit with polynomi-
ally bounded weights (both have polynomial size); that is, LTd c LT2d+. The result
was substantially strengthened by Goldmann, Hstad, and Razborov [4]; they showed

that, in fact, LTd C LTd+. While the proof techniques in [4] are not constructive,
Goldmann and Karpinski [5] later gave an explicit construction of the circuits in [4].

Threshold circuits are powerful as a model of computation. In fact, many com-
mon arithmetic functions have been shown to be computable in small-depth threshold
circuits. It was first shown in [12] that multiple sum and multiplication can be com-

puted in LT3 and LT4, respectively. This result was also independently discovered
later by Hofmeister, Hohberg, and KShling [8] with much improvement on the circuit
size. More recently, it was shown in [13] that smMl-depth threshold circuits can be
constructed for division and related problems. In particular, division and powering
are in LT4 and multiple product (iterated multiplication) is in LT5. The question of
whether multiplication of two n-bit integers can be computed in LT3 had remained
open since the work of Hajnal et al. [6].

In this paper, we demonstrate that applications of the results in [4], [5] yield
a depth-3 threshold circuit of polynomially bounded weights for multiplication; i.e.,
multiplication is in LT3. It is clear from the result in [6] that such threshold circuit is
optimal in depth. Moreover, similar techniques can be applied to show that division
and powering can be computed in LT3 and multiple product can be computed in LT4.
The result in [9] also implied that our division circuit is optimal in depth.

The rest of the paper is outlined as follows. We first describe a depth-2 threshold
circuit for multiple sum. Using this result, a depth-3 threshold circuit for multipli-
cation follows easily. We then indicate how to apply the result for multiple sum to
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286 K.-Y. SIU AND V. P. ROYCHOWDHURY

obtain depth-3 threshold circuits for division and powering and depth-4 threshold
circuit for multiple product. Since the techniques for deriving the results on division
related problems are similar to those in [13], we only sketch the proof and indicate
how the results in [13] can be improved using the results in [4], [5]. In the final section,
we conclude with some open problems.

2. Main Results.
n--1DEFINITION 1. Given n n-bit integers, zi -j=o zi,J 23, 1,... ,n, zi E

{0, 1}, we define multiple sum to be the problem of computing the (n + log n)-bit ’sum
-in=l zi of the n integers.

The above problem is also referred to as iterated addition in the literature.
n--1DEFINITION 2. Gven two n-bt ntegers, x j=o x2 and n- 2Y y=oY

we define multiplication to be the problem of computing the (2n)-bit product of x and
y.

It is ey to see that, if multiple sum can be computed in LT2, then multiplication
can be computed in LT3. We first prove the result on multiple sum. Our result hinges
on the results in [4], [5]. The key observation is that multiple sum can be computed
as a sum of polynomially many linear threshold (LT1) functions (with exponemial
weights). Let us first state the results [4], [5].

LEMMA 2.1 (see [4], [5]). Let LTd denote the class of depth-d polynomial-size
threshold circuits where the weights at the output gate are polynomilly bounded inte-
gers (with no restriction on the weights of the other gates). Then LTd LTd for any
fixed integer d 1.

The following lemma is a generalization of a result in [10]. Informally, the result
says that, if a function is 1 when a weighted sum (possibly exponential) of its inputs
lies in one of polynomially many intervals, and is 0 otherwise, then the function can
be computed as a sum of polynomially many LT functions.

nLEMMA 2.2. Let S = wixi and f(X) be a function such that f 1 if
S [/i, ui] for 1,..., N and f 0 otherwise, where N is polynomially bounded in
n. Then f can be computed as a sum of polynomially many LT1 functions, and thus

LT2
Proof. For j 1,..., N, let

y sgn wizi lj
i=1

We claim that

and therefore

yu =sgn uj wixi
i--1

N

f(X) (yt + Yu N,
j--1

{N }f(X)=sgn (yg+y)-N-1
j-----1

Note the following: If, for j 1,..., N, n-=1 wxi [/, u] then y + y 1 for
all j. Thus, -v_l (yt + Yu)- N 0. On the other hand, if -i= wx e I/j, uj]
for some j {I-...,N}, then yg +y 2 and yt +yu, 1 for i j. Thus,
N-=(y, + y) N N + 1 N 1. [:]
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OPTIMAL DEPTH THRESHOLD CIRCUITS 287

Combining the above two lemmas yields a depth-2 threshold circuit for multiple
sum.

THEOREM 2.3. Multiple sum is in LT2.
n-1 2j i=l, n, thesum ’i=lziProof. Given n n-bit integers z -0=o z,j

n

can be represented as an (n +logn)-bit integer, V’n+lgn-1
-,=0 2i. Clearly, the kth

bit of , k- is the same as the kth bit of the sum of the first k-bits of the zi’s, i.e.,
the kth bit of -=’ j=ok- zi,j2J. Thus, to prove the theorem, it suffices to show that

the kth bit of n k-bit integers can be computed in LT2, for k 1,..., n + log n. We
first construct a depth-2 threshold circuit where the threshold gates in the first level
have exponential weights.

Let S i=l k-1 x-lognWk-1 2=0 2jz,y -,t=0 st be the sum of n k-bit integers.
Note that the kth bit of S, sk- is 1 if S E Iy,k [j2k-l,(j+ 1)2k-l- 1] for
j 1,3, 5,... ,2lg+l 1 and 0 otherwise. Since there are only polynomial_ly many
intervals Iy,k it follows from Lemma 2.2 the kth bit can be computed in LT2. Now
apply Lemma 2.1 for d 2; thus the kth bit can be computed in LT2.

It is also easy to see that multiple sum cannot be computed in LT1. Simply
observe that the first bit of the sum is the parity function, which does not belong to
LTI. Thus the above threshold circuit for multiple sum has minimum possible depth.

THEOREM 2.4. Multiplication is in LT3.
Proof. Let the two integers be x Xn_lXn_2...X0, y Yn--lYn--2... YO. The

first level of our circuit outputs the n (2n)-bit integers zi Z2n_lZ2n_2 Zo, for
i 0,...,n-- 1, where

0 (x0
n--i

This level requires O(n2) gates. It is easy to see that the product of x and y is simply
the sum of the z’s. By Theorem 2.3, the sum of the zi’s can be computed using
two more levels of polynomially many threshold gates (with polynomially bounded
weights). [:]

We can further apply the results in [4], [5] to construct small-depth threshold
circuits for division, powering, and multiple product. Let us give a formal definition
of these problems.

DEFINITION 3. Let Z be an n-bit integer >_ O. We define powering to be the n2-bit
representation of Zn.

DEFINITION 4. Given n n-bit integers zi, i 1,..., n, we define multiple product
to be the n2-bit representation of yIin__ zi.

The above problem is also called iterated product or iterated multiplication in the
literature.

Suppose that we want to compute the quotient of two integers. Some quotient
in binary representation might require infinitely many bits; however, a circuit can
only compute the most significant bits of the quotient. If a number has both finite
and infinite binary representation (for example, 0.1 0.0111...), we always express
the number in its finite binary representation. We are interested in computing the
truncated quotient, defined below.

DEFINITION 5. Let X and Y >_ 1 be two input n bit integers. Let X/Y
n--1=_ zi2 be the quotient of Z divided by Y. We define DIVk(X/Y) to be X/Y

D
ow

nl
oa

de
d 

09
/1

2/
20

 to
 1

49
.1

42
.2

6.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



288 K.-Y. SIU AND V. P. ROYCHOWDHURY

truncated to the (n + k)-bit number, i.e.,

n--1

DIVk(X/Y) E
i=-k

In particular, DIVo(X/Y) is IXJ, the greatest integer < X/Y.
Using the results in [2], [12], it was shown in [13] that powering and division can

be computed in LT4 and that multiple product can be computed in LTh. Combining
these results with the results in [4], [5], we can reduce the depths of these circuits
by one. We only indicate the key steps in the construction of the circuits in [13].
For other details of the proof, see [13]. Let us rephrase the results in [4], [5] as the
following lemma.

LEMMA 2.5 (see [4], [5]). Let f(X) e LT1. Then, for any k > O, there exist m

functions tl(X),... ,tm(Z) E LT1 such that, for all X,

1
m

f(X) -E tj (X)
j--1

where m and N are integers bounded by a polynomial in n.
By Lemma 2.2, each bit in the sum of multiple sum can be computed as a sum

of polynomially many LT1 functions. Combining this result with the above lemma
yields the following result.

LEMMA 2.6. Let.si be any of the outputs in multiple sum. Then, for any > O,
there exist j X LT1 such that

<_
j=l

where and 1 are integers bounded by a polynomial in n.
The following lemma, which was shown in [13], states that, if tl and t2 can be

closely approximated by polynomially many LTk functions, so is their product tl At2.
LEMMA 2.7. Suppose that, for i 1, 2 and for every c > O, there exist integers

mi, wit, and N that are bounded by a polynomial in n such that, for all inputs X,

1 mi

t,(x) (x)
j=l

O(n-C),

where each tit Lk. Then there exist integers (n, j, and 1 that are bounded by a
polynomial in n such that

t (x) t (x) O(n-C),

where each tj LTk.
To avoid cumbersome explanations in the following discussions, we say informally

that every LT1 function and each outpu.t bit in multiple sum can be closely approxi-
mated by a sum of polynomially many LT1 functions, in the sense of Lemmas 2.5 and
2.6.
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OPTIMAL DEPTH THRESHOLD CIRCUITS 289

THEOREM 2.8. Powering is in LT3.
Proof. Let X be an n-bit integer and Z Xn. Let p denote the ith prime

number and let r(k) denote the number of primes _< k. Let

(n-)

Pn H Pi
i--1

be the product of all primes < n2. Then we can show that Z < 2n < Pn, and thus
(Z mod P) Z.

Using the Chinese Remainder Theorem, we can compute Z with the following
steps:

1. For i 1, n2, compute in parallel the values r Z mod Pi;

2. 2- z_i--1 ri "m;

3. Z (Z mod RE) (Z mod P);
where, in step 2 above, the m are fixed integers (possibly exponentially_large), and
therefore step 2 is, in fact, multiple sum. Moreover, we can show that Z <_ n4. Pn,
and hence Z= (ZmodP,)- Z-k.Pn for some k, where0_< k_< n4. For each
k E {0,...,n4}, let

EQk(Z) sgn{2 k. Pn} + sgn{(k + 1)Pn 2 1} 1

{ 1 ifZ=(2modP)=2-k.Pn,
0 otherwise.

Let zjk be the jth bit of ,- k. Pn. Then the jth bit of Z is

/ (EQk(Z) A zjk).
Okn4

We can compute the values ri in step 1, above, as a sum of polynomially many
LT1 functions. By Lemmas 2.6 and 2.5, each zjk and each EQk(Z) can be closely
approximated by a sum of polynomially many LTI functions with variables ri. Thus
EQk(Z) and zjk can be closely approximated as a sum of the outputs from polynomi-
ally many depth-2 threshold circuits whose inputs are the variables X. By Lemma 2.7,
it follows that (EQk(Z) A zjk) can also be closely approximated as a sum of the out-
puts from polynomially many depth-2 threshold circuits. Hence, each of the outputs
VO<k<n4(EQk(Z)/k Zjk) can be computed in a depth-3 threshold circuit. D

Remark 1. In [13] each EQk(Z) and zjk is closely approximated as a sum of
outputs from polynomially many depth-3 threshold circuits (LT3). Lemmas 2.6 and
2.5 enable us to save one level of threshold.gtes in computing them.

THEOREM 2.9. Multiple product is in LT4.
nProof. Let Z I-[j= zj, where each zi is an n-bit integer. The proof is very

similar to the proof of Theorem 2.8. We can compute Z using the same three steps
as in Theorem 2.8. The only difference is that now each ri Z mod Pi is computed
as a sum of polynomially many depth-2 threshold circuits (LT2), one more level of
threshold gates than the circuit for powe..ring. D

THEOREM 2.10. DIVk(x/y) is in LT3.
Proof. Note that DIVk(x/y) 2-kDIVo(2kx/y); so it suffices to prove our claim

for the case where k 0. The resulting threshold circuits for the general case when
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290 K.-Y. SIU AND V. P. ROYCHOWDHURY

k is polynomial in n have the same depth and the size will increase by a polynomial
factor.

The underlying idea is to compute an overapproximation z to x/y such that
x/y <_ <_ x/y + 2-(n+l). Then we can show that [] [x/y].

Since x/y is equal to the product of x and y-l, it is enough to get an overapprox-
imation -1 of y-1 with error <_ 2-(2n+l) Then we can compute the approximation
q x-)-1 to x/y with an error <_ x2-(2n+l)

_
2-(n+l) with a small-depth threshold

circuit.
To construct an overapproximation of y-l, let j _> 1 be the integer such that

2j-1 _< y < 2j. Note that I1- y2-J

_
1/2, and we can express y-1 as a series

expansion

If we put

2n

--1 2--j -(1 y2--J)i,
i=0

then the difference

0

_
(y-l_-l)

_
2-j

i--(2n+l)

2-i < 2-(2n+l)

Since x < 2n, we have

0 <_ (xy-1-x-1) < 2-(n+l).

Suppose for the moment that we can find the integer j _> 1 such that 2y-1 _< y < 2Y.
Now we can rewrite

2n+1

x_1 1
2J(2n+2)

2J(2n+l-i) x(2j y)i.
i-0

7’2n+1 2J(2n+l (1/2J(2n+2)Let Zj z_,i=0 -i)x(2y y) Then x )Z, a shifting of the
bits in Zy.

Again, we can compute Zj via the Chinese Remainder Theorem as follows:
1. For 1,..., N, compute in parallel the values ri,y Zy mod pi;

N2. Z -= r, .m;
3. Zj Zj mod PN 2j mod PN

where N is a sufficiently large integer such that the product of the first N primes
yI.N,=I pi PN > Zy for all j 1,..., n. Moreover, we can show that y _< naPN for
some a > 0, and hence Zj (j mod PN) j --kPn for some k, where 0 <_ k <_ na.
For each k E {0, n}, let

EQk(Zj) sgn{j kPg} + sgn{(k + 1)PN j 1} 1

1 ifZj=(2jmodPN)=2y-kPg,
0 otherwise.
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OPTIMAL DEPTH THRESHOLD CIRCUITS 291

Let zj,k,2l- (1./2J(2n+2))(2j- kPN).
Zj k*By, then

If EQk.(Zj)= 1, i.e., (j mod PN)=

n--1

DIVo(x/y) zj,k.,2.
/=0

Thus the ith bit of DIVo(x/y) can be computed as

/ (EQk(Zi) A zy,,).
lkn

The above expression is based on the assumption that we can find the unique
integer j >_ 1 such that 2-1 <_ y < 2d. We can compute such integer j in parallel
without increasing the depth of the circuit. To see this, for each j E {1,..., n}, let

1
Ij sgn{y 2j-1 }

__
sgn{2j y 1) 1

0
if 2j-1

_
y < 2Y,

otherwise.

Then the ith bit of DIVo(x/y) is

(I A EQ(Zj) A zj,#).

Now apply the same argument as in Theorem 2.8; we can show that each (Iy A
EQk(Zj) A zj,k,i) can be closely approximated by a sum of outputsAfrom polynomially
many LT2 functions. Hence the final result can be computed in LT3. [:]

Remark 2. In [13] each (/j A EQk(Zj)A zi,k,i)is closely approximated by a

sum of outputs from polynomially many depth-3 threshold circuits (LT3). Here again
Lemmas 2.6 and 2.5 enable us to save one level of threshold gates in computing them.

3. Concluding remarks. We have demonstrated optimal-depth threshold cir-
cuits for multiplication, multiple sum, and division. We also indicated how the tech-
niques can be applied to obtain depth-3 threshold circuits for powering and depth-4
threshold circuit for multiple product. These results are improvements on the depths
of the circuits constructed in [13]. Moreover, the construction of these circuits can all
be made explicit using the results in [5].

There are a few open problems, below, related to the results in this paper:
1. What is the minimal size of a depth-3 threshold circuit .for multiplication?
2. Can INNER PRODUCT MOD 2n and multiplication be com.p.ted in LT2?

A negative answer to this question will provide the separation LT2 LT3.
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