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CHAPTER 1

Introduction

1.1 Physics and Information Theory

Physics is the study of matter and energy. This study of matter and energy is

almost always done by considering the states of objects or the environment. The

physical laws concern themselves with the dynamics of physical states. These

states are distinguishable by measurements to varying degrees. In the early part

of the last century, a new branch of physics called quantum mechanics was discov-

ered. This theory predicts startlingly different dynamics for some systems than

do previous theories. A celebrated result from this new theory is the Heisen-

berg uncertainty relation, which states that one cannot precisely measure both

the momentum and position of an object. The Heisenberg uncertainty relation

comes from the fact that, in this new theory of quantum mechanics, the state of a

physical object may be thought to be an eigenvector of an operator representing

a physical quantity. A result of quantum mechanics is that not all quantities

have compatible eigenvectors; hence, when a physical object has a well-defined

momentum state, it cannot also be in an eigenstate of position.

Information theory was introduced by Claude Shannon. There are two main

problems with which information theory concerns itself: channel capacity and

source coding. Both problems can be couched in language with which a physicist

would be very comfortable. A channel is a map from input states onto output
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states. A channel may be thought of as an interaction: a system is in an initial

state; it then undergoes an interaction, which puts it into a final state. The

capacity is a measure of correlation of the initial state with the final state, or

how much information the final state has about the initial state. The source

coding problem is also related to physics. A source is something that outputs

states with a given probability. One does not know which state will come out

at each time step, but one does know the probability distribution. The source

coding problem seeks to quantify how much information is required, on average,

to describe an output of the source. Though both of these problem statements

might seem familiar to physicists, it may still come as a surprise that the quantity

that plays a central role in answering both of these questions is also familiar:

entropy.

1.2 Entropy

1.2.1 Boltzmann

Entropy is familiar to physicists as a quantity of fundamental importance to the

theory of statistical mechanics and thermodynamics. One of the most celebrated

physical laws is the Second Law of Thermodynamics, which states that entropy

of a system can never decrease. Boltzmann first gave a functional form of entropy

as:

Definition 1.2.1 Boltzmann entropy:

S = kb ln Ω

Where Ω is the statistical weight, or the number of microstates consistent with the

observed properties of the macrostate. Further, Boltzmann added two postulates:

2



each state consistent with the observed properties of the system is equally likely,

and in equilibrium Ω is maximized.

Definition 1.2.2 The inverse of temperature is the partial derivative of entropy

with respect to energy:

1

T
≡ ∂S

∂E

Instead of definition 1.2.1 we can use the following:

Definition 1.2.3 Generalized Boltzmann entropy of a system with probability of

being in state r is pr:

S = −kb

∑

r

pr ln pr

Since S can never decrease, but may increase, the maximum of S which is consis-

tent with observed properties is an equilibrium. So, the probability distribution

on the state of the system is that which maximizes S under any set of constraints.

As an example, we begin by considering a system in which a state r has energy

Er. Normalization and energy constraints are:
∑

r pr = 1 and
∑

r prEr = E

respectively. Using usual techniques to maximize given constraints, we have:

J = −kb

∑

r

pr ln pr + λ0

∑

r

pr + λ1

∑

r

prEr

Finding the maximum for each pr, we differentiate and set equal to zero:

∂J

∂pr
= −kb(ln pr + 1) + λ0 + λ1Er = 0

Which gives:

pr = e
λ0−1

kb eλ1 Er/kb (1.1)

3



If we define1 Z ≡
∑

r eλ1 Er/kb , then we see that pr = 1
Z eλ1 Er/kb . Note that

∂Z
∂λ1

= EZ/kb. Putting what we know into the equation for entropy, we find that:

S = kb ln Z − λ1E (1.2)

And applying definition 1.2.2, we can compute λ1:

∂S

∂E
=

kb

Z

∂Z

∂E
− λ1 − E

∂λ1

∂E

=
kb

Z
(
∂Z

∂E
− EZ

kb

∂λ1

∂E
) − λ1

=
kb

Z
(
∂Z

∂E
− ∂Z

∂λ1

∂λ1

∂E
) − λ1

= −λ1

Thus we find that λ1 = −1
T . Pulling it together: pr = 1

Z e
− Er

kbT .

All of the above is easily generalized to the case of continuous state variables

(an integral takes the place of the sum), or the case of more constraints (such

as a volume constraint). These sorts of approaches constitute the discipline of

classical equilibrium statistical mechanics.

It might be noted that the generalized definition of entropy given in definition

1.2.3 only has to do with probability theory. There are no physical quantities

(other than the normalization constant), only probabilities. Physics only entered

the picture to give a constraint on the probabilities (
∑

r prEr = E) and the

definition of temperature (equation 1.2.2). We shall see that entropy will play a

large role in results in information theory.

1.2.2 Shannon

Claude Shannon gave a definition of entropy2 as:

1this definition of Z is called the partition function
2We will denote the Shannon Entropy as Hs in order to avoid confusion with a Hamiltonian

H .
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Definition 1.2.4 Shannon entropy:

Hs(X) = −
∑

xi

p(X = xi) log2 p(X = xi)

Note that this is the same as definition 1.2.1 up to a normalization. While the

entropy was originally given as a function which yields a consistent theory of

statistical mechanics and thermodynamics, it may be derived axiomatically as

the function with the following properties[?]:

• Normalization: Hs(
1
2 ,

1
2) = 1

• Continuity: Hs(p, 1 − p) is a continuous function of p

• Grouping: Hs(p0, p1, . . . , pn−1) = Hs(p0 + p1, p2, . . . , pn−1)

+(p0 + p1)Hs(
p0

p0+p1
, p1

p0+p1
)

Only the function given in definition 1.2.4 satisfies all these criteria. The first

two axioms should be clear. The grouping property states that the amount of

disorder should partition in a somewhat straightforward way: the disorder of the

entire system should be equal to the disorder of the system when the first two

states are considered as one, combined with the probability of being in the first

two states times their disorder.

In addition to entropy, Shannon defined a measure of correlation called mutual

information.

Definition 1.2.5 The mutual information between two random variables X, Y

is:

I(X; Y ) ≡ Hs(X) − Hs(X|Y ) = Hs(Y ) − Hs(Y |X)

5



where Hs(X|Y ) ≡
∑

xi
p(X = xi)Hs(Y |X = xi). Armed with these definitions,

Shannon was able to show that the number of bits required to describe a source

which outputs state xi with probability p(X = xi) is Hs(X). A channel is now

a map which maps input states in X onto output states in Y with a transition

matrix: p(Y = yj|X = xi). The channel capacity, which is the number of bits

that the output has in common with the input, is: I(X; Y ) = Hs(Y )−Hs(Y |X).

In the following section, we will see how these information theoretic concepts

due to Shannon may be applied to discover physics of information.

1.2.3 Boltzmann Meets Shannon

Physicists have long understood entropy as a measure of disorder, but quantified

it in terms of its connections to energy and temperature. Shannon proved that en-

tropy is indeed a precise quantification of disorder, as the number of bits necessary

to describe a system. Landauer observed that physics has something to say about

erasing information[?]. If a bit is erased, the information required to describe the

system is decreased by exactly 1 bit. Using the Clausius inequality, Landauer

derived the thermodynamic cost of erasing information. Since S = kb ln 2Hs, and

∆Hs = −1, we have:

∆S − Q

T
≥ 0

−kb ln 2 − Q

T
≥ 0

−Q ≥ kbT ln 2

Hence the laws of thermodynamics tell us that erasing 1 bit of energy requires

removing kbT ln 2 of heat from the system.

6



1.3 Quantum Mechanics

So far we have described the relationship between statistical mechanics and in-

formation theory saying nothing of quantum mechanics. By now we can see how

applicable information theory is to physics questions; one might wonder how the

picture changes when we allow states to be quantum states. Schrodinger gave us

the formula for the evolution of quantum states:

i!∂ψ

∂t
= Hψ (1.3)

where H is the Hamiltonian of the system and ψ is any vector in the Hilbert

space over which the Hamiltonian acts. In the so-called Heisenberg picture, we

consider not the evolution of the state but the evolution of an operator:

|ψ(t)⟩ = U(t)|ψ(0)⟩

which gives rise to a new dynamical equation:

∂U

∂t
=

−i

! HU

U(0) = I

Using this new equation, one sees that ∂(U†U)
∂t = 0. Therefore U(t)†U(t) = I,

which is the definition of unitarity. Hence all evolution in quantum mechanics is

unitary.

1.3.1 Quantum Statistical Mechanics

In order to consider how statistical mechanics changes in the quantum picture,

we must define what we mean by a distribution of quantum states. According to

the axioms of quantum mechanics, measurement outcomes are random. However,

for any vector in a Hilbert space, there is always a basis where the probability

7



distribution is a delta function. A state which cannot be represented as a vector

in a Hilbert space |ψ⟩ is called a mixed state and is represented by a density

matrix:

ρ =
∑

i

pi|ψi⟩⟨ψi|

The entropy of such states is given by:

Definition 1.3.1 Von Neumann entropy:

S(ρ) = −Tr(ρ log2 ρ)

One may rewrite the Schrodinger equation for density matrices:

i!∂ρ

∂t
= [H, ρ] (1.4)

It is interesting to note that the Schrodinger equation conserves energy for con-

stant Hamiltonians:

E = Tr(ρH)

∂E

∂t
= Tr(

∂ρ

∂t
H) = Tr(

−i

! [H, ρ]H)

=
−i

! Tr(HρH − ρH2)

=
−i

! (Tr(HρH) − Tr(ρH2))

=
−i

! (Tr(ρH2) − Tr(ρH2)) = 0

If we consider a quantum state in equilibrium, then ∂ρ
∂t = 0. Hence [H, ρ] = 0,

which means that ρ has the same eigenbasis as H . If the eigenbasis of H is

{|φ0⟩, |φ1⟩, . . . , |φn−1⟩}, with H|φi⟩ = Ei|φi⟩ where Ei is the energy of the ith

state, then we may write ρ as:

ρ =
∑

i

pi|φi⟩⟨φi|

8



Since ρ is diagonal, the Von Neumann entropy reduces to the Shannon entropy:

S(ρ) = Hs(p0, p1, . . . , pn−1)

The energy is Tr(ρH) =
∑

i piEi. Aside from using a Hilbert space to represent

the states of the system, this is the same as the Boltzmann entropy we consid-

ered in subsection 1.2.1. Using the same techniques of maximization under a

constraint, the density matrix is obtained:

ρ =
e
− H

kbT

Tr(e
− H

kbT )

1.3.2 Deriving the Second Law of Thermodynamics

After seeing some consequences of evolution via the Schrodinger equation, such as

the fact that energy is explicitly conserved, we might wonder what other results

we can prove. The first thing to notice is that unitary evolution of a system does

not its change entropy:

S(UρU †) = −Tr(UρU † log2(UρU †))

= −Tr(UρU †U(log2 ρ)U †)

= −Tr(Uρ(log2 ρ)U †)

= −Tr(ρ log2 ρ) = S(ρ)

Hence a closed system evolving according to the Schrodinger equation will keep

the entropy of the state as a constant of the motion. How then, can entropy

increase? When a system interacts with the environment, the Schrodinger equa-

tion will not apply, since this is not a Hamiltonian interaction unless we consider

the system and the environment together.

In probability theory, there is the notion of marginalizing a variable of a prob-

ability distribution. For instance, if one has a probability distribution p(x, y) and
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one is only concerned with the probabilities over x, the marginalized probabil-

ity distribution is easily obtained: p(x) =
∑

y p(x, y). Marginalization may also

be done for density matrices, and it is called “tracing out” a subsystem. If we

consider a system which has a basis |x, y⟩ = |x⟩|y⟩, any density matrix may be

written as:

ρ =
∑

x,x′,y,y′

αx,y,x′,y′|x, y⟩⟨x′, y′|

=
∑

x,y

αx,y,x′,y′ |x⟩⟨x′|⊗ |y⟩⟨y′|

Where we have used ⊗ to represent the tensor product. We can marginalize over

the |y⟩ subsystem by “tracing out” y:

ρx = Try(ρ) =
∑

y

⟨y|
(
∑

x,x′,y′′,y′

αx,y′′,x′,y′|x⟩⟨x′|⊗ |y′′⟩⟨y′|
)

|y⟩

=
∑

y

∑

x,x′,y′′,y′

αx,y′′,x′,y′ |x⟩⟨x′|⟨y||y⟩⟨y′||y⟩

=
∑

y

∑

x,x′,y′′,y′

αx,y′′,x′,y′ |x⟩⟨x′|δy,y′′δy,y′

=
∑

x,x′

∑

y

αx,y,x′,y|x⟩⟨x′|

=
∑

x,x′

βx,x′|x⟩⟨x′|

Where βx,x′ =
∑

y αx,y,x′,y.

We need one more definition notion to prove the second law of thermodynam-

ics:

Definition 1.3.2 Relative Von Neumann entropy:

S(ρ|σ) ≡ tr(ρ log2 ρ) − tr(ρ log2 σ)

Theorem 1.3.1 Relative Von Neumann entropy is always positive:

S(ρ|σ) ≥ 0

10



Proof.See [?]. Using this definition, we can see that

S(ρAB|ρA ⊗ ρB) = −S(ρAB) − tr(ρAB log2(ρA ⊗ ρB))

= −S(ρAB) − tr (ρAB(log2((ρA ⊗ 1B)(1A ⊗ ρB))))

= −S(ρAB) + S(ρA) + S(ρB)

Since S(ρAB|ρA ⊗ ρB) ≥ 0, then we see that:

S(ρA) + S(ρB) ≥ S(ρAB)

Putting this all together we can see that the second law of thermodynamics is a

result of the functional form of entropy.

Suppose that we have an environment and a system. Initially these two are

independent: ρSE = ρS ⊗ ρE . These two systems undergo a Hamiltonian inter-

action to become ρ′
SE. As we saw in the beginning of this chapter, Hamiltonian

interactions produce unitary evolution. We also know that unitary evolution does

not change entropy. Putting this all together:

S(ρ′
S) + S(ρ′

E) ≥ S(ρ′
SE)

= S(UρSEU †)

= S(ρSE)

= S(ρS) + S(ρE)

Defining ∆Si ≡ S(ρ′
i) − S(ρi), the above implies:

∆SS + ∆SE ≥ 0

As such, the entropy of systems (when considered independently) grows in time.
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1.3.3 Quantum Information Theory

The two main problems of classical information theory, namely channel capacity

and source coding, have also been considered in the quantum case. One of the

earliest results answers the question of how much classical information is carried

by quantum systems. Since there are an uncountably infinite number of bases

of any Hilbert space, and uncountably infinite elements in any Hilbert space,

one might wonder if quantum states might be able to hold more information

than classical states. The answer, unfortunately, is no[?]. In fact, the amount

of information transmitted is always less than the log of the dimension of the

system, just as in classical information theory. More precisely, what Holevo

showed is that if a source A outputs quantum state ρi with probability pi, then

the maximum mutual information between i and any measurement is bounded

by χ, which Holevo defined:

Definition 1.3.3 Holevo χ:

χ = S(ρ) −
∑

i

piS(ρi)

which closely mirrors the classical case (see definition 1.2.5). What if the infor-

mation is quantum, and not classical?

One can ask the following question: for a given quantum source, how many

quantum bits, on average, is required to describe the output? This problem has

been solved in very much the same way as Shannon solved it[?]. The answer is

very much the same: the number of qubits required is the entropy of the source,

S(ρ). While the question of source coding has been solved for quantum sys-

tems, the problem of channel coding for general quantum channels has not been

solved. To prove the capacity result, Shannon considered correlated inputs over

several channel usages. In the quantum case, in addition to correlated quantum
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inputs, one must also consider entangled inputs. The solution to the capacity of

a quantum channel is still an open problem.

1.4 Secret Communications

Much of Shannon’s work was the result of studies done during World War II, in

which secret communications played a large role. Shannon sought to formalize

many aspects of communication mathematically. If M is the random variable

for a message, K is the random variable for a key, and C is the random variable

for the output of the encryption process, or cipher-text, then we may define

informationally secure cryptography in the following way[?]:

I(M ; C) = H(C) − H(C|M) = 0 . (1.5)

The above relationship implies p(c|m) = p(c), i.e., that the cipher-text, c, is

independent of the message, m. Since one must be able to recover the message

from the cipher-text given the key, one must also satisfy I(M ; C|K) = H(M).

Hence, the secrecy condition combined with the recoverability condition imply

that H(K) ≥ H(M) and H(C) ≥ H(M) for informationally secure cryptography.

Of course, we see that one cannot ”reuse” keys and keep security; that would mean

using the same amount of key entropy on a larger message, and we have already

shown that the size of the key is lower-bounded by the size of the message.

An example of informationally secure cryptography is the one time pad[?].

The message m is compressed to its entropy, and then a full-entropy random

string of length H(M) is chosen and called k. Then, the cipher-text is c = m ⊕ k.

Given c, one knows nothing of m, but given c and k, one has m exactly.

So, we have a proof that to get perfectly secure communications, one must first

share a secret key as long as the message. If sharing secret keys were easy, why not
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simply secretly share the message? Of course, sharing keys does have advantages:

for instance one may share secret keys in advance and subsequently use them to

send secure communications when sharing keys is not possible. However, these

sorts of perfectly secure systems are sufficiently unwieldy to prevent any sort of

common usage.

If there was a way to know whether an eavesdropper had seen the key or not,

one could tell whether or not it might be safe to use it. Alas, classical information

theory offers no tools which makes this possible. If we apply quantum mechanics,

we will see that we can accomplish this task.

1.5 Secrecy with Quantum States

Bennett and Brassard proposed a method to distribute secret key bits using

polarization states of photons[?]. Their idea was simple: Alice sends polarized

photons to Bob, either up, down, left or right. Bob measures randomly in one

of two polarization bases: up-down or left-right. After Alice sends the photons

to Bob, she announces which basis for each photon, but not which values she

sent. They keep the photons where Bob’s measurement basis coincided with

Alice’s transmission basis. The Heisenberg uncertainly principle says that the

photon is either in a eigenstate of up-down or left-right, but not both3. So if

an eavesdropper attempts to listen, she will presumably cause some errors, since

she will project the state into eigenstates of the “wrong” basis about half the

time. By testing a few of the photons, Alice and Bob should be able to detect an

eavesdropper. If there is no eavesdropper, they use their shared secret bits as a

key as described before. This scheme has become known as the BB84 protocol.

3because the operators for these observables do not commute
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As simple as it sounds, it was more than 10 years before full proofs of security

for the BB84 protocol were found[?, ?]. In chapter 2, we will develop powerful

tools for deriving security results and show the fundamental information vs. dis-

turbance bound which is at work in the BB84 protocol. In chapter 3, we will

prove a security result in the presence of noise. As we cannot know if noise is

the result of the environment or an eavesdropper, steps must be taken to insure

security. In chapter 4, we will see how the picture changes if one wants to en-

crypt not classical information, but quantum information. In chapter 5, we will

see that there is a relationship between operators used to encrypt quantum states

and the states used in quantum key distribution schemes. In chapter 6, we will

describe a new quantum protocol and prove that it is secure. This protocol will

allow any number of users to efficiently and securely make anonymous classical

announcements. In chapter 7, we will see a prescription for an experimental

implementation of the quantum protocol for an anonymous channel.
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CHAPTER 2

Tools for Quantum Information Security Results

In this chapter, we will get into some of the fundamental results in quantum

information security. Most of these results may be viewed as a sort of uncertainty

principle for information. We can sum up the basic property as follows: gaining

information in one basis necessarily causes errors in a conjugate basis.

We will also derive some new distinguishability measures. These are bounds

on the amount of classical information that can be obtained from any measure-

ment of a source of quantum states. We will extend some previous work[?] on

such bounds which turns out be useful for quantum security results. These results

are powerful because they only depend on the source and not on any measure-

ment done. Later, we will apply these bounds on distinguishability to relate the

amount of information eavesdroppers can obtain to the disturbance they cause

in the quantum state.

First, we will generalize a main result in [?] to work with the case where the

outcomes are not equally likely; then we will consider the case where the number

of outcomes is unlimited. The result allows us to derive very general information

vs. disturbance results.
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2.1 Bound on Mutual Information for 1-bit Sources

Suppose there is a classical source S which sends one of two signals; zero or one.

Also suppose that ps=1 ≤ ps=0. Following [?], we first come up with a linear

bound on H(p):

Lemma 2.1.1 For any p′ ≤ 1/2, H(p) ≥ H(p′) − H(p′)
p′ |p − p′|

Proof.Consider two regions, p ≤ p′ and p > p′. H(p) is concave, which means

that H(αx + (1 − α)y) ≥ αH(x) + (1 − α)H(y). Applying this with x = p′,

α = p/p′ and y = 0, we obtain: H(p) ≥ H(p′)
p′ p, which is exactly what we need for

p ≤ p′. In the region p > p′ we want to show that H(p) ≥ H(p′)(2 − p
p′ ). Again

using the concavity, set y = p′, x = 1 and α = p−p′

1−p′ We see then that

H(p) ≥ 1 − p′ − p + p′

1 − p′
H(p′) =

1 − p

1 − p′
H(p′)

Since p′ ≤ 1/2, this implies that 1
1−p′ ≤ 2 ≤ 1

p′ .

H(p) ≥ 1 − p

1 − p′
H(p′)

≥ H(p′)(2 − p

1 − p′
)

≥ H(p′)(2 − p

p′
)

Lemma 2.1.2 The mutual information between the random variable E and the

random bit S (with p(s = 0) ≥ p(s = 1)) is bounded:

I(E; S) ≤ H(S)p(s = 0)
∑

e

|p(e|s = 1) − p(e|s = 0)|
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Proof.Using lemma 2.1.1 as a bound on H(S|E) with p′ = p(s = 1), we can

obtain the bound on mutual information:

I(E; S) = H(S) − H(S|E)

= H(S) −
∑

e

peH(S|E = e)

≤ H(S) −
∑

e

pe(H(p(s = 1)) − H(S)

p(s = 1)
|p(s = 1|e) − p(s = 1)|)

= H(S)
∑

e

|p(e|s = 1) − p(e)|

= H(S)
∑

e

|p(e|s = 1) − (p(s = 0)p(e|s = 0) + p(s = 1)p(e|s = 1))|

= H(S)p(s = 0)
∑

e

|p(e|s = 1) − p(e|s = 0)|

Lemma 2.1.3 If a source S outputs quantum states ρ0 and ρ1 with probabilities

p0 and p1 with p0 ≥ p1, then mutual information between this source and the

output of any measuring device E is bounded: I(E; S) ≤ H(S)p(s = 0)Tr|ρ0−ρ1|

Proof.The source sends two states, ρ0 and ρ1. Eve does some POVM[?] on them.

The probability that Eve gets outcome x for her measurement given an input s

is: p(e|s) = Tr(Eeρs). This gives:

I(E; S) ≤ H(S)p(s = 0)
∑

e

|Tr(Ee(ρ0 − ρ1))|
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Since ρ0 − ρ1 is Hermitian, we can diagonalize it as
∑

i λi|ψi⟩⟨ψi|. Taking this

and applying the facts that Ee are positive semi-definite and
∑

e Ee = I, we get:

I(E; S) ≤ H(S)p(s = 0)
∑

e

|Tr(Ee(ρ0 − ρ1))|

= H(S)p(s = 0)
∑

e

|Tr(Ee(
∑

i

λi|ψi⟩⟨ψi|))|

= H(S)p(s = 0)
∑

e

|
∑

i

λi⟨ψi|Ee|ψi⟩|

≤ H(S)p(s = 0)
∑

e

∑

i

|λi|⟨ψi|Ee|ψi⟩

= H(S)p(s = 0)
∑

i

|λi|⟨ψi|
∑

e

Ee|ψi⟩

= H(S)p(s = 0)
∑

i

|λi|

= H(S)p(s = 0)Tr|ρ0 − ρ1|

Corollary 2.1.1 If a source S outputs quantum states ρ0 and ρ1, then mutual

information between this source and the output of any measuring device E is

bounded: I(E; S) ≤ H(S)Tr|ρ0 − ρ1|

Proof.Consider two cases, the first where p0 ≥ p1 and the second where p1 > p0. If

p0 ≥ p1, then using lemma 2.1.3 we have that I(E; S) ≤ H(S)p(s = 0)Tr|ρ0−ρ1|.

Since p(s = 0) ≤ 1, we get the result. If p1 > p0 then relabel the ρ1 as ρ0 and

vice versa. Hence in the original labeling, lemma 2.1.3 becomes

I(E; S) ≤ H(S)p(s = 1)Tr|ρ1 − ρ0|

, and since p(s = 0) ≤ 1 we get the result.

19



2.2 Bound On Information For Any Source

In lemma 2.1.3, we derived a bound for the amount of mutual information about

a 1 bit function that can be obtained by an arbitrary measurement based on the

trace norm of the density matrices. In this section, we extend our results to a

source of any number of outputs. As we will see later in the chapter, this allows us

to derive the fundamental information vs. disturbance results that are at work in

quantum security protocols. Additionally, this result gives an important insight

into the robustness of the trace norm as a metric bound for information.

This metric will be applied later in order to make a point about the great

robustness of quantum security protocols.

Lemma 2.2.1 For any random variable X ′ with each probability pi
′ ≤ 1/2:

H(X) ≥ H(X ′) −
∑

i

log(
1

pi
′ )|pi − pi

′|

Proof.H(X) = −
∑

i pi log pi, so if we define f(pi) ≡ −pi log pi, we see that

H(X) =
∑

i f(pi). See that f is concave and has a maximum at 1/2 and is zero

at pi = 0, 1; thus, we can use the same type of lower bound as lemma 2.1.1:

f(pi) ≥ f(pi
′) − f(pi

′)

pi
′ |pi − pi

′|

Plugging this into the definition of entropy:

H(X) =
∑

i

f(pi)

≥
∑

i

(f(pi
′) − f(pi

′)

pi
′ |pi − pi

′|)

= H(X ′) −
∑

i

log(
1

pi
′ )|pi − pi

′|
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Lemma 2.2.2 For any source S that outputs s with probability ps such that ps ≤

1/2, the mutual information is bounded:

I(S; E) ≤
∑

s

ps log(
1

ps
)
∑

e

|p(e|s) − p(e)|

Proof.Make use of lemma 2.2.1:

I(S; E) = H(S) − H(S|E)

= H(S) −
∑

e

peH(S|E = e)

≤ H(S) −
∑

e

pe

(

H(S) −
∑

s

log(
1

ps
)|p(s|e) − ps|

)

=
∑

e

pe

∑

s

log(
1

ps
)|p(s|e) − ps|

=
∑

e

∑

s

ps log(
1

ps
)|p(e)p(s|e)

ps
− p(e)|

=
∑

e

∑

s

ps log(
1

ps
)|p(e|s) − p(e)|

Lemma 2.2.3 If a source S outputs quantum states ρi with probabilities pi with

pi ≤ 1/2, then mutual information between this source and the output of any

measuring device E is bounded:

I(S; E) ≤
∑

s

ps log(
1

ps
)Tr|ρs −

∑

s

psρs|

Proof.Define the notation ρ =
∑

s psρs. Starting from lemma 2.2.2, we use the

definition of a POVM to replace p(e|s) with Tr(Eeρs):

I(S; E) ≤
∑

e

∑

s

ps log(
1

ps
)|p(e|s) − p(e)|

=
∑

e

∑

s

ps log(
1

ps
)|Tr(Eeρs) − Tr(Eeρ)|

=
∑

e

∑

s

ps log(
1

ps
)|Tr(Ee(ρs − ρ))|
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Using the same facts about POVMs from the previous sections, one can show

that

∑

e

|Tr(Ee(ρs − ρ))| ≤ Tr|ρs − ρ|

Hence, we have:

I(S; E) ≤
∑

s

ps log(
1

ps
)Tr|ρs − ρ|

Corollary 2.2.1 If a source S outputs one of n quantum states ρi with probability

1/n, then mutual information between this source and the output of any measuring

device E is bounded: I(S; E) ≤ log n
∑

s
1
n |ρs − ρ|.

Proof.For all n ≥ 2, then 1/n ≤ 1/2, hence lemma 2.2.3 applies:

I(S; E) ≤
∑

s

ps log(
1

ps
)Tr|ρs − ρ|

= log n
∑

s

1

n
Tr|ρs − ρ|

2.3 Bounding the Trace Norm

As we have seen in the previous section, the trace norm distance between quantum

states is a powerful tool for bounding mutual information. Now we look at some

bounds on trace norm distances.

Lemma 2.3.1 The trace norm distance between two pure states is:

||ψ⟩⟨ψ|− |φ⟩⟨φ|| = 2
√

1 − |⟨ψ|φ⟩|2
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Proof.Define ⟨ψ|φ⟩ = α. Defining a new orthonormal basis we can write:

|e0⟩ ≡ |ψ⟩

|e1⟩ ≡ 1√
1 − |α|2

(|φ⟩ − α|ψ⟩)

Inverting these equations we have:

|ψ⟩ = |e0⟩

|φ⟩ = α|e0⟩ +
√

1 − |α|2|e1⟩

Using this new basis, we find that:

||ψ⟩⟨ψ|− |φ⟩⟨φ|| = |(1 − |α|2)|e0⟩⟨e0|− (1 − |α|2)|e1⟩⟨e1|

−
√

1 − |α|2(α∗|e1⟩⟨e0| + α|e0⟩⟨e1|)|

This is just a 2 × 2 matrix and we can compute the trace norm by taking the

absolute value of the eigenvalues, which are:

λ =
+
−
√

1 − |α|2

Lemma 2.3.2 The trace norm distance between any state and any pure state is

bounded:

|ρ − |ψ⟩⟨ψ|| ≤ 2
√

1 − ⟨ψ|ρ|ψ⟩
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Proof.Let ρ =
∑

i pi|φi⟩⟨φi| and apply
∑

i pixi ≤
√∑

i pixi
2:

|ρ − |ψ⟩⟨ψ|| = |
∑

i

pi|φi⟩⟨φi|− |ψ⟩⟨ψ||

≤
∑

i

pi||φi⟩⟨φi|− |ψ⟩⟨ψ||

=
∑

i

pi

√
1 − |⟨ψ|φi⟩|2

≤
√∑

i

pi(1 − |⟨ψ|φi⟩|2)

= 2
√

1 − ⟨ψ|ρ|ψ⟩

Definition 2.3.1 Purification of ρ: any pure state |ψ⟩ in H1 ⊗ H2 such that

Tr2(|ψ⟩⟨ψ|) = ρ

Lemma 2.3.3 The trace norm distance is reduced by partial trace:

|ρ′ − σ′| ≤ |ρ − σ|

Where ρ and σ are density matrices over states in H1 ⊗H2 and the partial trace

is over one of the subsystems: ρ′ = Tr2(ρ) and σ′ = Tr2(σ).

Proof.See [?].

2.4 Security of Quantum Key Distribution

We now have the tools necessary in order to derive an information theoretic

analogy to the Heisenberg uncertainty principle. This result is the basis for

quantum security results that we will examine in chapters 3 and 6.
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Figure 2.1: Most general attack by an eavesdropper

Quantum key distribution is related to the problems we considered in the

previous section. Figure 2.1 gives a general attack that Eve might perform.

From her perspective, she has access to a source (the system she has used to

interact with the states sent by Alice) and she can make any measurement to

get information about what was sent. The intuition about quantum mechanics is

that measurements will disturb the system. We will make this a precise statement

about information and disturbance.

2.4.1 Security of Quantum Keys

Theorem 2.4.1 If Alice sends n-qubit states to Bob, each with equal probability,

the Information Eve can get about the state sent is bounded by the square root of

the probability that the Eve would have caused errors in the Fourier transformed

basis:

I(A; E) ≤ 4n
√

Pē

Proof.We will use lemmas 2.3.3 and 2.3.2 and corollary 2.2.1. Starting from

corollary 2.2.1 we see that: I(A; E) ≤ n
∑

i
1
2n |ρi − ρ|. Our approach will be to

bound this by introducing a purification1 for ρi (the state that Eve holds when

Alice sends i). Using the purification and lemma 2.3.3 we can bound the original

trace norm distance.

To attack the state sent to Bob, Eve attaches a probe in a fixed state (say

the |0⟩ state) and applies a unitary operator. She then passes Bob his part, and

1see definition 2.3.1
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does some generalized measurement on what she still holds. We can characterize

this formally:

|0⟩E|i⟩A
U→
∑

j

|Ei,j⟩|j⟩

We represent the Fourier transformed states as:

|̄i⟩ ≡ 1√
2n

∑

j

(−1)i·j|j⟩

Applying this to Eve’s attack, we obtain:

|0⟩E |̄i⟩A
U→
∑

j

|Ēi,j⟩|j̄⟩

where |Ēi,j⟩ ≡ 1
2n

∑
i′,j′(−1)i·i(−1)j·j′|Ei,j⟩.

From the axioms of quantum mechanics, we know that if Alice sends |i⟩ the

probability that Bob will measure |j⟩ is P (j|i) = ⟨Ei,j|Ei,j⟩. Similarly, if Alice

sends |̄i⟩ Bob will measure |j̄⟩ with probability P̄ (j|i) = ⟨Ēi,j|Ēi,j⟩.

We are now prepared to compute the probability that there are no errors in

Fourier-transformed basis:

P (e) ≡
∑

i

p(i)P̄ (j = i ⊕ e|i)

=
1

2n

∑

i

⟨Ēi,j|Ēi,j⟩

=
1

23n

∑

i,i′,i′′,j′,j′′

(−1)i·(i′⊕ i′′⊕ j′⊕ j′′)(−1)e·(j′⊕ j′′)⟨Ei′,j′|Ei′′,j′′⟩

=
1

22n

∑

i′,i′′,j′,j′′

(
∑

i

1

2n
(−1)i·(i′⊕ i′′⊕ j′⊕ j′′))(−1)e·(j′⊕ j′′)⟨Ei′,j′|Ei′′,j′′⟩

=
1

22n

∑

i′,i′′,j′,j′′

δi′⊕ j′,i′′⊕ j′′(−1)e·(j′⊕ j′′)⟨Ei′,j′|Ei′′,j′′⟩

For notational ease, we define a new variable k = i′ ⊕ j′; due to the delta function,

all the terms that do not also have k = i′′ ⊕ j′′ are zero. We restrict our case to
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the zero error probability:

P (0) =
1

22n

∑

i′,i′′,j′,j′′

δi′⊕ j′,i′′⊕ j′′(−1)0·(j′⊕ j′′)⟨Ei′,j′|Ei′′,j′′⟩

P (0) =
1

22n

∑

i′,i′′,k

⟨Ei′,i′⊕ k|Ei′′,i′′⊕ k⟩

When Eve’s states are considered without Bob, her state will look like ρi =
∑

j |Ei,j⟩⟨Ei,j|. Now we will define a purification for Eve’s states that will allow

us to compute the trace norm easily. Using the purification from [?], we assume

that Eve holds |φi⟩ ≡
∑

j |Ei,j⟩1|i ⊕ j⟩2, which is a purification of her state ρi. We

also define the Fourier transform of these states: |φ̄j⟩ ≡ 1√
2n

∑
i(−1)j·i|φi⟩. The

Fourier transform is unitary, so see that |φi⟩ = 1√
2n

∑
j(−1)j·i|φ̄j⟩. It should be

noted that our purification |φi⟩ for Eve’s states is not orthonormal or normalized.

In fact, this is a property of which we will make use in order to get a bound. We

now calculate the norm of the |φ̄0⟩ and see that it is proportional to the probability

that there was no error, P (0):

⟨φ̄0|φ̄0⟩ =
1

2n

∑

i,j

⟨φi|φj⟩

=
1

2n

∑

i,j

∑

k,l

⟨Ei,k|Ej,l⟩⟨i ⊕ k|j ⊕ l⟩

=
1

2n

∑

i,j

∑

k′

⟨Ei,i⊕ k′|Ej,j⊕ k′⟩

= 2nP (0)

Where we have re-labeled the states in the last step. In fact, ⟨φ̄e|φ̄e⟩ = 2nP (e)

but we do not need this result. We are now ready to prove the theorem. Define

ρi
′ ≡ |φi⟩⟨φi| and ρ′ ≡ 1

2n

∑
i ρi. Since Tr2(ρ′

i) = ρi and Tr2(ρ′) = ρ we may

apply lemma 2.3.3. We will see that we may introduce an intermediate pure

state to make the bounding of the information easier. The pure state we will use
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is |φ̄0 ⟩⟨φ̄0 |
⟨φ̄0 |φ̄0 ⟩

. Starting with corollary 2.2.1:

I(A; E) ≤ n
∑

i

1

2n
|ρi − ρ|

≤ n
∑

i

1

2n
|ρi

′ − ρ′|

= n
∑

i

1

2n
|ρi

′ − |φ̄0⟩⟨φ̄0|
⟨φ̄0|φ̄0⟩

+
|φ̄0⟩⟨φ̄0|
⟨φ̄0|φ̄0⟩

− ρ′|

≤ n
∑

i

1

2n
(|ρi

′ − |φ̄0⟩⟨φ̄0|
⟨φ̄0|φ̄0⟩

| + | |φ̄0⟩⟨φ̄0|
⟨φ̄0|φ̄0⟩

− ρ′|)

≤ n
∑

i

1

2n

(

2

√

1 − ⟨φ̄0|ρi
′|φ̄0⟩

⟨φ̄0|φ̄0⟩
+ 2

√

1 − ⟨φ̄0|ρ′|φ̄0⟩
⟨φ̄0|φ̄0⟩

)

= 2n

(√

1 − ⟨φ̄0|ρ′|φ̄0⟩
⟨φ̄0|φ̄0⟩

+
∑

i

1

2n

√

1 − ⟨φ̄0|ρi
′|φ̄0⟩

⟨φ̄0|φ̄0⟩

)

≤ 2n

⎛

⎝
√

1 − ⟨φ̄0|ρ′|φ̄0⟩
⟨φ̄0|φ̄0⟩

+

√

1 −
⟨φ̄0|(

∑
i

1
2n ρi

′)|φ̄0⟩
⟨φ̄0|φ̄0⟩

⎞

⎠

= 4n

√

1 − ⟨φ̄0|ρ′|φ̄0⟩
⟨φ̄0|φ̄0⟩

Now we compute ⟨φ̄0|ρ′|φ̄0⟩:

⟨φ̄0|ρ′|φ̄0⟩ =
∑

i

1

2n
|⟨φ̄0|φi⟩|2

=
∑

i

1

2n
|⟨φ̄0|

1√
2n

∑

j

(−1)i·j |φ̄j⟩|2

≥ | 1

2n
⟨φ̄0|

1√
2n

∑

j

∑

i

(−1)i·j |φ̄j⟩|2

= | 1

2n
⟨φ̄0|

1√
2n

∑

j

2nδj,0|φ̄j⟩|2

=
1

2n
|⟨φ̄0|φ̄0⟩|2
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Putting this together:

I(A; E) ≤ 4n

√

1 − ⟨φ̄0|ρ′|φ̄0⟩
⟨φ̄0|φ̄0⟩

≤ 4n

√
1 − 1

2n
⟨φ̄0|φ̄0⟩

= 4n
√

1 − P (0) = 4n
√

Pē

Where Pē is the probability that there is an error in the Fourier transformed

basis, which proves the theorem.

The previous theorem is what gives security to quantum key distribution

schemes; however, we have only shown that QKD schemes are secure if the errors

caused in the Fourier-transformed basis are extremely small. Ideally, we would

like Eve’s information to be exponentially close to zero. We consider in detail the

case where there are errors on the channel between Alice and Bob in chapter 3.

We show that, as long as the errors are not too large, they can all be corrected

with Eve only gaining exponentially little information. It is the result in chapter

3 that proves the security of realistic quantum key distribution.

2.4.2 Security of Functions of Messages

According to theorem 2.4.1, if the fidelity Bob would have had in the Fourier

transformed basis is exponentially close to unity, then Eve’s information is expo-

nentially low. It does not address the question of what information Eve might

get about a function of a message encrypted with that key. Suppose Eve only

wants to know if the message has a particular value. This function only has

exponentially little information about the message itself. Could Eve learn this

information? The next theorem will show that this, too, is impossible.

Theorem 2.4.2 If Alice sends the n qubit state |k⟩ to Bob, with k chosen uni-
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formly at random, and after Bob has received the state Alice announces a = m⊕ k,

then the information Eve can get about any function of m, F (M), is bounded by

the square root of the probability that the Eve would have caused errors in the

Fourier transformed basis:

I(F (M); E|A) ≤ H(F (K))4
√

Pē

Proof.This proof will follow closely the proof of theorem 2.4.1 and use the same

tools. The state consistent with a function value i is:

σi
a ≡ 1

qi

∑

k:f(a⊕ k)=i

pkρk

with qi ≡
∑

k:f(a⊕ k)=i pk. Note that since pk = 1
2n , then the probability of an

announcement a = m ⊕ k is also 1
2n . As such, qi does not depend on m and is

only related to the number of inputs to the function f which have a given output.

The averaged state is:

σa ≡
∑

i

qiσi
a

=
∑

i

∑

k:f(k⊕ a)=i

pkρk

Since each input has one and only one output and pk = 1
2n :

σa =
∑

k

1

2n
ρk = ρ

The definition of mutual information[?] means that:

I(F (M); E|A) =
∑

a

paI(F (M); E|A = a)
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Using lemma 2.2.3

∑

a

paI(F (M); E|A = a)

≤ −
∑

a

pa

∑

i

qi log qi|σi
a − σa|

= −
∑

i

qi log qi

∑

a

pa|σi
a − ρ|

= −
∑

i

qi log qi

∑

a

pa|σi
a − |φ̄0⟩⟨φ̄0|

⟨φ̄0|φ̄0⟩
+

|φ̄0⟩⟨φ̄0|
⟨φ̄0|φ̄0⟩

− ρ|

≤ −
∑

i

qi log qi

∑

a

pa

(
|σi

a − |φ̄0⟩⟨φ̄0|
⟨φ̄0|φ̄0⟩

| + | |φ̄0⟩⟨φ̄0|
⟨φ̄0|φ̄0⟩

− ρ|
)

= −
∑

i

qi log qi

∑

a

pa

(

2

√

1 − ⟨φ̄0|σi
a|φ̄0⟩

⟨φ̄0|φ̄0⟩
+ 2

√

1 − ⟨φ̄0|ρ|φ̄0⟩
⟨φ̄0|φ̄0⟩

)

≤ −
∑

i

qi log qi

(
2

√

1 − ⟨φ̄0|
∑

a paσi
a|φ̄0⟩

⟨φ̄0|φ̄0⟩
+ 2

√

1 − ⟨φ̄0|ρ|φ̄0⟩
⟨φ̄0|φ̄0⟩

)

We can simplify the quantity
∑

a paσi
a by remembering that pa = 1/2n and qi is

independent of a:

∑

a

1

2n
σi

a =
∑

a

1

2n

∑
k:f(k⊕ a)=i

1
2n ρk

qi

=
1

qi

∑

a

1

2n

∑

m:f(m)=i

1

2n
ρa⊕ m

=
1

qi

∑

m:f(m)=i

1

2n

∑

a

1

2n
ρa⊕ m

In the last sum, we sum over all a with equal weight; hence, the m dependence

disappears:

∑

a

1

2n
σi

a =
1

qi

∑

m:f(m)=i

1

2n

∑

a

1

2n
ρa⊕ m

=
1

qi
(
∑

m:f(m)=i

1

2n
)ρ

= ρ
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Putting this back into the information bound:

∑

a

paI(F (M); E|A = a)

≤ −
∑

i

qi log qi

(
2

√

1 − ⟨φ̄0|
∑

a paσi
a|φ̄0⟩

⟨φ̄0|φ̄0⟩
+ 2

√

1 − ⟨φ̄0|ρ|φ̄0⟩
⟨φ̄0|φ̄0⟩

)

= −
∑

i

qi log qi(4

√

1 − ⟨φ̄0|ρ|φ̄0⟩
⟨φ̄0|φ̄0⟩

)

= 4H(Q)

√

1 − ⟨φ̄0|ρ|φ̄0⟩
⟨φ̄0|φ̄0⟩

≤ H(F (K))4
√

Pē

Which proves the result.

2.5 Summary

By developing bounds on entropy, we are able to apply these to bound the amount

of information that measurements can get from a quantum source. Modeling

eavesdropping in quantum key distribution as a quantum source, we are able to

bound information that an eavesdropper can get. Since this bound is a function

of the errors that would be caused in a Fourier transformed basis, Alice and Bob

can use their measurements to estimate this figure. Therefore, Alice and Bob can

bound information that Eve has about the information they share. In addition to

showing security of such information, we show for the first time that any function

of messages encrypted with this secret information is secure. This is a very strong

statement about the robustness of quantum security.

What lies next is to In the following chapter, we examine the case where there

are errors on the channel. We then show a similar but stronger result, namely

that Eve must cause more errors than Alice and Bob could have corrected in the
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Fourier transformed basis.
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CHAPTER 3

Security of Quantum Key Distribution

3.1 Introduction

Quantum key distribution [?, ?] uses the power of quantum mechanics to sug-

gest the distribution of a key that is secure against an adversary with unlimited

computation power. Such a task is beyond the ability of classical information

processing. The extra power gained by the use of quantum bits (quantum two-

level systems) is due to the fact that the state of such a system cannot be cloned.

On the other hand, the security of conventional key distribution is based on the

(unproven) existence of various one-way functions, and mainly on the difficulty of

factoring large numbers, a problem which is assumed to be difficult for a classical

computer, and is proven to be easy for a hypothetical quantum computer [?].

Various proofs of security were previously obtained against collective at-

tacks [?, ?, ?], and we continue this line of research here to prove the ultimate

security of quantum key distribution (QKD), against any attack (under the con-

ventional assumptions of theoretical QKD, as explained below). Note that the

eavesdropper is assumed to have unlimited technology (e.g., a quantum memory,

a quantum computer), while the legitimate users use practical tools (or more

precisely, simplifications of practical tools).

To prove security against such a super-strong eavesdropper we develop some

important technical tools and we reach some surprising results: we obtain a new
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information versus disturbance result, where the power of quantum information

theory is manifested in an intuitive and clear way. We show explicitly how the

randomness of the choice of bases, and the randomness of the choice of test-bits

provides the desired security of QKD. We adopt and generalize sophisticated tools

invented in [?], and developed more in chapter 2: a “purification” which simplifies

Eve’s states; a bound on accessible information (using Trace-Norm-Difference of

density matrices) which avoids any complicated optimization of Eve’s possible

measurements; a connection between Eve’s accessible information and the error-

rate she induces. We add some more simplifications (which were not required

in the analysis of collective attacks in [?]): a reduction to a scheme in which all

qubits are used by Alice and Bob, and a usage of a symmetry of the problem

under investigation.

Recently there have been a few security results announced [?, ?, ?, ?, ?, ?] 1.

This proof differs from other proofs in that uses tools similar to those in chapter

2 to find explicit bounds on information which are a function of the errors that

the eavesdropper would cause. Other proofs, specifically [?, ?, ?], make use of

an ingenious reduction to allow the proof of security in the case of exponentially

few errors, to apply to a case where an error correction code is used. The current

work may be elucidating to security proofs for protocols which might not have

such a mapping onto quantum error codes.

We follow the standard assumptions of QKD (assumption 3 is discussed in [?,

?] in much details): 1) Alice and Bob share an unjammable classical channel.

This assumption is usually replaced by the demand that Alice and Bob share a

short secret key to be used for authenticating a standard classical channel (hence

the protocol is then a quantum key expansion protocol). 2) Eve cannot attack

1This chapter is a adaptation of [?], of which I was a coauthor
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Alice’s and Bob’s labs. She can only attack the quantum channel and listen to

all transmissions on the classical channel. 3) Alice sends quantum bits (two level

systems).

We prove the security of the Bennett-Brassard-84 (BB84) protocol [?], against

any attack allowed by the rules of quantum physics. We prove the security for

instances in which the error rate in the transmission from Alice to Bob is up to

7.56%.

3.1.1 The BB84 Protocol and the Used-Bits-BB84 Protocol

Quantum cryptography [?, ?] was described in several places, some of which

are also introducing the notations in a more expository way, and a reader who

is unfamiliar with the basics of quantum information processing is referred for

instance to the Appendix in [?].

In the BB84 protocol Alice and Bob use four possible quantum states in

two bases (using “spin” notations, and connecting them to “computation basis”

notations): (i) |0z⟩ ≡ |0⟩; (ii) |1z⟩ ≡ |1⟩; (iii) |0x⟩ = 1√
2
(|0⟩ + |1⟩); and

(iv) |1x⟩ = 1√
2
(|0⟩ − |1⟩). We shall refer to these states as the BB84 states. By

comparing bases after Alice transmit such a state and Bob receives it, a common

key can be created in instances when Alice and Bob used the same basis.

We prove here the security of a simplified protocol in which only the relevant

bits are discussed (we call it the “used-bits-BB84”). The proof of the security of

the original BB84 protocol follows immediately, due to a simple reduction, as we

show in section 3.6.

Let us describe the used-bits protocol in detail, splitting it into creating the

sifted key and creating the final key from the sifted key. This simplified protocol

assumes that Bob has a quantum memory.
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I. Creating the sifted key:

1. Alice and Bob choose a large integer n ≫ 1. The protocol uses 2n bits.

2. Alice randomly selects two 2n-bit strings, b and i which are then used to

create qubits: The string b determines the basis 0 ≡ z, and 1 ≡ x of the

qubits. The string i determines the value (0 or 1) of each of the 2n qubits

(in the appropriate bases).

Alice generates 2n qubits according to her selection, and sends them to Bob

via a quantum communication channel.

3. Bob tells Alice when he receives the qubits.

4. Alice publishes the bases she used, b; this step should be performed only

after Bob received all the qubits.

Bob measures the qubits in Alice’s bases to obtain a 2n-bit string j.

We shall refer to the resulting 2n-bit string as the sifted key, and it would be

the same for Alice and Bob, i.e. j = i, if natural errors and eavesdropping

did not exist.

II. Creating the final key from the sifted key:

1. Alice chooses at random a 2n-bit string s which has exactly n zeroes and

n ones. There are
(
2n
n

)
such strings to choose from.

2. From the 2n bits, Alice selects a subset of n bits, determined by the zeros

in s, to be the test bits. Alice publishes the values of these test bits (given

by a string iT ). The values of Bob’s bits on the test bits are given by jT .

37



The other n bits are the information bits (given by a string iI). They are

used for deriving a final key via error correction codes (ECC) and privacy

amplification (PA) techniques.

Alice shall send the ECC and PA information to Bob, hence Bob needs to

correct his errors and use PA to obtain a key equal to Alice’s.

3. Bob verifies that the error rate ptest = |iT ⊕ jT |/n in the test bits is lower

than some agreed error-rate pallowed, and aborts the protocol if the error

rate is larger.

4. Bob also publishes the values of his test bits (jT ). This is not crucial for

the protocol, but it is done to simplify the proof.

5. Alice selects a linear ECC with 2k code words of n bits, and a minimal Ham-

ming distance d between any two words: an (n, k, d) code, and publishes it

along with the ECC parities on the information bits. The strategy is that

Alice announces the parity check matrix of an ECC, i.e., r = n − k parity

check strings of n bits: vs, s = 1, . . . , r. She then announces r bits which

are the parities of her string iI with respect to the parity check matrix,

which is vs · iI for all s. Bob doesn’t announce anything. The condition on

the ECC is that it corrects t ≥ (pallowed + ϵrel)n errors, for some positive

ϵrel. If an ECC corrects has d ≥ 2t + 1 it will always correct t errors, and

thus d ≥ 2(pallowed + ϵrel)n+1 is sufficient for all codes. For Random Linear

Codes d ≥ (pallowed + ϵrel)n + 1 is also sufficient as noted in [?].

6. Bob performs the correction on the information bits.

7. Alice selects a privacy amplification function (PA) and publishes it. The

PA strategy is to publish m n-bit strings and use the parities of the bits
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masked by these strings as the secret key. That is she announces privacy-

amplification-strings vs, where s = r + 1, . . . , r + m, of n bits each. The

final secret key bits are vs · i. This strategy is similar to error correction

except that the parities are kept secret.

The PA strings must be chosen such that the minimal distance v̂, between

any string in their span and any string in the span of their union with

the ECC parity-check-strings, is at least v̂ ≥ 2(pallowed + ϵsec) n. Note

that, by definition, the minimal distance of the space spanned by the ECC

and PA strings, d⊥ , is less than the above distance, hence if we demand

d⊥ ≥ 2(pallowed + ϵsec) n, the above criterion is automatically satisfied.

8. Bob performs the PA on the corrected information bits. The result obtained

is the final key.

3.1.2 Eavesdropping

Eve attacks the qubits in two steps. First she lets all qubits pass through a

device that tries to probe their state. Then, after receiving all the classical data,

she measures the probe. She can gain nothing by measuring the probe earlier,

since such a measurement is a special case of applying a unitary operation (it is

the application of a measurement gate). Thus we can split Eve’s attack into her

transformation and her measurement.

Eve’s transformation: The qubits can be attacked by Eve while they are in

the channel between Alice and Bob. Eve can perform any attack allowed by

the laws of physics, the most general one being any unitary transformation

on Alice’s qubits and Eve’s probe. We are generous to Eve, allowing her

to attack all the bits together (in practice, she usually needs to send the
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preceding qubit toward Bob before she has access to the next one).

Without loss of generality we assume that all the noise on the qubits, is

caused by Eve, and can be used by her in any way she likes.

Eve’s measurement: Eve keeps the probe in a quantum memory. After

Eve receives all the classical information from Alice and Bob, including the

bases of all bits, the choice of test bits, the test bits values, the ECC, the

ECC parities, and the PA, she tries to guess the final key using her best

strategy of measurement.

Eve’s goal is to learn as much information as possible on the final key without

causing Alice and Bob to abort the protocol due to a failure of the test. The task

of finding Eve’s optimal operation in these two steps is very difficult. Luckily, to

prove security that task need not be solved, and it is enough to find bounds on

Eve’s optimal information (via any operation she could have done): In order to

analyze her optimal transformation we find bounds for any transformation she

could perform, and in order to analyze her optimal measurement we find bounds

for any measurement she could perform.

3.1.3 Security and Reliability

The issue of the security criterion is non-trivial since the obvious security criterion

(that Eve’s information given that the test passed, is small) does not work.

To be more precise, let A be a random variable presenting Alice’s final key,

B be a random variable presenting Bob’s final key, and E a random variable

representing a string in Eve’s hands as result of her measurements. Let T be a

random variable presenting if the test passed or failed. What one would like to

obtain as a security criterion is I(A; E | T = pass) ≤ Ainfo e−βinfon with A and β
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(with any subscript) positive constants.

Unfortunately the above bound is not satisfied in quantum cryptography.

Given that the test is passed, Eve can still have full information. Consider the

swap attack: Eve takes Alice’s qubits and puts them into a quantum memory.

She sends random BB84 states to Bob. Eve measures the qubits she kept after

learning their bases, hence gets full information on Alice’s final key. In this case,

Bob will almost always abort the protocol because it is very unlikely that his

bits will pass the test. However, even in the rare event when the test is passed,

Eve still has full information on Alice’s key. So, given the test is passed (a rare

event), information is still m bits, and the above criterion cannot be satisfied.

Another potential security criterion says the following: “if Eve tries an attack

that gives her non-negligible information on a final key she has to be extremely

lucky in order to pass the test.” As observed in an earlier version of [?], this

criterion is also inappropriate. Consider the half-SWAP attack in which Eve does

nothing with probability half, and performs the SWAP attack with probability

half. This half-SWAP attack gives information of exactly m/2, and it passes

the test with probability larger than half. Obviously these two cases, getting a

non-negligible information, and passing the test with high probability, will not

happen in the same event, hence this example motivates a more precise definition

of security (first used in [?]).

In order to prove security we show that the event where the test is passed and

Eve obtains meaningful information on the key is extremely unlikely.

Formally, the security criterion is:

P
[
(T = pass) ∧ (IEve ≥ Ainfo e−βinfon)

]
≤ Aluck e−βluckn (3.1)

where T is the test outcome and IEve ≡ I(A; E|iT , cT , b, s) is the information Eve

has on the key, after the particular protocol values (iT , jT , b, s) are announced
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by Alice and Bob. The event in which the test is passed includes all the cases

such that cT = iT ⊕ jT satisfies |cT | ≤ npallowed. Note that Alice and Bob can

increase the number of bits n as they like to increase security.

We show that the final m-bit key is reliable: the keys distiled by Alice and

Bob are identical except for some exponentially small probability Arel e−βreln.

3.1.4 Structure of the Chapter

The rest of the paper contains three main steps: In Section 3.2 we reduce the

problem to a simpler problem of optimizing over all attacks symmetric to the

bit values 0 and 1. In Section 3.3 we analyze the information bits in the bases

actually used by Alice and Bob, and we prove our main information versus dis-

turbance theorem: the eavesdropper information on the final key is bounded by

the following probability: the probability of error if the other bases were used by

Alice and Bob (this probability is well defined). We then obtain in Section 3.4 a

bound on
∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s) I(A; E|iT , cT , b, s)

and prove that this bound is exponentially small with n. This expression could

also serve as a security criterion, since it immediately follows (from this bound)

that the security criterion 3.1 is satisfied as shown in section 3.7.

Various technical details and Lemmas are proven in the appendices, so that

the proof can be read more smoothly.

3.2 Eve’s Attack

In the used-bits BB84 protocol Alice sends a string i encoded in the bases of her

choice b, and Bob measures a string j using the same set of bases. Eve prepares
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a probe in a known state, say |0⟩. Eve applies a unitary transformation U on

all the qubits and her probe and then she sends the disturbed qubits to Bob,

while leaving her probe in her hands. The unitary transformation U is written in

the basis b, U(|0⟩|i⟩) =
∑

j |E ′
i,j⟩|j⟩, with |E ′

i,j⟩ the unnormalized states of Eve’s

probes if Alice sent |i⟩, and Bob received |j⟩.

Later on Eve obtains all classical information sent by Alice and Bob. Eve

learns b (the bases) and s (which bits are the test bits and which are the infor-

mation bits). She also learns the values of the test bits iT and jT . We also use iI

and jI to denote the values of the information bits. Then, Eve’s attack (written

in a basis b chosen by Alice) looks like:

U [(|0⟩)Eve(|iT ⟩|iI⟩)Alice] ≡
∑

jT ,jI

|E ′
iT ,iI ,jT ,jI

⟩|jT ⟩|jI⟩ . (3.2)

Once the additional data regarding the bases and the values of the test bits is

given to Eve, this data modifies her probes’ states. We define |ψiI ⟩ to be the state

of Eve+Bob if Alice chose a bases b, a sample s, and values iT iI , Eve’s attack is U ,

and Bob received jT in his measurement on the test bits. After renormalization

Eve and Bob’s state is:

|ψiI ⟩ =
1√

p(jT |iT , iI , b, s)
[⟨jT |]U [(|0⟩)Eve(|iT ⟩|iI⟩)Alice] (3.3)

Since ⟨ψiI |ψiI ⟩ = 1, using the above definitions the normalization is fixed2:

p(jT |iI , iT , b, s) =
∑

jI
||E ′

iI ,iT ,jI ,jT
||2, which makes use of the norm notation:

||Ei,j||2 ≡ ⟨Ei,j|Ei,j⟩.

For a given iT and jT , we define:

|EiI ,jI⟩ ≡ 1√
p(jT |iT , iI , b, s)

|E ′
iT ,iI ,jT ,jI

⟩

2p(x) is the usual probability theory notation: Prob(X = x)
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Eve’s states for a given classical data regarding (iT , jT , s, b). Then,

|ψiI ⟩ =
∑

jI

|EiI ,jI⟩|jI⟩ . (3.4)

We now present a symmetrized attack (which is symmetrical to Alice sending

0 or 1 for the bit values). This is required in order to obtain Eq.(3.11,3.12). Recall

that the choice of 0/1 is random. As a result, any attack chosen by Eve can be

replaced by an equivalent attack which is as good, with i replaced by i ⊕ k and

with j replaced by j ⊕ k, for any k. Thus, any attack chosen by Eve can also be

replaced by an equivalent symmetric attack which is as good, in which k is chosen

at random. The symmetrization does not change the average induced error-rate.

For an arbitrary attack, the symmetrization can improve Eve’s final information

on the common secret key (or leave it the same). Thus, if the optimal attack is

asymmetric, there is also an equivalent symmetric attack which is as good, hence

also optimal. Thus, the optimal attack can be assumed to be symmetric, without

loss of generality (WLG), and we therefore need to bound Eve’s information only

for attacks symmetric to 0/1.

The symmetrization is performed using bit-wise operations: Given any trans-

formation of Eve, it is symmetrized as follows: For each qubit |ql⟩ sent by Alice,

Eve adds a qubit in a state |wl⟩ = H|0⟩ = 1√
2
(|0z⟩+ |1z⟩), and performs a pseudo-

controlled-NOT transform on this bit as the control and |qj⟩ as the target: if

|wj⟩ = 0 leave |qj⟩ as is; otherwise negate it (i.e., rotate the spin by 180 degrees)

in both x basis and z basis. After the application of the (possibly asymmetric)

attack U , Eve performs the inverse of this pseudo-controlled-NOT transform, and

let Alice’s qubit continue to Bob. The gate which does the negation properly in

both x and z bases is the Control-(σxσz) on this ancillary qubit and the data

qubit. For any attack U chosen by Eve, she applies the symmetrization and the

resulting attack is Usym. The 0/1 symmetrization ensures that the errors are
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independent of the values 0 or 1 that Alice sends (in either basis). The overall

attack on all qubits is then described by Usym(|0⟩|i⟩) =
∑

j |E
′sym
i,j ⟩|j⟩ with E

′sym

which can be written using E ′ as follows:

|E
′sym
i,j ⟩ =

1√
22n

∑

m

(−1)(i⊕ j)·m|m⟩|E ′
i⊕ m,j⊕ m⟩ . (3.5)

If Eve measures |m⟩ at any stage of the attack (and receives a specific value, say

k), the resulting attack is one in which i and j of the original attack are replaced

by i ⊕ k and j ⊕ k as previously described, hence an attack which is equivalent

to the original attack.

To prove that the 0/1 symmetrization does not change the average error-rate

is obvious since Eve can always project onto one particular m (and destroy the

symmetry) by measuring |m⟩, and any such projection leads to the same attack

(up to a shift of i and j by m). Since Eve can perform that measurement later

on (when she does not hold Bob’s qubits anymore), her measurement cannot

affect Bob’s outcomes due to causality argument. It is also obvious that the

symmetric attack cannot be worse (for Eve) in terms of Eve’s information, since

she can always measure m. Clearly, the symmetrization can only increase Eve’s

information since she does not have to measure m but can also do other things.

The property of symmetric attacks that we are using is:

⟨E
′sym
i⊕ m,i⊕ m⊕ c|E

′sym
i⊕ m,i⊕ m⊕ c⟩ = ⟨E

′sym
i,i⊕ c |E

′sym
i,i⊕ c⟩ .

More explicitly, we calculate:

p(jT |iI , iT , b, s) =
∑

jI

||E
′sym
iI ,iT ,jI ,jT

||2

=
1

22n

∑

jI ,mI ,mT

||E ′
iI⊕ mI ,iT ⊕ mT ,jI⊕ mI ,jT ⊕ mT

||2

=
1

22n

∑

i′I ,j′I ,mT

||E ′
i′I ,iT ⊕ mT ,j′I ,jT ⊕ mT

||2 . (3.6)
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Hence, p(jT |iI , iT , b, s) = p(jT |iT , b, s) is independent of iI , and using standard

probability theory we then get

p(iI |iT , jT , b, s) = p(iI |iT , b, s). Thus, for any symmetrized attack

p(iI |iT , jT , b, s) = 1/2n (3.7)

because of independence: p(iI |iT , jT , b, s) = p(iI |iT , b, s) as shown above, and

p(iI |iT , b, s) = p(iI) because Alice chooses i, b and s independently of each other.

In Subsections 3.3.3 and 3.3.4 we make use of this property p(iI |iT , jT , b, s) =

p(iI |iT , b, s) = 1/2n.

3.3 Information vs. Disturbance

In this section we analyze the information bits alone (for a given symmetric attack

Usym, a given input iT and outcome jT on the test bits, and given bases b and

choice of test bits s). Our result here applies for any U sym, hence in particular for

the optimal one. The optimization over Eve’s measurement is avoided by using the

fact that trace-norm of the difference of two density matrices provides an upper

bound on the accessible information one could obtain via any measurement when

having the two density matrices as the possible inputs.

3.3.1 Eve’s State

When Alice sends a state |iI⟩ for the information bits (written in the basis actually

used by her and Bob for these bits), the state of Eve and Bob together, |ψiI ⟩ =
∑

jI
|EiI ,jI ⟩|jI⟩ is fully determined by Eve’s attack and by the data regarding

the test bits. Eve’s state in that case is fully determined by tracing-out Bob’s
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subsystem |jI⟩ from the Eve-Bob state, and it is

ρiI =
∑

jI

|EiI ,jI⟩⟨EiI ,jI | ,

calculated given iT and jT . This state in Eve’s hands is a mixed state.

3.3.2 Purification and a Related Basis

We can “purify” the state while giving more information to Eve by assuming she

keeps the state

|φi⟩ =
∑

jI

|EiI ,jI⟩|iI ⊕ jI⟩

where we introduce another subsystem for the “purification”. [Note that an index

{ }I for φi is not required since the purified state is only defined on the information

bits]. The term purification means different things in different papers, thus we

explain it a bit more: a mixed state can also be obtained from a pure state in an

enlarged system (the original system plus an ancilla), once the ancilla is traced

out; the pure state of the enlarged system is called a purification of the mixed

state. In a more general case, the state in the enlarged system is not necessarily

pure, and then we refer to it as a “lift-up” [?] of the state of the original system.

The resulting purified state (i.e., any purification or any lift-up of Eve’s states)

is at least as informative to Eve as ρiI is. This is because the density matrix is

exactly the same as it was if Eve ignores the iI ⊕ jI register of φ. Thus, any

information Eve can obtain from her mixed state is bounded by the information

she could get if the purified state was available to her. Note that the overlap

between these purified states satisfies

⟨φl|φl⊕ k⟩ =
∑

j

∑

j′

⟨ElI ,jI |ElI⊕ kI ,j′I
⟩⟨lI ⊕ jI |lI ⊕ kI ⊕ j′I⟩

=
∑

j

⟨ElI ,jI |ElI⊕ kI ,jI⊕ kI ⟩ .
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For the space spanned by the purified states φi, we define a basis |η⟩, and show

that it is possible to compute a bound on Eve’s information on the information

bits, once the purified states are expressed in this basis.

Definition 3.3.1

|ηi⟩ =
1

2n

∑

l

(−1)i·l|φl⟩ ; d2
i = ⟨ηi|ηi⟩ ; η̂i = ηi/di

Using the above definitions and (1/2n)
∑

l(−1)(i⊕ j)·l = δij , Eve’s purified state

can be rewritten as:

|φi⟩ =
∑

l

(−1)i·l|ηl⟩ =
∑

l

(−1)i·ldi|η̂l⟩ (3.8)

Note that ⟨ηi|ηi⟩ = 1
22n

∑
l

∑
k(−1)i·k⟨φl|φl⊕ k⟩, hence the length of the vectors

ηi is the average over all l, of the Fourier transform of the overlap ⟨φl|φl⊕ k⟩. In

terms of Eve’s states we get

d2
i = ⟨ηi|ηi⟩ =

1

22n

∑

l

∑

k

(−1)i·k
∑

j

⟨El,j|El⊕ k,j⊕ k⟩ . (3.9)

3.3.3 Eve’s State and Probability of Errors Induced on Information

Bits

In this subsection we show that the probability of any error string Eve would

have induced if the conjugate basis was used for the information bits, is a simple

function of di’s (of Definition 3.3.1), hence a function of the overlap.

First, we discuss the error rate in the basis bI , bT actually used by Alice and

Bob. For any attack

P (jI = iI ⊕ cI | iI , iT , jT , b, s) = ⟨EiI ,iI⊕ cI |EiI ,iI⊕ cI ⟩ . (3.10)
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For any symmetrized attack satisfying the 0/1 symmetry, the error distribution

in the information bits is

P (cI |iT , jT , b, s)

=
∑

iI

P (iI |iT , jT , b, s)P (jI = iI ⊕ cI | iI , iT , jT , b, s)

=
1

2n

∑

i

⟨EiI ,iI⊕ cI |EiI ,iI⊕ cI ⟩ (3.11)

the average probability of an error syndrome c for the information bits (when

the test bits, basis and sequence are given). The first equality is derived using

standard probability theory and the second is due to Eq. (3.7) and Eq. (3.10).

Due to the linearity of quantum mechanics, given Eve’s attack in one basis

we can write Eve’s attack in any other basis, and in particular, in a basis b̄I , bT ,

where the x/z bases of each information qubit are interchanged. We refer to

this basis as the “conjugate basis”, but note that it is only conjugate on the

information bits. For an input string i = iI , iT in the conjugate basis (b̄I , bT ) and

an output string j = jI , jT , the error distribution for the information bits is

P (cI |iT , jT , b̄I , bT , s)

=
∑

iI

p(iI |iT , jT , b̄I , bT , s)P (jI = iI ⊕ cI |iI , iT , jT , b̄I , bT , s)

=
1

2n

∑

i

⟨Eo
iI ,iI⊕ cI

|Eo
iI ,iI⊕ cI

⟩ (3.12)

with |Eo
k,l⟩ = 1

2n

∑
i,j(−1)i·k(−1)j·l|Ei,j⟩ (see section 3.8.1). The independence of

(iI , jT ) and (iI , iT , bI , bT , s) is used here exactly as in Eq. (3.11). The following

lemma shows that the probability of an error syndrome c (if the conjugate bases

were used) equals the coefficients dc (calculated for the purifications in the basis

actually in use bI) when writing the purification of Eve’s states using the basis

|ηc⟩.
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Lemma 3.3.1

P (cI | iT , jT , b̄I , bT , s) = d2
cI

. (3.13)

Proof 3.3.1 See section 3.8.1.

3.3.4 Bounds on Eve’s Information

In this subsection we improve upon a result based on [?]. Eve’s information on

a particular bit of the final key (even if all other bits of the final key are given

to her) is bounded. We take into consideration the error-correction data that is

given to Eve, and we do it more efficiently than in [?], hence we obtain a much

better threshold for the allowed error-rate.

Let us first discuss one-bit final key, defined to be the parity of substring of

the input iI . The substring is defined using a mask v, meaning that the secret

key is v · iI (so v tells us the subset of bits whose parity is the final key). Bob

first correct his errors using the error correction code data, hence he learns the

string iI of Alice. Eve does not know iI , but she learns the error correcting code

C used by Alice and Bob as well as v and the parity bits ξ sent by Alice to help

Bob correct the sequence he received. All the possible inputs iI that have the

correct parities ξ for the code C form a set denoted Cξ.

When the purification of Eve’s state is given by |φi⟩ the density matrix is

ρi = |φi⟩⟨φi|. In order to guess the key b = v · i, Eve must now distinguish

between two ensembles of states: the ensemble of [equally likely, due to Eq.(3.7)]

states ρi with iI ∈ Cξ and key b = v · iI = 0, and the ensemble of (equally likely)

states ρi with iI ∈ Cξ and key b = v · iI = 1. For b ∈ {0, 1} these ensembles are
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represented by the following density matrices:

ρb =
1

2n−(r+1)

∑

iI∈Cξ
iI ·v=b

ρi

(the lift-ups of the states really known to Eve) and Eve’s goal is to distinguish

between them. A good measure for their distinguishability is the optimal mutual

information (known as the accessible information) that one could get if one needs

to guess the bit b by performing an optimal measurement to distinguish between

ρ0 and ρ0 when the two are given with equal probability (half). We call this Shan-

non Distinguishability (SD) to emphasize that it is a distinguishability measure,

and SD ≡ opt{I(Aj; E|iT , jT , b, s)} where the optimization (maximization) is

over all possible measurements.

In the same way that v acts as a mask and the secret bit is v · iI , the error-

correction data also acts as masks: the r “parity-check strings” v1, v2, . . . vr, and

the parities: {v1 · iI , v2 · iI , . . . vr · iI} are given to Eve. Let us assume (WLG) that

these parity-check strings are linearly independent. Eve also knows the parity of

any linear combination of the r parity strings, e.g., (v1 ⊕ v2) · iI . As result, a

total of 2r parity strings and parity bits are known to Eve. Let us take s to be

an index running from 0 to 2r − 1, so we call the set of all these 2r parity strings

Ss, and vs ∈ Ss means that vs is in this set.

Let v̂ be the minimum Hamming distance between v and any (error correction)

parity string vs. [The minimal Hamming weight of v ⊕ vs when the minimum is

over all strings vs ∈ Ss]. Then, for Eve’s purified states |φi⟩ =
∑

l(−1)i·ldl|η̂l⟩, we

obtain that

Lemma 3.3.2 The Shannon distinguishability between the parity 0 and the par-

ity 1 of the information bits over any PA string, v, is bounded above by the
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following inequality:

SDv ≤ α +
1

α

∑

|l|≥ v̂
2

d2
l , (3.14)

where α is any positive constant, and SDv is the optimal mutual information

that Eve can obtain regarding the parity bit defined by the string v (given the

test and unused bits).

The proof is given in section 3.9

This gives an upper bound for Eve’s information about the bit defined by this

privacy amplification string v. In order to prove security in case of m bits in the

final key, we start by proving security of each bit when we assume that Eve is

given the ECC information and in addition, she is also given the values of all

the other bits of the key. This is like using a code with r + m − 1 independent

parity check strings, or like using less code words. Since r does not appear in

the above bound, replacing r by r + m − 1 leaves the same result as before,

SDv ≤ α + 1
α

∑
|l|≥ v̂

2
d2

l , as a bound on Eve’s information on (any) one bit of

the final key Although looks identical to Eq.(3.14), there is a difference between

the two bounds since the additional parity strings of the privacy amplification

causes a decrease in v̂, which is now the minimal Hamming distance between a

particular parity string of the privacy amplification, and any parity string of the

error correction together with the other privacy amplification strings (and their

linear superpositions).

3.3.5 Eve’s Information versus the Induced Disturbance

We have already shown in Eq.(3.13) that P (cI | iT , jT , b̄I , bT , s) = d2
cI

. Thus,

SDv ≤ α +
1

α

∑

|cI |≥ v̂
2

P (cI |iT , jT , b̄I , bT , s) . (3.15)
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This equation bounds the information of Eve using the probability of the error

syndromes in the other basis, and it completes the “information versus distur-

bance” result of our proof. Previous security proofs (for simpler attacks), such

as [?, ?, ?] are also based on various “information versus disturbance” arguments,

since the non-classicality of QKD is manifested via such arguments.

The result is expressed using classical terms: Eve’s information is bounded

using the probability of error strings with large Hamming weight. If only error

strings with low weight have non-zero probability, Eve’s information becomes

zero. Such a result is a “low weight” property and it resembles a similar result

with this name which was derived by Yao [?] for the security analysis of quantum

oblivious transfer. Henceforth we no longer concern ourselves with the delicate

issues of quantum mechanics.

From this point on we want to use standard information theory and probability

notations. Shannon Distinguishability is the optimal mutual information between

Eve’s bits (E) and Alice’s jth bit (Aj) (when all other PA bits are given together

with the ECC data and test data). Therefore, I(Aj; E|iT , jT , bI , bT , s) ≤ α +

1
α

∑

|cI |≥ v̂
2

P (cI |iT , jT , b̄I , bT , s) .

When summing over the m bits of the key, the total information Eve receives

on the final m-bit key is bounded by

I(A; E|iT , jT , bI , bT , s)

m
≤ α +

1

α

∑

|cI |≥ v̂
2

P (cI |iT , jT , b̄I , bT , s) (3.16)

as proven in section 3.10

If α =
√∑

|cI |≥ v̂
2
P (cI |iT , jT , b̄I , bT , s) , then

I(A; E|iT , jT , bI , bT , s) ≤ 2m
√∑

|cI |≥ v̂
2

P (cI |iT , jT , b̄I , bT , s) ,

however, to derive the security criterion we need not fix α yet.
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3.4 Completing the Security Proof

In this section we analyze the attack on the test and information together (3.2).

For these states, we bound a weighted average of Eve’s information:

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s) I(A; E|iT , cT , b, s)

We show that the above bound is small and then we show that security is achieved.

Note that cT replaces jT from this point forward (when iT is given). Recall that

cT = iT ⊕ jT , so once cT is known jT is uniquely given.

3.4.1 Exponentially Small Bound on Eve’s Information

We generalize here previous proofs [?, ?, ?] that information on parity bits is

exponentially small, to be applicable for the joint attack.

The maximum error rate that still passes the test is pallowed (or pa). Also

recall that T denotes the random variable for the test. Making use of Eq. 3.16

we get:

Lemma 3.4.1

∑

iT ,cT

P (T = pass, iT , cT |b, s)I(A; E | iT , cT , b, s)

≤ m

{
α +

1

α
P

[
(|cI | >

v̂

2
) ∧ (

|cT |
n

≤ pa) | b̄I , bT , s

]}

Proof 3.4.1 See appendix 3.8.2.

For an ϵ (called earlier ϵsec) such that v̂ ≥ 2n(pa + ϵ) we get the following
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bound:

∑

iT ,cT

P (T = pass, iT , cT |b, s)I(A; E | iT , cT , b, s)

≤ m

{
α +

1

α
P

[
(
|cI |
n

> pa + ϵ) ∧ (
|cT |
n

≤ pa) | b̄I , bT , s

]}

Thus far, there is nothing that causes the bound on the right hand side to be

a small number. The result above is true even if Eve is told in advance the bases

of Alice and Bob (the string b), or if she is told in advance which are the test bits

and which are the used bits (the string s), two cases in which Eve easily obtains

full information.

Only Eve’s lack of knowledge regarding the random b and s provides an ex-

ponentially small number at the right hand side. Since Eve must fix her attack

before she knows the basis or order, we compute the average information for a

fixed attack over all bases and orders. Averaging over b means that we sum over

all b’s and multiply each term by the constant P (b) = 1/22n. The averaging over

b removes the dependence on the particular basis:

Lemma 3.4.2

∑

iT ,cT ,b

P (T = pass, iT , cT , b | s)I(A; E | iT , cT , b, s)

≤ m

{

α +
1

α

1

22n

∑

b

P [(
|cI |
n

> pa + ϵ) ∧ (
|cT |
n

≤ pa)|b, s]
}

Proof 3.4.2 Summing over b i.e. bI , bT is the same as summing over b̄I , bT .

By averaging over all values of the sample strings s and basis choices b,
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Lemma 3.4.3

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E | iT , cT , b, s)

≤ m

{
α +

1

α
P [(

|cI |
n

> pa + ϵ) ∧ (
|cT |
n

≤ pa)]

}

Proof 3.4.3 This follows from the definition of the probability of an event: it is

calculated by averaging over all values of b and s.

By assigning a value to the free parameter α we get:

Lemma 3.4.4

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E | iT , cT , b, s)

≤ 2m

√
P [(

|cI |
n

> pa + ϵ) ∧ (
|cT |
n

≤ pa)] .

Proof 3.4.4 Let h(pa, ϵ) ≡ P [( |cI|
n > pa + ϵ) ∧ ( |cT |

n ≤ pa)] for short. The right-

hand side of lemma 3.4.3 is m
{
α + 1

αh(pa, ϵ)
}
. Replacing α by the particular

(and optimal) value
√

h(pa, ϵ) leaves

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E | iT , cT , b, s) ≤ 2m
√

h(pa, ϵ)

The current bound can be dealt with the help of a random sampling theorem

(Hoeffding’s law of large numbers [?]). For a long string, the test bits and the

information bits should have similar number of errors if the test is picked at

random. The probability that they have different numbers of errors should go to

zero exponentially fast as shown in the following lemma.

Lemma 3.4.5 For any ϵ > 0, h(pa, ϵ) ≤ e−
1
2 nϵ2 .
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Proof 3.4.5 See section 3.8.3.

As a Corollary we get

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E | iT , cT , b, s)

≤ 2m
√

e−
1
2
nϵ2 = Ae−βn ,

with A = 2m and β = ϵ2/4.

Using IEve ≡ I(A; E|iT , cT , b, s) and the above bound we obtain the security

criterion:

P
[
(T = pass) ∧ (IEve ≥ Ainfo e−βinfon)

]
≤ Aluck e−βluckn (3.17)

with Ainfo = Aluck =
√

A and βinfo = βluck = β/2. The above follows from

standard probability and information theory as shown in section 3.7.

Note that Lemma 3.4.5 also provides the proof that once the test passes

there are no more than (pa + ϵrel)n errors in the information string (except for

exponentially small probability e−
1
2 nϵ2rel). Thus Arel = 1 and βrel = ϵ2

rel/2, in the

reliability criterion.

The above bound of Eve’s information is exponentially small, but it assumes

that we have a desired ECC. If we restrict ourselves to linear codes, then the

properties required of the ECC are: (1) It can correct all the errors (except

for exponentially small probability e−
1
2 nϵ2rel; see Lemma 3.4.5) in the information

string, and (2) The minimum distance of the code words in the span of the dual

code and the PA strings (hence, the augmented dual code is of dimension r + m)

should have a minimum distance of |v̂| ≥ 2n(pallowed + ϵsec). In fact, it can be

shown that for random linear codes (RLC’s), requirement (1) can be satisfied

with only an exponentially small probability of error if the minimum distance
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is ≥ n(pallowed + ϵrel). We show in section 3.11 that the two above-mentioned

requirements can be satisfied and one can generate an m-bit secret key, if one

picks an (n, n − r) RLC, where r and m satisfy the following:

H2(pa + ϵrel + 1/n) < r/n

H2(2pa + 2ϵsec) + H2(pa + ϵrel + 1/n) < 1 − Rsecret ,

where Rsecret ≡ m/n. In the limit of large n and ϵ’s close to zero, pallowed < 7.56%

satisfies the bound and hence this is our threshold.

3.5 Summary

We proved the security of the Bennett-Brassard (BB84) protocol for quantum

key distribution. Our proof is based on a novel information-versus-disturbance

result, on the optimality of symmetric attacks, on laws of large numbers, and on

various techniques that simplifies the analysis of the problem.

3.6 Security of BB84

In the paper we prove that used-bits-BB84 is secure. Let us now present the orig-

inal BB84 protocol and prove, by reduction, that its security follows immediately

from the security of the used-bits-BB84 protocol.

The differences between the protocols are only in the first part:

I. Creating the sifted key:

1. Alice and Bob choose a large integer n ≫ 1, and a number δnum, such that

1 ≫ δnum ≫ 1/
√

(2n). The protocol uses n′′ = (4 + δnum)n bits.
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2. Alice randomly selects two n′′-bit strings, b and i, which are then used to

create qubits: The string b determines the basis 0 ≡ z, and 1 ≡ x of the

qubits. The string i determines the value (0 or 1) of each of the n′′ qubits

(in the appropriate bases).

3. Bob randomly selects an n′′-bit string, b′, which determines Bob’s later

choice of bases for measuring each of the n′′ qubits.

4. Alice generates n′′ qubits according to her selection of b and i, and sends

them to Bob via a quantum communication channel.

5. After receiving the qubits, Bob measures in the basis determined by b′.

6. Alice and Bob publish the bases they used; this step should be performed

only after Bob received all the qubits.

7. All qubits with different bases are discarded by Alice and Bob. Thus, Alice

and Bob finally have n′ ≈ n′′/2 bits for which they used the same bases.

The n′-bit string would be identical for Alice and Bob if Eve and natural

noise do not interfere.

8. Alice selects the first 2n bits from the n′-bit string, and the rest of the n′

bits are discarded. If n′ < 2n the protocol is aborted.

We shall refer to the resulting 2n-bit string as the sifted key.

The second part of the protocol is identical to the second part of the used-

bits-BB84 protocol. To prove that BB84 is secure let us modify BB84 by a few

steps in a way that each step can only be helpful to Eve, and the final protocol

is the used-bits-BB84.

Recall that Alice and Bob choose their strings of basis b and b′ in advance.

Recall the the two strings are random. Thus, the first modification below has
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no influence at all on the security or the analysis of the BB84 protocol. Note

that after the first modification Alice knows the un-used bits in advance. The

second modification is done in a way that Eve can only gain, hence security of

the resulting protocol provides the security of BB84. The third modification is

only “cosmetic”, in order to derive precisely the used-bits-BB84 protocol. This

modification changes nothing in terms of Eve’s ability.

• Let Bob have a quantum memory. Let Alice choose b′ instead of Bob at

step 3. When Bob receives the qubits at step 5, let him keep the qubits in

a memory, and tell Alice he received them. In step 6, let Alice announce b′

to Bob, and Bob measure in bases b′.

Bob immediately knows which are the used and the un-used bits (as follows

directly from announcing b and b′). Steps 7 and 8 are now combined since

Alice and Bob know all the un-used bits already, and they ignore them, to

be left with 2n bits.

• Let Alice generate and send to Bob only the used bits in step 4, and let her

ask Eve to send the un-used bits (by telling her which these are, and also the

preparation data for the relevant subsets, that is—bun−used and iun−used).

Knowing which are the used bits, and knowing their bases bun−used and

values iun−used can only help Eve in designing her attack U ′.

Since Bob never uses the values of the unused bits in the protocol (he only

ignores them), he doesn’t care if Eve doesn’t provide him these bits or

provide them to him without following Alice’s preparation request.

After Bob receives the used and unused bits, let him give Eve the unused

qubits (without measuring them), and ask her to measure them in bases

b′un−used. Having these qubits can only help Eve in designing her optimal
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final measurement.

Since Bob never use the values of the unused bits in the rest of the protocol,

he doesn’t care if Eve doesn’t provide him these values correctly or at all.

• Since Alice and Bob never made any use of the unused bits, Eve could have

them as part of her ancilla to start with, and Alice could just create 2n

bits, send them to Bob, and then tell him the bases.

The protocol obtained after this reduction, is a protocol in which Eve has

full control on her qubits and on the unused qubits. Alice and Bob have

control on the preparation and measurement of the used bits only. This is

the used-bits BB84, for which we prove security in the text.

One important remark is that the exponentially small probability that n′ < 2n

in Step 8 (so that the protocol is aborted due to insufficient number of bits in

the sifted key) now becomes a probability that the reduction fails.

Another important remark is that the issue of high loss rate of qubits (e.g.,

due to losses in transmission or detection) can also be handled via the same

reduction. Thus, our proof applies also to a more practical BB84 protocol where

high losses are allowed.

By the way, another practical aspect is imperfect sources (in which the created

states are not described by a two-level system). This subject is the issue of recent

subtlety regarding the security of practical schemes [?, ?], and it is not discussed

in this current work.
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3.7 Satisfying the Security Criterion

So far we have not shown that the security criterion is satisfied by bounding the

following:

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s) ≤ e2(α−βn) (3.18)

We now show that when the above bound is satisfied, as shown in the paper,

then the security criterion is satisfied:

Prob(Test Passes and IEve ≥ eα−βn) ≤ eα−βn (3.19)

Where IEve ≡ I(A; E|iT , cT , b, s).

To show the above break the sum into the parts where Eve has large infor-

mation and the part where she has small. Then standard bounding techniques

are used:

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s)

=
∑

iT ,cT ,b,s

s.t. IEve<I′

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s)

+
∑

iT ,cT ,b,s

s.t. IEve≥ I′

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s)

≥
∑

iT ,cT ,b,s

s.t. IEve≥ I′

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s)

≥

⎛

⎜⎜⎝
∑

iT ,cT ,b,s

s.t. IEve≥ I′

P (T = pass, iT , cT , b, s)

⎞

⎟⎟⎠ I ′
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The above steps follow from non-negativity of probability and mutual informa-

tion. We are really already done:
⎛

⎜⎜⎝
∑

iT ,cT ,b,s

s.t. IEve≥ I′

P (T = pass, iT , cT , b, s)

⎞

⎟⎟⎠ I ′

≤
∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s)

So far I ′ is a free parameter. We can set it to any value we like, namely

I ′ =

√ ∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s)

:

Prob(Test Passes and IEve ≥ I ′)

=
∑

iT ,cT ,b,s

s.t. IEve≥ I′

P (T = pass, iT , cT , b, s)

≤
√ ∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s)

If we assume that
∑

iT ,cT ,b,s P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s) ≤ e2(α−βn)

then we have:

Prob(Test Passes and IEve ≥ eα−βn) ≤ eα−βn (3.20)

Thus, the bounds that we have shown satisfy the security criterion.

3.8 A Few Technical Lemmas

3.8.1 A Proof of Lemma 3.3.1

From now on we assume the attack 0/1 symmetric (obtained by 0/1 symmetriza-

tion) and consider only the information bits; we consequently drop the superscript
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Sym and the subscript I and write Ei,j to mean ESym
iI ,jI

. Those terms depend on

iT , jT , bI , bT and s where bI fixes the bases on the information bits and bT those

on test bits. Had we expanded according the conjugate basis bI on information

bits (bT unchanged) namely the basis |k⟩o

|k⟩o =
1

2n

∑

i

(−1)i·k|i⟩

we would have obtained the terms |Eo
k,l⟩ with

|Eo
k,l⟩ =

1

2n

∑

i,j

(−1)i·k(−1)j·l|Ei,j⟩

P (cI | iT , jT , bI , bT , s) =
1

2n

∑

k

⟨Eo
k,k⊕ cI

|Eo
k,k⊕ cI

⟩ =

=
1

2n

∑

k

∑

i,j

∑

i′,j′

1

22n
(−1)(i⊕ i′)·k⊕ (j⊕ j′)·(k⊕ c)⟨Ei,j |Ei′,j′⟩

=
1

23n

∑

i,i′,j,j′

(
∑

k

(−1)k·(i⊕ i′⊕ j⊕ j′)

)
(−1)c·(j⊕ j′)⟨Ei,j |Ei′,j′⟩

The sum over k is non zero only when i ⊕ i′ = j ⊕ j′
∆
= h,

and then it is 2n, so

=
1

22n

∑

i,j,h

(−1)c·h⟨Ei,j |Ei⊕ h,j⊕ h⟩

= ⟨ηc|ηc⟩ = d2
c

where the last equalities are due to the calculation of the norm of η in Eq. (3.9).

3.8.2 A Proof of Lemma 3.4.1

We first recall that cT ≡ iT ⊕ jT and cI ≡ iI ⊕ jI . From equation

I(A; E|iT , jT , bI , bT , s)

m
≤ α +

1

α

∑

|cI |≥ v̂
2

P (cI |iT , jT , b̄I , bT , s)
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and P (T = pass, iT , jT | b, s) = P (iT , jT | b, s) if |iT ⊕ jT |/n ≤ pa and = 0

otherwise, we deduce that

1

m

∑

iT ,jT

P (T = pass, iT , jT | b, s)I(A; E | iT , jT , b, s)

is bounded above by

α +
1

α

∑

|cI |≥
v̂
2

|iT ⊕ jT |/n≤ pa

P (cI | iT , jT , b̄I , bT , s)P (iT , jT | b, s)

Now we show that P (iT , jT | bI , bT , s) = P (iT , jT | b̄I , bT , s).

P (iT , jT |bT , bI , s)

=
∑

iI ,jI

P (iI , iT |bI , bT , s)P (jT , jI |iI , iT , bI , bT , s)

=
∑

iI ,jI

1

22n
P (jT , jI |iI , iT , bI , bT , s)

=
1

22n

∑

iI ,jI

⟨EiI ,iT ,jI ,jT |EiI ,iT ,jI ,jT ⟩

now look at the other:

P (iT , jT |b̄I , bT , s)

=
∑

iI ,jI

P (iI , iT |b̄I , bT , s)P (jT , jI |iI , iT , b̄I , bT , s)

=
∑

iI ,jI

1

22n
P (jT , jI |iI , iT , b̄I , bT , s)

=
1

24n

∑

iI ,jI ,k

l,m,n

(−1)iI ·(k⊕ m)+jI ·(l⊕ n)⟨Em,iT ,n,jT |Ek,iT ,l,jT ⟩

Since, P (iI , iT |b̄I , bT , s) = P (iI , iT |bI , bT , s) = 1
22n because Alice chooses all those

parameters independently, the sums over iI and jI give delta functions (removing

one factor of 1/22n) and leave you with:

P (iT , jT |b̄I , bT , s) =
1

22n

∑

k,l

⟨Ek,iT ,l,jT |Ek,iT ,l,jT ⟩

= P (iT , jT |bT , bI , s)
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Using the above: P (cI | iT , jT , b̄I , bT , s)P (iT , jT | b, s)

= P (cI | iT , jT , b̄I , bT , s)P (iT , jT | b̄I , bT , s)

= P (cI , iT , jT | b̄I , bT , s)

and the terms inside brackets sum up to

P

[(
|cI | ≥

v̂

2

)
∧
(
|cT |
n

≤ pa

)
| b̄I , bT , s

]

which proves the lemma.

3.8.3 A Proof of Lemma 3.4.5

Let

h(pa, ϵ) =
∑

b

p(b)hb(pa, ϵ)

with

hb(pa, ϵ) = P

[(
|cI |
n

> pa + ϵ

)
∧
(
|cT |
n

≤ pa

)
| b

]

This hb(pa, ϵ) is the probability that the information bits have ϵ more than the

allowed error rate, when the test bits have less than the allowed error rate aver-

aged over all choices of test and information bits, for a particular basis b, and is

given by
∑

c

P

[(
|cI |
n

> pa + ϵ

)
∧
(
|cT |
n

≤ pa

)
| c, b

]
P (c | b)

where c is over all possible error strings on all bits, test and information. Note

that in principle P (c | b), can be calculated but we shall soon see that there is

no need for it.

Now we must note that

P

[(
|cI |
n

> pa + ϵ

)
∧
(
|cT |
n

≤ pa

)
| c, b

]
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does not depend on the attack. And in fact, in the aforementioned expression,

the basis b is superfluous. Once the error string c is fixed, the values |cI |
n and |cT |

n

depend uniquely on the random string s. In fact |cI |
n is the average of a random

sampling without replacement of n bits taken amongst the 2n bits c whose mean

µ is |c|
2n . From Hoeffding [?] we know that

P

[
|cI |
n

− µ ≥ ϵ

2
| c, b

]
≤ e−

1
2 nϵ2 (3.21)

By definition |c| = |cI | + |cT | and so

µ =
|c|
2n

=
|cI |
2n

+
|cT |
2n

Replacing µ by its value in (3.21) and simplifying, equation (3.21) becomes

P

[
|cI |
n

≥ |cT |
n

+ ϵ | c, b

]
≤ e−

1
2 nϵ2 (3.22)

Now, since

(
|cI |
n

> pa + ϵ) ∧ (
|cT |
n

≤ pa) =⇒ |cI |
n

≥ |cT |
n

+ ϵ

we deduce from (3.22) that

P

[(
|cI |
n

> pa + ϵ

)
∧
(
|cT |
n

≤ pa

)
| c, b

]
≤ e−

1
2 nϵ2

and consequently,

hb(pa, ϵ) = P

[(
|cI |
n

> pa + ϵ

)
∧
(
|cT |
n

≤ pa

)
| b

]
≤ e−

1
2 nϵ2

and

h(pa, ϵ) ≤ e−
1
2 nϵ2

3.9 Eve’s Information Versus the disturbance

In this appendix we do not prove Lemma 3.3.2 immediately. We prove it later on,

in the second subsection (the tight bound). For simplicity of the presentation,
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we first prove another Lemma which leads to a loose bound (with an additional

factor of 2r), for which the derivation is simpler. The bulk of the loose bound was

derived in [?], and the tight bound is an improvement over that derivation. The

loose bound lead to a much worse threshold for pallowed (less than 1%, instead of

7.56% derived from the tight bound), and this is the motivation for deriving the

tight bound. One can skip directly to the second subsection if desired.

Both the loose and the tight bound are derived using the fact that the Shannon

distinguishability between the parity 0 density matrix, ρ0, and the parity 1 density

matrix, ρ1, is bounded by the trace norm of ρ0 − ρ1, and using the fact that the

one can easily calculate this trace-norm when the purified states are given by

Eq. 3.8.

3.9.1 The Loose Bound (BBBGM)

We have already defined a purification of Eve’s state: |φiI ⟩ =
∑

l(−1)iI ·l|ηl⟩ The

density matrix for such a |φiI ⟩ is

ρiI = |φiI ⟩⟨φiI | =
∑

l,l′

(−1)iI (l⊕ l′)dldl′ |η̂l⟩⟨η̂l′| (3.23)

Recall that the final key is computed as v ·iI . Eve does not know iI , but she knows

from the announced syndrome that iI is in the coset Cξ for ξ ≡ ξAlice. Hence, in

order to know the key, Eve must distinguish between the states iI = iξ ⊕ c in Cξ

that give parity zero and the states iI = iξ ⊕ c in Cξ that give parity one. For

b ∈ {0, 1} the reduced density matrix is

ρb =
1

2n−(r+1)

∑

c∈C
v(iξ⊕ c)=b

ρiξ⊕ c =

=
1

2n−(r+1)

∑

c∈C
v(iξ⊕ c)=b

∑

l,l′

(−1)(iξ⊕ c)(l⊕ l′)dldl′|η̂l⟩⟨η̂l′|
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where the sum is over c that satisfy both the condition of being a code word, and

the condition of leading to the particular parity b for the PA.

Lemma. Let C be any linear code in {0, 1}n and a ∈ {0, 1}n be such that

a /∈ C⊥ then
∑

c∈C

(−1)c·a = 0 (3.24)

Proof.— Let {w1, . . . , wk} be a basis of C. Define t ∈ {0, 1}k by tα = wα · a, 1 ≤

α ≤ k; a /∈ C⊥ means that t is not the zero string. Let now h : {0, 1}k → C be

defined by h(s) =
∑

1≤ α≤ k sαwα; then h(s) · a =
∑

sαwα · a =
∑

sαtα = s · t and

so
∑

c∈C

(−1)c·a =
∑

s

(−1)h(s)·a =
∑

s

(−1)s·t = 0

Lemma The Shannon distinguishability between the parity 0 and the parity 1

of the information bits over any PA string, v, is bounded above by the following

inequality:

SDv ≤ 2r

⎡

⎣α +
1

α

∑

|l|≥ v̂
2

d2
l

⎤

⎦, (3.25)

where v̂ is the minimum weight of v ⊕ vs for any vs ∈ Ss, and α is any positive

constant.

Proof.— The Shannon distinguishability between the parity 0 and the parity

1 is bounded by the trace norm of ρ0 − ρ1 ([?, ?]). Let us calculate the required
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bound:

ρ0 − ρ1 =
1

2n−(r+1)

∑

c∈C

(−1)(iξ⊕ c)v
∑

l,l′

(−1)(iξ⊕ c)(l⊕ l′)dldl′|η̂l⟩⟨η̂l′|

=
1

2n−(r+1)

∑

l,l′

(
∑

c∈C

(−1)(iξ⊕ c)(l⊕ l′⊕ v)

)
dldl′|η̂l⟩⟨η̂l′|

=
1

2n−(r+1)

∑

l,l′

(−1)iξ(l⊕ l′⊕ v)

(
∑

c∈C

(−1)c(l⊕ l′⊕ v)

)
dldl′|η̂l⟩⟨η̂l′|

From equation (3.24) we know the sum over C is zero except when l ⊕ l′ ⊕ v ∈

C⊥ = Ss, i.e. when l′ = l ⊕ v ⊕ vs for some vs ∈ Ss. As a consequence:

ρ0 − ρ1 = 2
∑

vs∈Ss

(−1)iξ·vs
∑

l

dldl⊕ v⊕ vs|η̂l⟩⟨η̂l⊕ v⊕ vs |

The trace norm of this matrix serves as a bound on the information Eve receives.

SDv ≤ 1

2
Tr|ρ0 − ρ1|

Using the above and making use of the triangle inequality for the Trace norm,

the following is obtained:

SDv ≤ Tr
∣∣
∑

vs∈Ss

(−1)iξ ·vs
∑

l

dldl⊕ v⊕ vs |η̂m⟩⟨η̂m⊕ v⊕ vs |
∣∣

=
1

2
Tr|

∑

vs∈Ss

(−1)iξ·vs
∑

l

dldl⊕ v⊕ vs (|η̂l⟩⟨η̂l⊕ v⊕ vs | + |η̂l⊕ v⊕ vs⟩⟨η̂l|) |

≤
∑

vs∈Ss

∑

l

dldl⊕ v⊕ vs(
1

2
Tr| (|η̂l⟩⟨η̂l⊕ v⊕ vs | + |η̂l⊕ v⊕ vs⟩⟨η̂l|) | )

=
∑

vs∈Ss

∑

l

dldl⊕ v⊕ vs

Now we will concern ourselves with bounding each of the terms
∑

l dldl⊕ ws, where
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ws = v ⊕ vs.

∑

l

dldl⊕ ws =
∑

|l|> |ws|
2

dldl⊕ ws +
∑

|l|≤ |ws|
2

dldl⊕ ws

=
∑

|l|> |ws|
2

dldl⊕ ws +
∑

|l′⊕ ws|≤ |ws|
2

dl′⊕ wsdl′

If |l′ ⊕ ws| ≤ |ws|
2 then |ws| = |l′ ⊕ ws ⊕ l′| ≤ |l′ ⊕ ws| + |l′| ≤ |ws|

2 + |l′| and so

|l′| ≥ |ws|
2 . Therefore,

∑

|l|> |ws|
2

dldl⊕ ws +
∑

|l′⊕ ws|≤ |ws|
2

dl′⊕ wsdl′ ≤
∑

|l|≥ |ws|
2

dldl⊕ ws +
∑

|l′|≥ |ws|
2

dl′⊕ wsdl′

= 2
∑

|l|≥ |ws|
2

dldl⊕ ws

=
1

α

∑

|l|≥ |ws|
2

2dl(αdl⊕ ws)

≤ 1

α

∑

|l|≥ |ws|
2

[d2
l + α2d2

l⊕ ws
]

= α
∑

|l|≥ |ws|
2

d2
l⊕ ws

+
1

α

∑

|l|≥ |ws|
2

d2
l

where the last three steps are true for any real α, and real dl, dl⊕ ws.

Due to the fact that the d2
l form a probability distribution, any sum of them

is less than or equal to unity.

∑

l

dldl⊕ ws ≤ α +
1

α

∑

|l|≥ |ws|
2

d2
l

≤ α +
1

α

∑

|l|≥ v̂
2

d2
l

where v̂ = minvs |v ⊕ vs| (remember that ws = v ⊕ vs). Summing over all vs ∈ Ss
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now leaves:

SDv ≤ 2r

⎡

⎣α +
1

α

∑

|l|≥ v̂
2

d2
l

⎤

⎦ (3.26)

QED

The BBBGM result gives an upper bound for Eve’s information about the

bit defined by this privacy amplification string v. To prove security in case of

m bits in the final key, we prove security of each bit as follows: for each bit in

the key we assume that Eve is given the ECC information and in addition, she is

also given all the other bits in the key. This is like using a code with more parity

check strings 2r+m−1 (or less code words), hence the previous result holds with

SDv ≤ 2r+m−1

⎡

⎣α +
1

α

∑

|l|≥ v̂
2

d2
l

⎤

⎦ . (3.27)

Following the proof of the above Lemma, one can see that it is not a tight

bound since we sum over 2r terms while most of them are much smaller than the

term (terms) with the minimal v̂.

3.9.2 Eve’s Information on One Bit – Tight Bound

We now show an improved technique, by defining a basis for the purification of

the code words (instead of a basis for all the purification).

We will now make a finer analysis of Eve’s state after she learns the parity

matrix and the syndrome ξ = ξAlice. We start again from the equality:

|φiI ⟩ =
∑

l

(−1)iI ·l|ηl⟩ (3.28)

First, any l ∈ {0, 1}n has a unique representation l = m ⊕ n with m ∈ Sc
s and

n ∈ Ss. Next, for any iI ∈ Cξ we have iI = iξ ⊕ c for some c ∈ C and thus for any
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n ∈ Ss we get iI · n = (iξ ⊕ c) · n = iξ · n [because n ∈ Ss = C⊥ ]. Putting those

two remarks together we get:

|φiI ⟩ =
∑

m∈Sc
s

∑

n∈Ss

(−1)iI ·(m⊕ n)|ηm⊕ n⟩

=
∑

m∈Sc
s

(−1)iI ·m
∑

n∈Ss

(−1)iI ·n|ηm⊕ n⟩

=
∑

m∈Sc
s

(−1)iI ·m
∑

n∈Ss

(−1)iξ·n|ηm⊕ n⟩

=
∑

m∈Sc
s

(−1)iIm|η′
m⟩

where η′
m is of course defined for each m ∈ Ss by

|η′
m⟩ =

∑

n∈Ss

(−1)iξ·n|ηm⊕ n⟩ (3.29)

Now, since ⟨ηm1 ⊕ n1 |ηm2 ⊕ n2 ⟩ = 0 except when m1 ⊕ n1 = m2 ⊕ n2, which implies

m1 = m2, the ηm’s are orthogonal. If d′
m is the length of η′

m, we can then write

η′
m = d′

mη̂′
m

with the η̂′
m’s normalized and orthogonal and

d′2
m =

∑

n∈Ss

d2
m⊕ n

and the density matrix for |φiI ⟩ reduces to:

ρiI = |φiI⟩⟨φiI | =

=
∑

m,m′∈Sc
s

(−1)iI(m⊕ m′)d′
md′

m′ |η̂′
m⟩⟨η̂′

m′|

Recall that the final key is computed as b = v · iI . Of course, Eve does not

know iI , but she knows from the announced syndrome ξ = ξAlice that iI ∈ Cξ =
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{iξ ⊕ c | c ∈ C} and wants to determine b. For b ∈ {0, 1} the reduced density

matrix is

ρb =
1

2n−(r+1)

∑

c∈C
(iξ⊕ c)v=b

ρiξ⊕ c =

=
1

2n−(r+1)

∑

c∈C
(iξ⊕ c)v=b

∑

m,m′∈Sc
s

(−1)(iξ⊕ c)(m⊕ m′)d′
md′

m′ |η̂′
m⟩⟨η̂′

m′ |

Lemma 3.9.1 3.3.2 The Shannon distinguishability between the parity 0 and

the parity 1 of the information bits over any PA string, v, is bounded above by

the following inequality:

SDv ≤ α +
1

α

∑

|l|≥ v̂
2

d2
l , (3.30)

where v̂ is the minimum weight of v ⊕ vs for any vs ∈ Ss, and α is any positive

constant.

Proof: The Shannon distinguishability between the parity 0 and the parity 1 is

bounded by the trace norm of ρ0 − ρ1:

ρ0 − ρ1 =
1

2n−(r+1)

∑

c∈C

(−1)(iξ⊕ c)v
∑

m,m′∈Sc
s

(−1)(iξ⊕ c)(m⊕ m′)d′
md′

m′ |η̂′
m⟩⟨η̂′

m′ |

=
1

2n−(r+1)

∑

m,m′∈Sc
s

(
∑

c∈C

(−1)(iξ⊕ c)(m⊕ m′⊕ v)

)

d′
md′

m′ |η̂′
m⟩⟨η̂′

m′ |

=
1

2n−(r+1)

∑

m,m′∈Sc
s

(−1)iξ(m⊕ m′⊕ v)

(
∑

c∈C

(−1)c·(m⊕ m′⊕ v)

)
d′

md′
m′|η̂′

m⟩⟨η̂′
m′|

Applying equality (3.24) the sum indexed by c is zero except when m ⊕ m′ ⊕ v ∈

C⊥ = Ss. But m ⊕ m′ ⊕ v ∈ Sc
s because m, m′ and v ∈ Sc

s . This implies

m⊕ m′⊕ v ∈ Ss∩Sc
s = {0} and thus m′ = m⊕ v. Of course, with m⊕ m′⊕ v = 0, the

74



sum indexed by c is 2k = 2n−r and the coefficient (−1)iξ(m⊕ m′⊕ v) is 1. Therefore

ρ0 − ρ1 takes the very simple form:

ρ0 − ρ1 = 2
∑

m∈Sc
s

d′
md′

m⊕ v|η̂′
m⟩⟨η̂′

m⊕ v|

As usual, the trace norm of this matrix serves as a bound on the information Eve

receives. It is

SDv ≤ 1

2
Tr|ρ0 − ρ1|

First note that v is in Sc
s and Sc

s is closed under addition. Further the set Sc
s

is the same as v ⊕ Sc
s. Then the set defined by m ∈ Sc

s is identical to the set

m ⊕ v ∈ Sc
s. We will use this identity to obtain the following inequality:

SDv ≤ Tr|
∑

m∈Sc
s

d′
md′

m⊕ v|η̂′
m⟩⟨η̂′

m⊕ v||

=
1

2
Tr|

∑

m∈Sc
s

d′
md′

m⊕ v|η̂′
m⟩⟨η̂′

m⊕ v| +
∑

m⊕ v∈Sc
s

d′
md′

m⊕ v|η̂′
m⟩⟨η̂′

m⊕ v||

=
1

2
Tr|

∑

m∈Sc
s

d′
md′

m⊕ v|η̂′
m⟩⟨η̂′

m⊕ v| +
∑

m∈Sc
s

d′
m⊕ vd

′
m|η̂′

m⊕ v⟩⟨η̂′
m||

=
1

2
Tr|

∑

m∈Sc
s

d′
md′

m⊕ v(|η̂′
m⟩⟨η̂′

m⊕ v| + |η̂′
m⊕ v⟩⟨η̂′

m|)|

≤ 1

2

∑

m∈Sc
s

d′
md′

m⊕ vTr||η̂′
m⟩⟨η̂′

m⊕ v| + |η̂′
m⊕ v⟩⟨η̂′

m||

=
∑

m∈Sc
s

d′
md′

m⊕ v

Now we wish to give a bound in terms of the original d’s. Let us define

Γv̂ = {m ∈ Sc
s | |m ⊕ n| ≥ v̂/2 ∀n ∈ Ss}
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where v̂ was defined in the statement of the lemma. We claim that for any

m ∈ Sc
s, either m ∈ Γv̂ or m ⊕ v ∈ Γv̂. Indeed, if it were not so, there would be

n1 ∈ Ss and n2 ∈ Ss such that |m ⊕ n1| < v̂/2 and |m ⊕ v ⊕ n2| < v̂/2. But then

|n1 ⊕ n2 ⊕ v| = |m ⊕ n1 ⊕ m ⊕ n2 ⊕ v| < v̂/2 + v̂/2 which, since n1 ⊕ n2 ∈ Ss,

contradicts the definition of v̂.

We now use the claim to break up the sum bounding SDv and prove the

lemma.

SDv ≤
∑

m∈Sc
s

d′
md′

m⊕ v

≤

⎛

⎜⎜⎝
∑

m∈Sc
s

m∈Γv̂

d′
md′

m⊕ v +
∑

m∈Sc
s

m⊕ v∈Γv̂

d′
md′

m⊕ v

⎞

⎟⎟⎠

=

⎛

⎜⎜⎝
∑

m∈Sc
s

m∈Γv̂

d′
md′

m⊕ v +
∑

m⊕v∈Sc
s

m∈Γv̂

d′
md′

m⊕ v

⎞

⎟⎟⎠

= 2
∑

m∈Γv̂

d′
md′

m⊕ v

=
2

α

∑

m∈Γv̂

(αd′
m⊕ v)(d

′
m)

≤ α
∑

m∈Γv̂

d′
m⊕ v

2 +
1

α

∑

m∈Γv̂

d′
m

2

≤ α
∑

m∈Sc
s ,n∈Ss

|m⊕ n|≥ v̂
2

d2
m⊕ n⊕ v +

1

α

∑

m∈Sc
s ,n∈Ss

|m⊕ n|≥ v̂
2

d2
m⊕ n

= α
∑

|l|≥ v̂
2

d2
l⊕ v +

1

α

∑

|l|≥ v̂
2

d2
l

Due to the fact that the d2
l form a probability distribution, any sum of them is

less than or equal to unity.

SDv ≤ α +
1

α

∑

|l|≥ v̂
2

d2
l (3.31)
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QED

Note that the number of parity check strings r doesn’t appear in the final

expression, and this might seem surprising. However, it does appear there im-

plicitly, since increasing r by one increases the number of parity check strings

from 2r − 1 to 2r+1 − 1, hence potentially decreases v̂.

3.10 Security of the Entire Key

We give a proof that bit-wise security implies security of the entire string. This

is first shown classically, and then making use of Shannon Distinguishability, the

same bound holds for quantum bits.

3.10.1 Classical Information Theory

Lemma 3.10.1 For independent random variables Ai, i ∈ (1, 2, . . . , m) and ran-

dom variable E

I(Ai; E|A1,A2, . . . ,Ai−1) ≤ I(Ai; E|A1,A2, . . . ,Ai−1,Ai+1, . . . ,Am)

Proof: First we define a few sets:

A<i ≡ {A1,A2, . . . ,Ai−1}

A>i ≡ {Ai+1,Ai+2, . . . ,Am}

A ̸=i ≡ {A1,A2, . . . ,Ai−1,Ai+1, . . . ,Am}

Of course, A ̸=i = A<i ∪ A>i. In this notation the lemma says: I(Ai; E|A ̸=i) −

I(Ai; E|A<i) ≥ 0
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I(Ai; E|A ̸=i) − I(Ai; E|A<i)

= H(Ai|A ̸=i) − H(Ai|E ,A ̸=i) − H(Ai|A<i) + H(Ai|E ,A<i)

= (H(Ai|E ,A<i) − H(Ai|E ,A ̸=i)) − (H(Ai|A<i) − H(Ai|A ̸=i))

= (H(Ai|E ,A<i) − H(Ai|E ,A<i,A>i))

− (H(Ai|A<i) − H(Ai|A<i,A>i))

= I(Ai;A>i|E ,A<i) − I(Ai;A>i|A<i)

Due to the independence of Ai, I(Ai;A>i|A<i) = 0. Since any information is

non-negative, I(Ai;A>i|E ,A<i) ≥ 0. Hence I(Ai;A>i|E ,A<i)−I(Ai;A>i|A<i) ≥

0 QED

Theorem 3.10.1 For independent random variables Ai, i ∈ (1, 2, . . . , m) and

random variable E

I(A1,A2, . . . ,Am; E) ≤ m maxi(I(Ai; E|A1,A2, . . . ,Ai−1,Ai+1, . . . ,Am))

Proof: Here we simply apply the chain rule for mutual information[?] and we

then apply the above lemma. We will use the same notions introduced in the

previous proof.

I(A1,A2, . . . ,Am; E) =
∑

i

I(Ai; E|A<i)

≤
∑

k

I(Ak; E|A ̸=k)

≤
∑

k

maxi(I(Ai; E|A ̸=i))

= m maxi(I(Ai; E|A ̸=i))
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QED

Lemma 3.10.2 For independent random variables Ai, i ∈ (1, 2, . . . , m) and ran-

dom variable E

I(A1,A2, . . . ,Am; E) ≤ m maxi,a̸=i
(I(Ai; E|A ̸=i = a̸=i)). Where a̸=i is a set of

outcomes for all A except i.

Proof: We must simply prove I(Ai; E|A ̸=i) ≤ maxa̸=i
I(Ai; E|A ̸=i = a̸=i) and

then apply the previous theorem.

I(Ai; E|A ̸=i) =
∑

a̸=i

P (A ̸=i = a̸=i)I(Ai; E|A ̸=i = a̸=i)

≤
∑

a̸=i

P (A ̸=i = a̸=i)maxa′
̸=i

I(Ai; E|A ̸=i = a′
̸=i)

= maxa̸=i
I(Ai; E|A ̸=i = a̸=i)

QED

3.10.2 Quantum Connection

We have used classical information theory to prove the above identities. In the

quantum setting, Eve has a quantum system that may depend on Alice’s bits,

Ai. The classical formulas are all valid once a particular measurement on the

system (POVM) is fixed by Eve, so that:

I(A1,A2, . . . ,Am; EM) ≤ m maxi,a̸=i
I(Ai; EM |A ̸=i = a̸=i) (3.32)

where EM is the random variable obtained by Eve’s output from her measurement

M . In particular the above is true for any measurement, M̃ , that Eve may

consider optimal to learn the bits of Alice’s key, Ai, all at once.

Now we need the definition of Shannon Distinguishability:

SDi,a̸=i ≡ supMI(Ai; EM |A ̸=i = a̸=i) (3.33)
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Note, a measurement that achieves (or nearly achieves) this upper bound may not

be optimal for eavesdropping on the entire key, but that is of no consequence to

the proof. Therefore, I(Ai; EM |A ̸=i = a̸=i) ≤ SDi,a̸=i for all M and in particular

I(Ai; EM̃ |A ̸=i = a̸=i) ≤ SDi,a̸=i (3.34)

Hence we have a bound for total mutual information for any measurement Eve

might consider optimal:

I(A1,A2, . . . ,Am; EM̃) ≤ m maxi,a̸=i
SDi,a̸=i (3.35)

3.11 Existence of Codes for Both Reliability and Security

Choosing a code which is good when n is large (for constant error rate) is not a

trivial problem in ECC. A Random Linear Code (RLC) is one such code, however,

it does not promise us that the distances are as required, but only gives the desired

distances with probability as close to one as we want. With RLC, we find that

the threshold below which a secure key can be obtained is pallowed ≤ 7.56%.

In order to correct t errors with certainty, a code must have a minimal Ham-

ming distance between the code words d ≥ 2t + 1 so that all original code words,

even when distorted by t errors, can still be identified correctly. For any cT which

passes the test, we are promised (due to Lemma 3.4.5) that the probability of

having t = |cI | > n(pallowed + ϵrel) errors is smaller than h = 2e−(1/2)nϵ2rel .

Thus, we need to choose a RLC that promises a Hamming distance at least

d such that pallowed + ϵrel < t/n = d−1
2n , and then the t errors are corrected except

for a probability smaller than h1 = 2e−(1/2)nϵ2rel .

For any n, r = n − k, and for δ such that H2(δ) < r/n, an arbitrary random

linear code (n, k, d) satisfies d/n ≥ δ, except for a probability (see [?], Theorem
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2.2)

Prob(d/n < δ) ≤ c(δ)√
n

2n(H2 (δ)−r/n) = g1 (3.36)

where c(δ) = 1
1−2δ

√
1−δ
2πδ .

If we choose δ = 2(pallowed + ϵrel) + 1/n then we are promised that the errors

are corrected, except for probability that the error rate is larger than expected

or a bad code was chosen.

Using such a code, ϵrel is now a function of δ so that ϵrel = δ/2−1/(2n)−pallowed

and therefore,

h1 = 2e−(n/4)(δ− 1
n−2pallowed )2 (3.37)

and almost all such codes correct all the errors.

Therefore, the code is reliable except for a probability g1 + h1.

The above result can be improved [?] by taking RLC with distance d − 1 ≥

n(pallowed + ϵrel) (without the factor of 2), since such a code can also correct

t = n(pallowed + ϵrel) errors except for an exponentially small fraction f1 of the

possible errors. We get

f1 = 2e−(n/4)(δ− 1
n−pallowed)2 (3.38)

and it is exponentially small (in the limit of large n) for any δ > pallowed.

Recall that we choose ϵsec such that |v| ≥ 2n(pallowed + ϵsec). Let |v| be the

minimal distance between one PA string and any other parity check string (or

linear combination) taken from ECC and PA. Clearly, the Hamming weight of

the dual code of the ECC, once the PA is also added, provides a lower bound

on |v|. Thus, it is sufficient to demand d⊥ ≥ 2n(pallowed + ϵsec) in order to

prove security. Choosing a RLC for the ECC and PA, one cannot be completely

sure that the distance indeed satisfies the constraint, but this shall be true with
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probability exponentially close to one. We use the dual code (n, r⊥ , d⊥ ), where

r⊥ = n − r − m. Such codes satisfy d⊥ /n ≥ δ⊥ , except for a fraction of

Prob(d⊥ /n < δ⊥ ) ≤ c(δ⊥ )√
n

2n(H2 (δ ⊥ )−(n−r−m)/n) = g2 (3.39)

With δ⊥ = 2(pallowed + ϵsec).

Assuming that Eve gets full information when the code fails we get:

∑

iT ,cT ,b,s

P (T = pass, iT , cT , b, s)I(A; E|iT , cT , b, s) ≤ m
(
2
√

2e−
1
2 nϵ2sec + g2

)

(3.40)

Since the first term is exponentially small we only need look at g2. We also need

to worry about the reliability so we need g1 and f1 to be exponentially small as

well. All of them are exponentially small if the following conditions are met:

H2(δ) − r/n < 0

H2(δ
⊥ ) + r/n + m/n − 1 < 0

Or written another way:

H2(pallowed + ϵrel + 1/n) < r/n

H2(2pallowed + 2ϵsec) + H2(pallowed + ϵrel + 1/n) < 1 − Rsecret

Where Rsecret ≡ m/n. In the limit of large n and ϵ’s close to zero, pallowed <

7.56% satisfies the bound and hence this is our threshold.

Asymptotically, any Rsecret < 1 − H2(2pa) − H2(pa) is secure and reliable for

the given ECC+PA. Note, as pa goes to zero, Rsecret goes to 1, which means all

the information bits are secret.

This threshold is based on the property of the code, and other codes might

give worse thresholds. It is possible to replace the RLC by a code that can be
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decoded and encoded efficiently (e.g., Reed-Solomon concatenated code), and add

random PA strings. The Hamming distance between the PA check-strings and

the ECC check-strings is still bounded below in the same way as for the RLC

(see [?]).

A better threshold can be obtained by using privacy-distillation instead of the

standard ECC+PA approach.

Note that any probability of failure in the classical transmission can be added

in the same way that g2 is added. This is important to prove security in the

case where a fault-tolerant classical transmission is not 100% reliable. It shows

an important advantage over the proof of [?] which is based on fault tolerant

quantum ECC.
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CHAPTER 4

Encryption of Quantum States

4.1 Introduction

In chapter 3 we saw how by using quantum states, or specifically qubits, two

parties could share a key with perfect security. In this chapter we will consider

how two parties could send quantum states with perfect security. The question

we ask is: how many classically secure key bits do Alice and Bob need in order

to encrypt a quantum bit with perfect security, and what operations will they

perform? We consider informationally secure encryption protocols, where any

potential eavesdropper, Eve, will have no information about the original quantum

state, even if she manages to steal or intercept the entire encrypted quantum

data. This scenario is very different from the well-known scheme of quantum

cryptography, which in the usual sense[?, ?] is really a secure expansion of an

existing classical key, using a quantum channel and a pre-selected set of quantum

states. The resulting secure bits might then be used for an encryption algorithm

on classical data. For the tasks targeted in this chapter, we need a method to

make sure that even if the eavesdropper takes the quantum data, she will still

learn nothing about the quantum information. In this case, the eavesdropper

may not care about passing any tests, and may remove the qubits and replace

them with qubits in any state.

We provide a simple method to get informationally secure encryption of any
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quantum state using a classical secret key. This could have several interesting ap-

plications. For example, if we imagine a scenario where good quantum memories

are expensive, one might rent quantum storage. Security in such a public-storage

model would be a high priority. We assume the user cannot store quantum data

herself, but can store classical data. Methods of using trusted centers for quan-

tum cryptography have been developed[?]. Our method would allow a user to

encrypt her quantum data using a classical key and allow a potentially malicious

center to store the data, and yet she would know that the center could learn noth-

ing about her stored quantum data. Additionally, the untrusted center could act

as a quantum communication provider. Several other applications which involve

adaptations of classical cryptographic protocols, such as quantum secret sharing

using classical key, are outlined later in the chapter.

4.2 Encryption of Quantum Data

Alice has a quantum state that she intends either to send to Bob, or to store in a

quantum memory for later use. Eve may intercept the state during transmission

or may access the quantum memory. Alice wants to make sure that even if Eve

receives the entire state, she learns nothing. Toward this end, any encryption

algorithm must be a unitary operation, or more specifically a set of unitary

operations which may be chosen with some distribution. It must be unitary

because one must be able to undo the encryption, and any quantum operation

that is reversible is unitary[?].

The most general scheme is to have a set of M operations, {Uk}, k = 1, . . . , M ,

where each element Uk is a 2n × 2n unitary matrix. This set of unitary operations

is assumed to be known to all, but the classical key, k, which specifies the Uk

that is applied to the n-bit quantum state, is secret. The key is chosen with
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some probability pk and the input quantum state is encrypted by applying the

corresponding unitary operation Uk. In the decryption stage, U †
k is applied to the

quantum state to retrieve the original state.

The input state, ρ, is called the message state, and the output state, ρc, is

called the cipher-state. The protocol is secure if for every input state, ρ, the

output state, ρc, is the totally mixed state:

ρc =
∑

k

p(k)UkρU †
k =

1

2n
I . (4.1)

The reason that ρc must be the totally mixed state is two fold. First, for security

all inputs must be mapped to the same output density matrix (because ρc must

be independent of the input). Second, the output must be the totally mixed state

because the totally mixed state is clearly mapped to itself by all encryption sets.

To see that this is secure, we note that Eve could prepare an n-bit totally

mixed state on her own. Since two processes that output the same density ma-

trices are indistinguishable[?], anything that can be learned from ρc can also be

learned from the totally mixed state.

The design criterion is to find such a distribution of unitary operations {pk, Uk}

that will map all inputs to the totally mixed state. A construction of such a map

is given next.

4.3 A Quantum One Time Pad

The algorithm is simple: for each qubit, Alice and Bob share two random secret

bits. We assume these bits are shared in advance. If the first bit is 0 she does

nothing, else she applies σz to the qubit. If the second bit is 0 she does nothing,

else she applies σx. Now she sends the qubit to Bob. She continues this protocol

for the rest of the bits.
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We now show that this quantum one time pad protocol is secure. First note

that this bit-wise protocol can be expressed in terms of our general quantum

encryption setup by choosing pk = 1/22n and Uk = XαZβ (α, β ∈ {0, 1}n), where

Xα =
n⊗

i=1

σα(i)
x and Zβ =

n⊗

i=1

σβ(i)
z . Thus Xα corresponds to applying σx to the

bits in positions given by the n-bit string α, and similarly for Zβ. Next, define

the inner product of two matrices, M1 and M2, as Tr(M1M
†
2). If the set of all

2n × 2n matrices is seen as an inner product space (with respect to the preceding

inner product), then one can easily verify that the set of 22n unitary matrices

{XαZβ} forms an orthonormal basis. Expanding any message state, ρ, in this

XαZβ basis gives:

ρ =
∑

α,β

aα,βXαZβ , (4.2)

where aα,β = Tr(ρZβXα)/2n. Using this formalism, it is clear that the given

choice of pk and Uk satisfies eqn. (4.1), and hence the underlying protocol is

secure:

∑

k

p(k)UkρU †
k =

1

22n

∑

γ,δ

XγZδρZδXγ

=
1

22n

∑

α,β

aα,β

∑

γ,δ

XγZδXαZβZδXγ

=
1

22n

∑

α,β

aα,β

∑

γ,δ

(−1)α·δ⊕ γ·βXαZβ

=
∑

α,β

aα,βδα,0δβ,0X
αZβ

= a0,0I =
Tr(ρ)

2n
I =

1

2n
I (4.3)
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4.4 An Equivalent Problem

Since there are a continuum of valid density matrices, the quantum security crite-

rion (4.1) can be unwieldy to deal with. Here we introduce a modified condition

that is necessary and sufficient for security.

Lemma 4.4.1 An encryption set {pk, Uk} satisfies eqn. (4.1) if and only if it

satisfies:
M∑

k=1

p(k)UkX
αZβU †

k = δα,0δβ,0I . (4.4)

Proof: To show that the above condition is sufficient, express ρ in the XαZβ

basis, as was done in eqn. (4.3) and apply the eqn. (4.4).

M∑

k=1

p(k)UkρU †
k =

M∑

k=1

p(k)Uk

(
∑

α,β

aα,βXαZβ

)
U †

k

=
∑

α,β

aα,β

M∑

k=1

p(k)UkX
αZβU †

k

=
∑

α,β

aα,βδα,0δβ,0I

= a0,0I =
Tr(ρ)

2n
I =

1

2n
I

To show that the modified condition eqn. (4.4), is necessary is somewhat

more involved. First let us introduce some new notations:

ρi =
I + σi

2
and ρmix =

I

2
.

The proof may be obtained by induction. Suppose all Xα with |α| ≤ k are

mapped to zero by the encryption process. Now consider the following product

state of n − k − 1 mixed states, with exactly k + 1 pure states ρx:

ρ = ρmix ⊗ ρmix ⊗ . . . ⊗ ρmix ⊗ ρx ⊗ ρx ⊗ . . . ⊗ ρx
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By expanding the above becomes:

ρ =
I

2n
+

1

2n

2k−1∑

α=1

Xα +
1

2n
X2k+1−1

In the above we use decimal numbers where before we defined Xα with α in

binary; hence X3 = X00...011. When the above ρ is encrypted we know that I
2n is

mapped to itself. By assumption Xα with |α| ≤ k is mapped to zero, hence the

sum in the expansion of ρ disappears. Since ρ must be mapped to I
2n , then the

last term in the above, which is Xα with |α| = k + 1, must be mapped to zero.

By permuting the initial input states, all Xα with |α| = k + 1 must be mapped

to zero. The case where k = 1 is our base case. By induction all Xα are mapped

to zero.

If x is replaced by z in the above, then all Zβ are mapped to zero also. If x

is replaced by y and using the fact that all Xα and Zβ are mapped to zero, one

sees that all XαZβ are mapped to zero, which proves the lemma.

Thus, by using a basis for the set of 2n× 2n matrices, the condition for security

becomes discrete, and only 22n equations need to be satisfied by the set {pk, Uk}.

The above lemma will be useful for showing necessary conditions on encryption

sets.

4.5 Characterization and Optimality of Quantum One-

Time Pads

So far, we have provided one quantum encryption protocol based on bit-wise Pauli

rotations, which uses 2n random classical bits in order to encrypt n quantum bits.

In this section we explore the following questions: (1) What are some of the other
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choices of {pk, Uk} that can be used to perform quantum encryption? In general,

can one precisely characterize all possible valid choices of {pk, Uk}? and (2) Is

the simple quantum one time pad protocol optimal? That is, can one encrypt

n-bit quantum states using less than 2n random secret classical bits? First, we

prove a sufficient condition for choosing a secure encryption protocol, and then

provide a corresponding necessary condition as well. In particular, we show that

one cannot perform secure encryption of n-bit quantum states using less than 2n

random classical bits.

Lemma 4.5.1 Any unitary orthonormal basis for the 2n × 2n matrices uniformly

applied encrypts n quantum bits.

Proof: We can always write the matrices, Uk, in terms of the XαZβ basis as

Uk =
∑

α,β

Ck
α,βXαZβ . (4.5)

Since these Uk’s form an orthonormal basis, the 22n × 22n transformation matrix

C, comprising of the transformation coefficients, is a unitary matrix. Hence, the

rows and columns of C are orthonormal:

M∑

k=1

Ck
α,β(Ck

γ,δ)
∗ = δα,γδβ,δ and

∑

α,β

Ck
α,β(C l

α,β)∗ = δk,l . (4.6)
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By substitution of Uk in (4.1) the lemma is obtained:

1

22n

∑

k

UkρU †
k =

1

22n

∑

k

(
∑

α,β

Ck
α,βXαZβ

)
ρ

(
∑

γ,δ

Ck
γ,δ

∗
ZδXγ

)

=
1

22n

∑

k

∑

α,β

∑

γ,δ

Ck
α,βCk

γ,δ
∗
XαZβρZδXγ

=
1

22n

∑

α,β

∑

γ,δ

(
∑

k

Ck
α,βCk

γ,δ
∗
)

XαZβρZδXγ

=
1

22n

∑

α,β

∑

γ,δ

δα,γδβ,δX
αZβρZδXγ

=
1

22n

∑

α,β

XαZβρZβXα

=
1

2n
I

Lemma 4.5.2 Given any quantum encryption set, {pk, Uk}, k = 1, · · · , M ,

(i.e.,
∑

k

pk = 1, Uk is unitary, and eqns. (4.1) and (4.4) are satisfied), let

Ũk =
√

pkUk =
∑

α,β

C̃k
α,βXαZβ, and let C̃ be the M × 22n transformation ma-

trix, comprising of the transformation coefficients C̃k
α,β. Then M ≥ 22n, and

C̃†C̃ =
1

22n
I22n × 22n .
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Proof: {pk, Uk} satisfies eqns. (4.1) and (4.4). Hence, for every ℓ, m ∈ {0, 1}n,

δℓ,0δm,0I =
M∑

k=1

p(k)UkX
ℓZmU †

k

=
M∑

k=1

ŨkX
ℓZmŨk

†

=
M∑

k=1

∑

α,β

∑

γ,δ

C̃k
α,β(C̃k

γ,δ)
∗XαZβXℓZmZδXγ

=
∑

α,β

∑

γ,δ

(−1)β·ℓ+γ·(β+δ+m)

(
M∑

k=1

C̃k
α,β(C̃k

γ,δ)
∗

)

Xα+γ+ℓZβ+δ+m

=
∑

p,q

(
∑

α,β

(−1)β·ℓ+(p+ℓ+α)·q

(
M∑

k=1

C̃k
α,β(C̃k

α+p+ℓ,β+q+m)∗
))

XpZq.

Using the linear independence of the XpZq, only the identity component is non-

zero. Hence security implies:

δℓ,0δm,0δp,0δq,0 =
∑

α,β

(−1)β·ℓ+α·q

(
M∑

k=1

C̃k
α,β(C̃k

α+p+ℓ,β+q+m)∗
)

=
∑

α,β,γ,δ

(−1)β·ℓ+α·qδγ,α+p+ℓδδ,β+q+m

(
M∑

k=1

C̃k
α,β(C̃k

γ,δ)
∗

)

(4.7)

As it will be evident, the second step in the above equation will be used to

introduce a linear algebra formulation of the problem. Now, let

Ψ(α,β),(γ,δ) =
M∑

k=1

C̃k
α,β(C̃k

γ,δ)
∗ ,

which is the standard inner product of the (α, β)th and the (γ, δ)th columns of C̃

or
(
C̃†C̃

)

(α,β),(γ,δ)
, and let

M(ℓ,m,p,q),(α,β,γ,δ) = (−1)β·ℓ+α·qδγ,α+p+ℓδδ,β+q+m .

Eqn. (4.7) can now be written as a set of 24n linear equations: MΨ = [1 0 · · · 0 ]T ,

where Ψ is the 24n × 1 vector consisting of all the possible inner products of pairs
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of columns of C̃, and M is a 24n × 24n matrix with elements from the set 1, 0,−1.

Next we observe that a matrix A is orthogonal if and only if
∑

j Ai,jAi′,j = A2
i δi,i′,

where Ai is the norm of the ith row (which must be greater than zero). One can

easily verify that M is an orthogonal matrix:

∑

α,β,γ,δ

M(ℓ,m,p,q),(α,β,γ,δ)M(ℓ′,m′,p′,q′),(α,β,γ,δ)

=
∑

α,β,γ,δ

(−1)β·ℓ+α·qδγ,α+p+lδδ,β+q+m(−1)β·ℓ′+α·q′δγ,α+p′+l′δδ,β+q′+m′

=
∑

α,β,γ,δ

(−1)β·(ℓ+ℓ′)+α·(q+q′)δγ,α+p+lδδ,β+q+mδγ,α+p′+l′δδ,β+q′+m′

=
∑

α,β

(−1)β·(ℓ+ℓ′)+α·(q+q′)δp+l,p′+l′δq+m,q′+m′

= 22nδl,l′δq,q′δp+l,p′+l′δq+m,q′+m′

= 22nδl,l′δq,q′δp,p′δm,m′ .

In showing the above we have also found the inverse of M. The orthonormality

of M means that MMT = 22nI, and hence M−1 = MT /22n. Therefore, Ψ=

MT [1 0 ···0 ]T

22n , which means Ψ is the first row of M renormalized:

Ψ(α,β),(γ,δ) =
M(0,0,0,0)(α,β,γ,δ)

22n
=

1

22n
δα,γδβ,δ .

Since
(
C̃†C̃

)

(α,β),(γ,δ)
= Ψ(α,β),(γ,δ) we have

C̃†C̃ =
1

22n
I22n × 22n .

Since I22n × 22n is a full rank matrix, then C̃ must have at least as many rows as

columns. C̃ has 22n columns so M ≥ 22n.

Theorem 4.5.3 Any given quantum encryption set, {pk, Uk}, k = 1, · · · , M ,

(i.e.,
∑

k

pk = 1, Uk is unitary, and eqns. (4.1) and (4.4) are satisfied) has:

H(p1, · · · , pM) =
M∑

i=1

pi log
1

pi
≥ 2n.
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Hence, one must use at least 2n random classical bits for any quantum encryp-

tion. Additionally, if M = 22n, then pk = 1
22n and Uk’s form an orthonormal

basis. Hence, a set {pk, Uk} involving only 2n secret classical bits is a quantum

encryption set if and only if the unitary matrix elements form an orthonormal

basis, and they are all equally likely.

Proof: By Lemma 4.5.2 we have that

C̃†C̃ =
1

22n
I22n × 22n .

Using a singular value decomposition[?] of C̃, we have the following relationships:

C̃ = WΛV †, C̃†C̃ = V (Λ†Λ)V †, and C̃C̃† = W (ΛΛ†)W † ,

where W and V are M × M and 22n × 22n unitary matrices, respectively, and Λ is

an M × 22n diagonal rectangular matrix: Λ(i, j) = λiδi,j.Note that Λ†Λ and ΛΛ†

are real diagonal matrices and have the same non-zero elements; hence, C̃†C̃ and

C̃C̃† have the same non-zero eigenvalues. Since C̃†C̃ has 22n repeated eigenvalues

(= 1
22n ) and M ≥ 22n,C̃C̃† has 22n repeated eigenvalues (= 1

22n ) and the rest of

its M − 22n eigenvalues are 0. Also note that the diagonal entries of C̃C̃† are the

probabilities pk’s and hence,

pk =
Tr(ŨkŨ

†
k)

2n
= (C̃C̃†)k,k =

1

22n

22n∑

i=1

|Wi,k|2 ≤
1

22n
.

The above uses the facts that since W is unitary,
∑M

i=1 |Wi,k|2 = 1 and that

M ≥ 22n. Hence,

H(p1, · · · , pM) =
M∑

i=1

pi log
1

pi
≥ 2n

M∑

i=1

pi = 2n .

In the particular case where M = 22n, we have C̃C̃† = C̃†C̃ =
1

22n
I22n × 22n . Hence

Tr(ŨkŨ
†
j )

2n
= δk,j

1

22n
,
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which gives pk = 1
22n , and that the set {Uk} necessarily forms an orthonormal

basis. The proof is completed by observing that by lemma 4.5.1 any unitary

orthonormal basis applied uniformly is sufficient.

4.6 Encryption vs. Teleportation and Superdense Coding

One of the most interesting results in quantum information theory is the tele-

portation of quantum bits by shared EPR pairs and classical channels[?]. The

quantum one time pad described in Section 4.3 could be implemented using the

usual teleportation scheme by encrypting the classical communications with a

one time pad. Hence, teleportation gives one example of a quantum encryp-

tion algorithm. In the original teleportation paper[?] a proof that two classical

bits are required to teleport is given. The proof is based on a construction that

gives superluminal communication if teleportation can be done with less than

two bits. This proof however does not imply that all quantum encryption sets

require 2n bits. To do so would require one to prove that all quantum encryp-

tion sets correspond to a teleportation protocol. On the other hand, as we show

next, all teleportation protocols correspond to a quantum encryption set; hence,

Theorem 4.5.3 provides a new proof of optimality of teleportation.

A general teleportation scheme can be described as follows: Alice and Bob

share a pure state comprising 2n qubits, ρAB, such that the traced out n-bit

states of Alice and Bob satisfy: ρA = ρB = 1
2n I. Next, Alice receives an unknown

n-bit quantum state ρ, and performs a joint measurement (i.e., on ρ and ρA),

which produces one of a fixed set of outcomes mk, k = 1, . . . , M , each with

probability pk. The particular outcome mk is classically communicated to Bob

using H(p1, . . . , pM) bits. Bob performs a corresponding unitary operation Uk on

his state to retrieve ρ. Hence, after Alice’s measurement (and before Bob learns
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the outcome), Bob’s state can be expressed as ρB = 1
2n I =

M∑

k=1

p(k)UkρU †
k , which

is exactly the encrypted state of the message, ρ, defined in Eqn. (4.1). Hence,

every teleportation scheme corresponds to an encryption protocol {pk, Uk}. Since

we prove that all quantum encryption sets require 2n classical bits, then all

teleportation schemes must also require 2n classical bits. Note that our proof

only relies on the properties of the underlying vector spaces.

Superdense coding[?] also has a connection to quantum encryption. Consider

the case where Alice asks Bob to encrypt something and then Alice wishes to

learn the key that Bob used to encrypt. In the case of the classical one time pad

[?] c = m ⊕ k, and so given a message and it’s accompanying ciphertext, one

learns the key: k = m ⊕ c. Quantumly, each quantum bit has two classical key

bits to learn. Due to Holevo’s theorem[?] it may seem that this implies that there

is no way to learn the classical key exactly. This intuition is not correct. Alice

can learn Bob’s key in the following way. Alice prepares n singlets and gives half

of each singlet to Bob. Bob encrypts them using the simple quantum one time

pad and returns them to Alice. Alice can learn the key exactly by measuring

each former singlet in the bell basis. The outcome would tell Alice exactly which

transformation Bob applied. This protocol corresponds exactly to the superdense

coding scheme[?].

Interestingly, some insight is gained as to where the factor of two between

the number of classical and quantum bits comes from in both encryption and

teleportation. In the case of classical bits, ρ is diagonal. A basis for all diagonal

matrices is Zβ. Hence, for encryption of classical bits there are only 2n equations.

In the quantum case, by lemma 4.4.1, there are 22n equations to satisfy, so it is not

too surprising that there are twice as many classical bits needed. Equivalently, the

log of the size of the space is twice as large quantumly as opposed to classically.
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The proof given here could be particularized to give a new proof of Shannon’s

original result on informationally secure classical encryption[?].

4.7 Discussion

We have presented an algorithm for using 2n secret classical bits to secure n quan-

tum bits. These encrypted quantum bits may now be held by an untrusted party

with no danger that information may be learned from these bits. Any number of

applications may be imagined for this algorithm, or class of algorithms {pk, Uk}.

For instance, rather than using random classical data of size 2n, one could use

a secret key ciphers[?] or stream ciphers[?] to keep a small finite classical key,

for instance 256 bits, to generate pseudo-random bits to encrypt quantum data.

In fact, these notions allow for straight-forward generalizations of many classi-

cal protocols to quantum data. Quantum secret sharing has been developed[?]

that may be used to share quantum secrets. Classical secret sharing schemes

are known that are informationally secure[?]. By encrypting a quantum state of

n bits with 2n classical bits, and then using classical secret sharing on the 2n

bits, one may use these informationally secure classical methods in the quantum

world. This protocol would allow users with only classical resources to perform

secret sharing given an untrusted center to store the quantum data. One ap-

plication independently suggested by Crépeau et. al.[?] is to build quantum bit

commitment schemes based on computationally secure classical bit commitment

schemes.
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CHAPTER 5

Mutually Unbiased Bases for Quantum States

5.1 Introduction

A d–level quantum system is described by a density operator ρ that requires

d2−1 real numbers for its complete specification. A maximal orthogonal quantum

test performed on such a system has, without degeneracy, d possible outcomes,

providing d−1 independent probabilities. It follows that in principle one requires

at least d+1 different orthogonal measurements for complete state determination.

Since the quantum mechanical description of a physical system is character-

ized in terms of probabilities of outcomes of conceivable experiments consistent

with quantum formalism, in order to obtain full information about the system

under consideration we need to perform measurements on a large number of iden-

tically prepared copies of the system. The different measurements are performed

on several subensembles. However, there may be redundancy in the measurement

results as the probabilities will not, in general, be independent of each other un-

less a minimal set of measurements satisfying appropriate criteria is specified.

This minimal set need not be necessarily optimal in the sense it may not serve

the best way to ascertain the quantum state. However, intuitively speaking, a

minimal set of measurements can be reasonably close to an optimal set if they

mutually differ as much as possible, thereby ruling out possible overlaps in the

results which become crucial in case of error prone measurements. The charac-

98



terization and proving the existence of such a minimal set of measurements for

complete quantum state determination is therefore of fundamental importance.

It has been shown that measurements in a special class of bases, i.e. mutually

unbiased bases, not only form a minimal set but also provide the optimal way of

determining a quantum state. Mutually unbiased measurements (MUM), loosely

speaking, correspond to measurements that are as different as they can be so that

each measurement gives as much new information as one can obtain from the

system under consideration. In other words the MUM operators are maximally

noncommuting among themselves. If the result of one MUM can be predicted

with certainty, then all possible outcomes of every other measurement, unbiased

to the previous one are equally likely.

As noted earlier mutually unbiased bases (MUB) have a special role in de-

termining the state of a finite dimensional quantum system. Ivanovic [?] first

introduced the concept of MUB in the context of quantum state determination,

where he proved the existence of such bases when the dimension is a prime by an

explicit construction. Later Wootters and Fields [?] showed that measurements

in MUB provide the minimal as well as optimal way of complete specification of

the density matrix. The optimality is understood in the sense of minimization

of statistical errors in the measurements. By explicit construction they showed

the existence of MUB for prime power dimensions and proved that for any di-

mension d there can be at most d + 1 MUB. However the existence of MUB for

other composite dimensions which are not power of a prime still remains an open

problem.

In this chapter we give a constructive proof of the results earlier obtained by

Ivanovic, Wootters, and Fields [?, ?] with a totally different method. The two

distinct features of our new proof are:
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• Our approach is based on developing an interesting connection between

maximal commuting bases of orthogonal unitary matrices and mutually

unbiased bases, whereby we find a necessary condition for existence of MUB

in any dimension. We then provide a constructive proof of existence of

MUB in composite dimensions which are power of a prime. This allows

us to connect encryption of quantum bits [?], which uses unitary bases of

operators, to quantum key distribution, which uses mutually unbiased bases

of quantum systems.

• Another advantage of our method is that we provide an explicit construc-

tion of the MUB observables (operators) as tensor product of the Pauli

matrices for dimensions d = 2m. This answers a critical related question:

how can these mutually unbiased measurements be actually performed and

what are the observables to which these measurements correspond to. When

d = 2 the mutually unbiased operators are the three Pauli matrices, but

unfortunately this observation cannot be generalized in a straightforward

way to higher dimension. In addition to the obvious importance of mu-

tually unbiased bases in the context of quantum state determination and

foundations of quantum mechanics, recently it has also found useful ap-

plications in quantum cryptography where it has been demonstrated that

using higher dimensional quantum systems for key distribution has possi-

ble advantages over qubits, and mutually unbiased bases play a key role in

such a key distribution scheme [?, ?]. Thus the fact that we provide an

explicit construction of the MUB observables can turn out to be crucial in

the application of MUB in quantum cryptography with systems with more

than two states.

Before continuing it is useful to provide a formal definition of mutually unbi-
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ased bases.

Definition. Let B1 = {|ϕ1⟩, . . . , |ϕd⟩} and B2 = {|ψ1⟩, . . . , |ψd⟩}be two or-

thonormal bases in the d dimensional state space. They are said to be mutually

unbiased bases (MUB) if and only if |⟨ϕi|ψj⟩| = 1√
d
, for every i, j = 1, . . . , d. A

set {B1, . . . ,Bm} of orthonormal bases in Cd is called a set of mutually unbiased

bases (a set of MUB) if each pair of bases Bi and Bj are mutually unbiased.

The simplest example of a complete set of MUB is obtained in the case of spin

1/2 particle where each unbiased basis consists of the normalized eigenvectors of

the three Pauli matrices respectively. However, the analysis of a set of MUB

corresponding to a two level quantum system does not capture one of the basic

features of MUB, i.e., its importance in determining the quantum state. In the

case of two level systems, the density operator has three independent parameters

and almost any choice of the three measurements is sufficient to have the complete

knowledge of the system. This is not true in general for any other dimension

greater than two, where the existence of MUB becomes more crucial in the context

of minimal number of required measurements for quantum state determination.

In Section 5.2 we show the existence of p + 1 MUB in the space Cp, for any

prime p. This result first shown by Ivanovic [?] by explicitly defining the mutually

unbiased bases. Here we show that these bases are in fact bases each consists of

eigenvectors of the unitary operators

Z, X, XZ, . . . , XZd−1,

where X and Z are generalizations of Pauli operators to the quantum systems

with more than two states (see, e.g., [?, ?]).

In Section 5.3 we show that there is a useful connection between mutually
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unbiased bases and special types of bases for the space of the square matrices.

These bases consist of orthogonal unitary matrices which can be grouped in

maximal classes of commuting matrices. As a result of this connection we show

that every MUB over Cd consists of at most d + 1 bases.

Finally, in Section 5.4 we present our construction of MUB over Cd when

d is a prime power. The basic idea of our construction is as follows. When

d = pm, imagine the system consists of m subsystems each of dimension p. Then

the total number of measurements on the whole system, viewed as performing

measurement on every subsystem in their respective MUB is (p + 1)m. We show

that these (p + 1)m operators fall into pm + 1 maximal noncommuting classes

where members of each class commute among themselves. The bases formed by

eigenvectors of each such mutually noncommuting class are mutually unbiased.

It should be mentioned that the operators in each maximal commuting class have

the same structure as the stabilizers of additive quantum error correcting codes

(see, e.g., [?, ?, ?]).

There is a close connection between the MUB problem and the problem of

determining arrangements of lines in the Grassmannian spaces so that they are

as far apart as possible [?] (see also [?]). This problem (and some other combi-

natorial problems discussed in [?]) can be related to the problem of finding the

maximum number of lines through the origin of Cd that are either perpendicular

or are at angle θ, where cos θ = 1/
√

d. Any MUB M defines such a line–set:

consider all lines through the origin defined by all vectors in the bases of M. In

[?], for the case of d = 2m, with an approach similar to the one presented in this

chapter, such line–sets are constructed.

Notation. Let Md(C) be the set of d × d complex matrices. In a natural way,

the set Md(C) is a d2–dimensional linear space. Each matrix A in Md(C) can
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be also naturally considered as a d2–dimensional complex vector |vA⟩, where the

entries of the matrix A being regarded as the components of the vector |vA⟩. In

this way, for matrices A, B ∈ Md(C) we can define the inner product ⟨A, B⟩ of

matrices as the inner product ⟨vA|vB⟩ of vectors. It is easy to check that

⟨A, B⟩ = Tr
(
A†B

)
.

We say the matrices A, B ∈ Md(C) are orthogonal if and only if ⟨A, B⟩ = 0.

5.2 Construction of Sets of MUB for Prime Dimensions

Ivanovic [?] for the first time showed that for any prime dimension d, there is a

set of d+1 mutually unbiased bases. In that paper the bases are given explicitly.

Here we show that there is a nice symmetrical structure behind these bases, and

their existence can be derived as a consequence of properties of Pauli operators on

d–state quantum systems. The core of our construction is the following theorem.

Theorem 5.2.1 Let B1 = { |ϕ1⟩, . . . , |ϕd⟩ } be an orthonormal basis in Cd. Sup-

pose that there is a unitary operator V such that V |ϕj⟩ = βj |ϕj+1⟩, where |βj| = 1

and |ϕd+1⟩ = |ϕ1⟩; i.e., V applies a cyclic shift modulo a phase on the elements of

the basis B1. Assume that the orthonormal basis B2 = { |ψ1⟩, . . . , |ψd⟩ } consists

of eigenvectors of V . Then B1 and B2 are MUB.

Proof.Assume that V |ψk⟩ = λk|ψk⟩. Then |λk| = 1. Now, for every k = 1, . . . , d,

we have

|⟨ψk|ϕ1⟩| = |λk
∗ ⟨ψk |V |ϕ1⟩|

= |β1⟨ψk|ϕ2⟩|

= |⟨ψk|ϕ2⟩| .
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A similar argument shows

|⟨ψk|ϕ1⟩| = |⟨ψk|ϕ2⟩| = · · · = |⟨ψk|ϕd⟩| .

Therefore,

|⟨ψk|ϕj⟩|2 =
1

d
, 1 ≤ j ≤ d.

Thus B1 and B2 are MUB.

Throughout this section, we suppose that d is a prime number, and all alge-

braic operations are modulo d. We consider { |0⟩, |1⟩, . . . , |d − 1⟩ } as the standard

basis of Cd. We define the unitary operators Xd and Zd over Cd, as a natural

generalization of Pauli operators σx and σz:

Xd|j⟩ = |j + 1⟩, (5.1)

Zd|j⟩ = ωj|j⟩, (5.2)

where ω is a d th root of unity; more specifically ω = exp(2πi/d). We are interested

in unitary operators of the form Xd (Zd)
k. Note that

Xd (Zd)
k |j⟩ =

(
ωk
)j|j + 1⟩.

Theorem 5.2.2 For 0 ≤ k, ℓ ≤ d− 1, the eigenvectors of Xd (Zd)
k are cyclically

shifted under the action of Xd (Zd)
ℓ.

Proof.The eigenvectors of Xd (Zd)
k are

|ψk
t ⟩ =

1√
d

d−1∑

j=0

(
ωt
)d−j (

ω−k
)sj |j⟩, t = 0, . . . , d − 1, (5.3)
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where sj = j + · · · + (d − 1). Then |ψk
t ⟩ is an eigenvector of Xd (Zd)

k with

eigenvalue ωt, because

Xd (Zd)
k |ψk

t ⟩ =
1√
d

d−1∑

j=0

(
ωt
)d−j(

ω−k
)sj
(
ωk
)j|j + 1⟩

=
1√
d

d−1∑

j=0

(
ωt
)d−j(

ω−k
)sj+1 |j + 1⟩

=
1√
d

d−1∑

j=0

(
ωt
)d−j+1(

ω−k
)sj |j⟩

= ωt|ψk
t ⟩.

The action of Xd (Zd)
ℓ on |ψk

t ⟩ is as follows:

Xd (Zd)
ℓ |ψk

t ⟩ =
1√
d

d−1∑

j=0

(
ωt
)d−j(

ω−k
)sj
(
ωℓ
)j |j + 1⟩

=
1√
d

d−1∑

j=0

(
ωt
)d−j+1(

ω−k
)sj−1

(
ωℓ
)j−1|j⟩

=
ωt−ℓ

√
d

d−1∑

j=0

(
ωt
)d−j(

ω−k
)sj
(
ω−k

)j−1(
ωℓ
)j |j⟩

=
ωt+k−ℓ

√
d

d−1∑

j=0

(
ωt
)d−j(

ω−k
)sj
(
ωℓ−k

)j |j⟩

=
ωt+k−ℓ

√
d

d−1∑

j=0

(
ωt+k−ℓ

)d−j(
ω−k

)sj |j⟩

= ωt+k−ℓ|ψk
t+k−ℓ⟩.

Note that the standard basis { |0⟩, |1⟩, . . . , |d − 1⟩ } is the set of the eigen-

vectors of Zd. From (5.3) it follows that the
∣∣⟨j|ψk

t ⟩
∣∣2 = 1

d . Therefore, we have

proved the following construction.

Theorem 5.2.3 For any prime d, the set of the bases each consisting of the
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eigenvectors of

Zd, Xd, XdZd, Xd (Zd)
2 , . . . , Xd (Zd)

d−1 ,

form a set of d + 1 mutually unbiased bases.

Example d = 2. By Theorem 5.2.3, the eigenvectors of the operators σz, σx, and

σx σz form a set of mutually unbiased bases; i.e., the following set

{|0⟩, |1⟩} ,
{

|0⟩+|1⟩√
2

, |0⟩−|1⟩√
2

}
,

{
|0⟩+i|1⟩√

2
, |0⟩−i|1⟩√

2

}
.

Example d = 3. The set of the eigenvectors of the following unitary matrices

form a set of MUB (here ω = exp(2πi/3)):
⎛

⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

0 0 1

1 0 0

0 1 0

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

0 0 ω2

1 0 0

0 ω 0

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

0 0 ω

1 0 0

0 ω2 0

⎞

⎟⎟⎟⎠
.

5.3 Bases for Unitary Operators and MUB

In this section we study the close relation between MUB and a special type of

bases for Md(C). Here we are dealing with classes of commuting unitary matrices.

The following lemma shows that the maximum size of such class is d.

Lemma 5.3.1 There are at most d pairwise orthogonal commuting unitary ma-

trices in Md(C).

Proof.Let A1, . . . , Am be pairwise orthogonal commuting unitary matrices in

Md(C). Then there is a unitary matrix U such that the matrices B1, . . . , Bm,
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where Bj = U Aj U †, are diagonal. Moreover, ⟨Bj, Bk⟩ = ⟨Aj , Ak⟩; so Bj and Bk

are orthogonal for j ̸= k. Let |bj⟩ ∈ Cd be the diagonal of Bj . Then ⟨Bj , Bk⟩ =

⟨bj|bk⟩. So the vectors |b1⟩, . . . , |bm⟩ are mutually orthogonal; therefore, m ≤ d.

Let B = {U1, U2, . . . , Ud2 } be a basis of unitary matrices for Md(C). Without

loss of generality, we can assume that U1 = 1ld, the identity matrix of order d.

We say that the basis B is a maximal commuting basis for Md(C) if B can be

partitioned as

B =
{
1ld
}⋃

C1

⋃
· · ·
⋃

Cd+1, (5.4)

where each class Cj contains exactly d − 1 commuting matrix from B. Note

that {1ld}
⋃
Cj is a set of d commuting orthogonal unitary matrices, which by

Lemma 5.3.1 is maximal.

Theorem 5.3.1 If there is a maximal commuting basis of orthogonal unitary

matrices in Md(C), then there is a set of d + 1 mutually unbiased bases.

Proof.Let B be a maximal commuting basis of orthogonal unitary matrices

in Md(C), where (5.4) provides the decomposition of B into maximal classes of

commuting matrices. For any 1 ≤ j ≤ d + 1, let

Cj = {Uj,1, Uj,2, . . . , Uj,d−1 } .

We also define Uj,0 = 1ld; then

C′
j = {Uj,0, Uj,1, Uj,2, . . . , Uj,d−1 }

is a maximal set of commuting orthogonal unitary matrices. Thus for each 1 ≤

j ≤ d + 1, there is an orthonormal basis

Tj =
{
|ψj

1⟩, |ψ
j
2⟩, . . . , |ψ

j
d⟩
}
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such that every matrix Uj,t (for 0 ≤ t ≤ d−1) relative to the basis Tj is diagonal.

Let

Uj,t =
d∑

k=1

λj,t,k

∣∣ψj
k

〉 〈
ψj

k

∣∣ . (5.5)

Let Mj be a d × d matrix whose k th row is the diagonal of the right-hand side

matrix of (5.5); i.e.,

Mj =

⎛

⎜⎜⎜⎜⎜⎜⎝

λj,0,1 λj,0,2 . . . λj,0,d

λj,1,1 λj,1,2 . . . λj,1,d

...
...

. . .
...

λj,d−1,1 λj,d−1,2 . . . λj,d−1,d

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Then Mj is a unitary matrix. Note that the first row of Mj is the constant vector

(1, 1, . . . , 1). We consider the classes C1 and C2. Then for 0 ≤ s, t ≤ d − 1, the

orthogonality condition implies

Tr
(
U1,s

† U2,t

)
= d δs,0 δt,0.

But, since Tr (|ψ1
k⟩ ⟨ψ2

ℓ |) = ⟨ψ1
k|ψ2

ℓ ⟩∗,

Tr
(
U1,s

† U2,t

)
= Tr

(
d∑

k=1

d∑

ℓ=1

λ1,s,k
∗λ2,t,ℓ|ψ1

k⟩⟨ψ1
k|ψ2

ℓ ⟩⟨ψ2
ℓ |
)

=
d∑

k=1

d∑

ℓ=1

λ1,s,k
∗λ2,t,ℓ⟨ψ1

k|ψ2
ℓ ⟩Tr

(∣∣ψ1
k

〉 〈
ψ2

ℓ

∣∣)

=
d∑

k=1

d∑

ℓ=1

λ1,s,k
∗λ2,t,ℓ

∣∣⟨ψ1
k|ψ2

ℓ ⟩
∣∣2 .

Therefore

d∑

k=1

d∑

ℓ=1

λ1,s,k
∗λ2,t,ℓ

∣∣⟨ψ1
k|ψ2

ℓ ⟩
∣∣2 = d δs,0δt,0, 0 ≤ s, t ≤ d − 1. (5.6)

The system of equations (5.6) can be written in the following matrix form

A P = Λ,
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where

A = M1
∗ ⊗ M2,

P =
(∣∣⟨ψ1

1|ψ2
1⟩
∣∣2 ,
∣∣⟨ψ1

1|ψ2
2⟩
∣∣2 , . . . ,

∣∣⟨ψ1
d|ψ2

d⟩
∣∣2
)T

,

Λ = (d, 0, 0, . . . , 0)T.

Note that A is a unitary matrix and its first row is the constant vector (1, 1, . . . , 1).

Then from P = A−1Λ it follows

|⟨ψ1
s |ψ2

t ⟩|
2

= 1
d , 1 ≤ s, t ≤ d.

By repeating the same argument for the classes Cj and Ck, we conclude that

{ T1, . . . , Td+1 }

is a set of MUB.

Before we continue, we prove the following useful simple lemma.

Lemma 5.3.2 For any integers m and n such that 0 < m ≤ n we have
n∑

k=1

e2πi mk
n = 0.

Proof.We have
n∑

k=1

(
e2πi m

n
)k

= e2πi m
n

(
e2πi m

n

)n − 1

e2πi m
n − 1

= 0.

The converse of Theorem 5.3.1, in the following sense, holds.

Theorem 5.3.2 Let B1, . . . ,Bm be a set of MUB in Cd. Then there are m classes

C1, . . . , Cm each consisting of d commuting unitary matrices such that matrices in

C1

⋃
· · ·
⋃

Cm are pairwise orthogonal.
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Proof.Suppose that

Bj =
{
|ψj

1⟩, . . . , |ψ
j
d⟩
}

.

Then

⟨ψj
s|ψ

j
t ⟩ = δs,t, 1 ≤ s, t ≤ d,

and
∣∣⟨ψj

s|ψk
t ⟩
∣∣2 =

1

d
, 1 ≤ j < k ≤ d, 1 ≤ s, t ≤ d.

We label the matrices in the class Cj as

Cj = {Uj,0, Uj,1, . . . , Uj,d−1 } ,

where

Uj,t =
d∑

k=1

e2πi tk
d

∣∣ψj
k

〉 〈
ψj

k

∣∣ , 0 ≤ t ≤ d − 1.

Note that Uj,0 = 1ld. Then Uj,s and Uj,t are commuting, because both are diagonal

relative to the basis Bj . We now show that all these matrices are orthogonal. First

we note that

⟨Uj,s, Uk,t⟩ = Tr
(
Uj,s

† Uk,t

)

=
d∑

x=1

d∑

y=1

e2πi ty−sx
d Tr

(
|ψj

x⟩⟨ψj
x|ψk

y⟩⟨ψk
y |
)

=
d∑

x=1

d∑

y=1

e2πi ty−sx
d

∣∣⟨ψj
x|ψk

y ⟩
∣∣2 .

Thus, by Lemma 5.3.2, if j = k, then

⟨Uj,s, Uj,t⟩ =
d∑

x=1

d∑

y=1

e2πi ty−sx
d δx,y

=
d∑

x=1

e2πi x(t−s)
d

= d δs,t.

110



If j ̸= k and (s, t) ̸= (0, 0), then

⟨Uj,s, Uk,t⟩ =
d∑

x=1

d∑

y=1

e2πi ty−sx
d

1

d

=
1

d

(
d∑

x=1

e2πi sx
d

)∗( d∑

y=1

e2πi ty
d

)

= 0.

As an immediate corollary of the above theorem, we have the following upper

bound on the size of a set of MUB.

Theorem 5.3.3 Any set of mutually unbiased bases in Cd contains at most d+1

bases.

Proof.If a set of MUB contains m bases, then by Theorem 5.3.2, there are at least

1 + m(d − 1) pairwise orthogonal matrices in the d2–dimensional space Md(C).

Therefore, 1 + m(d − 1) ≤ d2, thus m ≤ d + 1.

5.4 Construction of a Set of MUB for Prime Powers

5.4.1 The Pauli Group

To construct a maximal set of MUB in H = Cpm
, where p is a prime number, we

consider the Hilbert space H as tensor product of m copies of Cp; i.e.,

H = Cp ⊗ · · ·⊗ Cp
︸ ︷︷ ︸

m times

.

Like the case of Cp, we build a set of MUB as the sets of eigenvectors of special

types of unitary operators on the background space H. On the space Cp we

considered the generalized Pauli operators Xp and Zp, defined by equations (5.1)
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and (5.2). On the space H, we consider the tensor products of operators Xp and

Zp.

We denote the finite field {0, 1, . . . , p−1} by Fp. Let ω = e2πi/d be a primitive

pth root of unity. Then

Zp Xp = ω Xp Zp.

Therefore, if U1 = (Xp)
k1 (Zp)

ℓ1 and U2 = (Xp)
k2 (Zp)

ℓ2 then

U2 U1 = ωk1 ℓ2−k2 ℓ1 U1 U2. (5.7)

We are interested on unitary operators on H = Cp ⊗ · · ·⊗Cp (the tensor product

of m copies of Cp) of the form

U = M1 ⊗ · · ·⊗ Mm, where Mj = (Xp)
kj (Zp)

ℓj , 0 ≤ kj, ℓj ≤ p − 1. (5.8)

To describe an operator of the form (5.8) it is enough to specify the powers kj

and ℓj . So we represent an operator (5.8) by the following vector of length 2m

over the field Fp:

(k1, . . . , km | ℓ1, . . . , ℓm),

or equivalently as

Xp(k1, . . . , km) Zp(ℓ1, . . . , ℓm).

If we let α = (k1, . . . , km) and β = (ℓ1, . . . , ℓm), then α, β ∈ Fp
m and we denote

the corresponding operator by

Xp(α) Zp(β).

The Pauli group P(p, m) is the group of all unitary operators on H = Cp ⊗

· · ·⊗ Cp (the tensor product of m copies of Cp) of the form

ωj Xp(α) Zp(β), (5.9)
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for some integer j ≥ 0 and vectors α, β ∈ Fp
m, where ω = exp(2πi/p). In this

section we are mainly interested in the subset P0(p, m) of P(p, m) of the operators

of the form (5.9) with j = 0. Note that P0(p, m) is not a subgroup, but generators

of subgroups of the Pauli group can always be considered as subsets of P0(p, m).

If the operators U and U ′ in P0(p, m) are represented by the vectors

(k1, . . . , km | ℓ1, . . . , ℓm) and (k′
1, . . . , k

′
m | ℓ′1, . . . , ℓ′m),

respectively, then U and U ′ are commuting if and only if

m∑

j=1

kjℓ
′
j −

m∑

j=1

k′
jℓj = 0 mod p.

We can state this condition equivalently in the following form.

Lemma 5.4.1 If U = Xp(α) Zp(β) and U ′ = Xp(α′) Zp(β ′), for α, β, α′, β ′ ∈

Fp
m, then U and U ′ are commuting if and only if

α · β ′ − α′ · β = 0 mod p. (5.10)

A set Xp(α1) Zp(β1), . . . , Xp(αt) Zp(βt) of operators in P0(p, m) is represented

by the t × (2m) matrix ⎛

⎜⎜⎜⎝

α1 β1

...
...

αt βt

⎞

⎟⎟⎟⎠ .

Before we continue, we would like to get an explicit formula for the action of

a P0(p, m) operator Xp(α) Zp(β). Let α = (α1, . . . , αm) and β = (β1, . . . , βm).

The standard basis of the Hilbert space H = Cp ⊗ · · ·⊗Cp consists of the vectors

|j1 · · · jm⟩, where (j1, . . . , jm) ∈ Fp
m. Then

Xp(α) Zp(β)|j1 · · · jm⟩ = ωj1β1+···+jmβm |(j1 + α1) · · · (jm + αm)⟩.
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Equivalently,

Xp(α) Zp(β)|a⟩ = ωa·β|a + α⟩, a ∈ Fp
m, (5.11)

Xp(α) Zp(β) =
∑

a∈Fp
m

ωa·β |a + α⟩ ⟨a| , (5.12)

where the operations are in the field Fp.

Theorem 5.4.1 Let U = Xp(α) Zp(β) and U ′ = Xp(α′) Zp(β ′) be operators in

P0(p, m). If U ̸= U ′, i.e., (α, β) ̸= (α′, β ′), then the operators U and U ′ are

orthogonal.

Proof.We have

⟨U, U ′⟩ = Tr
(
U † U ′)

= Tr

⎛

⎝
∑

a∈Fp
m

∑

b∈Fp
m

ωβ′·b−β·a|a⟩⟨a + α|b + α′⟩⟨b|

⎞

⎠

=
∑

a∈Fp
m

ωβ′·b−β·a⟨a + α|a + α′⟩.

If α ̸= α′, then ⟨a + α|a + α′⟩ = 0, for every a ∈ Fp
m. Thus in this case ⟨U, U ′⟩ =

0. If α = α′ and β ̸= β ′ then, by Lemma 5.3.2,

⟨U, U ′⟩ =
∑

a∈Fp
m

ω(β′−β)·a

= 0.

5.4.2 The General Construction

Our scheme for constructing a set of MUB is based on Theorem 5.3.1. The

maximal commuting orthogonal basis for Mpm(C) with partition of the form

(5.4) is such that each class {1lp}
⋃
Cj , in the following sense, is a linear space of
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operators in the Pauli group P(p, m). Let

Xp(α1) Zp(β1), . . . , Xp(αpm) Zp(βpm)

be the operators in the class {1lp}
⋃
Cj . We say that this class is linear if the set

of the vectors

Ej = { (α1|β1), . . . , (αpm|βpm) }

form an m–dimensional subspace of Fp
2m. In this case, to specify a linear class,

it is enough to present a basis for the subspace Ej. Such a basis can be repre-

sented by an m × (2m) matrix. So instead of listing all operators in the classes

C1, . . . , Cpm+1, we could simply list the pm + 1 matrices representing the bases of

these classes.

More specifically, the bases of linear classes of operators in our construction

are represented by the matrices

(0m|1lm), (1lm|A1), . . . , (1lm|Apm),

where 0m is the all–zero matrix of order m and each Aj is an m × m matrix over

Fp. It easy to see what conditions should be imposed on the matrices Aj so that

the requirements of Theorem 5.3.1 satisfied. The following lemma gives a simple

necessary and sufficient condition for operators in each class commuting. Note

that in a linear class of operators, if the basic operators are commuting then any

pair of operators in these class will commute.

Lemma 5.4.2 Let S be a set of m operators in P0(p, m), and S be represented

by the matrix (1lm|A), where 1lm is the identity matrix of order m and A is an

m × m matrix over Fp. Then the operators in S are pairwise commuting if and

only if A is a symmetric matrix.
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Proof.Let A = (ajk). Then, by (5.10), S is a set of commuting operators if and

only if ajk − akj = 0 mod p, for every 1 ≤ j < k ≤ m. Since ajk ∈ Fp, S is a set

of commuting operators if and only if A is symmetric.

The other condition is that the classes Cj and Ck should be disjoint. This

condition is met if the span of the matrices (1lm|Aj) and (1lm|Ak) are disjoint.

The last condition is equivalent to xAj ̸= xAk, for every non–zero x ∈ Fp
m. The

last condition is equivalent to det(Aj − Ak) ̸= 0. Thus we can summarize our

construction in the following theorem.

Theorem 5.4.2 Let {A1, . . . , Aℓ} be a set of symmetric m × m matrices over Fp

such that det(Aj −Ak) ̸= 0, for every 1 ≤ j < k ≤ ℓ. Then there is a set of ℓ + 1

mutually unbiased bases on Cpm
.

More specifically, the ℓ + 1 bases of the above theorem are represented by the

matrices

(0m|1lm), (1lm|A1), . . . , (1lm|Aℓ).

Example d = 4. The four matrices (over F2 = {0, 1}) which satisfy the conditions

of Theorem 5.4.2 are
⎛

⎝0 0

0 0

⎞

⎠ ,

⎛

⎝1 0

0 1

⎞

⎠ ,

⎛

⎝0 1

1 1

⎞

⎠ ,

⎛

⎝1 1

1 0

⎞

⎠ . (5.13)
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Therefore the classes of maximal commuting operators are

C0 = {Z ⊗ I, I ⊗ Z, Z ⊗ Z } ,

C1 = {X ⊗ I, I ⊗ X, X ⊗ X } ,

C2 = { Y ⊗ I, I ⊗ Y, Y ⊗ Y } ,

C3 = {X ⊗ Z, Z ⊗ Y, Y ⊗ X } ,

C4 = { Y ⊗ Z, Z ⊗ X, X ⊗ Y } ,

where

I =

⎛

⎝1 0

0 1

⎞

⎠ , X =

⎛

⎝0 1

1 0

⎞

⎠ , Y =

⎛

⎝0 −1

1 0

⎞

⎠ = XZ, Z =

⎛

⎝1 0

0 −1

⎞

⎠ .

We represent this basis explicitly. To this end, we naturally represent each ba-

sis by a 4 × 4 matrix such that the j th row of this matrix is the components

of the j th vector of the corresponding basis with respect to the standard basis

|00⟩, |01⟩, |10⟩, |11⟩: the first matrix is B0 = 1l4, and

B1 =
1

2

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎠
, B2 =

1

2

⎛

⎜⎜⎜⎜⎜⎜⎝

1 i i −1

1 −i −i −1

1 i −i 1

1 −i i 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

B3 =
1

2

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 −i i

1 −1 i i

1 1 i −i

1 −1 −i −i

⎞

⎟⎟⎟⎟⎟⎟⎠
, B4 =

1

2

⎛

⎜⎜⎜⎜⎜⎜⎝

1 −i 1 i

1 i −1 i

1 i 1 −i

1 −i −1 −i

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Note that, in this case, the mutually unbiasedness condition is equivalent to the

condition that Bi B†
i = 1l4, for every 0 ≤ i ≤ 4, and each entry of Bi B†

j , for

0 ≤ i < j ≤ 4, has absolute value equal to 1
2 .
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5.4.3 Construction for d = pm

By Theorem 5.4.2, to construct pm + 1 mutually unbiased bases in Cpm
, we only

need to find m symmetric nonsingular matrices B1, . . . , Bm ∈ Mm(C) such that

the matrix
∑m

j=1 bjBj is also nonsingular, for every nonzero vector (b1, . . . , bm) ∈

Fp
m. Because if this condition satisfied then the pm matrices

m∑

j=1

ajBj , (a1, . . . , am) ∈ Fp
m,

satisfy the condition of Theorem 5.4.2.

Example d = 8. The following eight 3 × 3 matrices determine a set 9 mutually

unbiased bases on C8. Let A1 = 03 (the zero matrix), A2 = 1l3, and

A3 =

⎛

⎜⎜⎜⎝

0 1 0

1 1 1

0 1 1

⎞

⎟⎟⎟⎠
A4 =

⎛

⎜⎜⎜⎝

0 0 1

0 1 1

1 1 0

⎞

⎟⎟⎟⎠
A5 =

⎛

⎜⎜⎜⎝

1 1 0

1 0 1

0 1 0

⎞

⎟⎟⎟⎠

A6 =

⎛

⎜⎜⎜⎝

1 0 1

0 0 1

1 1 1

⎞

⎟⎟⎟⎠
A7 =

⎛

⎜⎜⎜⎝

0 1 1

1 0 0

1 0 1

⎞

⎟⎟⎟⎠
A8 =

⎛

⎜⎜⎜⎝

1 1 1

1 1 0

1 0 0

⎞

⎟⎟⎟⎠

Note that these matrices are of the following general form:

a1

⎛

⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟⎟⎠
+ a2

⎛

⎜⎜⎜⎝

0 1 0

1 1 1

0 1 1

⎞

⎟⎟⎟⎠
+ a3

⎛

⎜⎜⎜⎝

0 0 1

0 1 1

1 1 0

⎞

⎟⎟⎟⎠
, a1, a2, a3 ∈ F2.

Wootters and Fields [?] have found the following general construction for the

matrices B1, . . . , Bm. Let γ1, . . . , γm be a basis of Fpm as a vector space over Fp.

Then any element γiγj ∈ Fpm can be written uniquely as

γiγj =
m∑

ℓ=1

bℓ
ijγℓ.
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Then Bℓ =
(
bℓ
ij

)
; i.e., the (i, j)th entry of Bℓ is bℓ

ij .

5.4.3.1 A set of MUB for the case d = p2

We would like to mention here that for the case d = p2, there is a more explicit

construction. We find p2 matrices A1, . . . , Ap2 over Fp which satisfy the conditions

of Theorem 5.4.2. For this purpose, we let

Aj =

⎛

⎝aj bj

bj saj + tbj

⎞

⎠ , aj , bj ∈ Fp,

where s, t ∈ Fp are two constants which their value need to be determined. By

construction, the matrix Aj is symmetric, so we have to choose the values of the

parameters s and t such that det(Aj − Ak) ̸= 0, for every 1 ≤ j < k ≤ p2. Let

α = aj − ak and β = bj − bk. Then (α, β) ̸= (0, 0), and we have

det(Aj − Ak) = D(α, β) =

∣∣∣∣∣∣

α β

β sα + tβ

∣∣∣∣∣∣
= sα2 + tαβ − β2.

If α = 0, then D(α, β) = −β2 ̸= 0. Suppose now that α ̸= 0, and let β/α = γ.

Then

D(α, β) = −α2(γ2 − tγ − s).

Thus D(α, β) ̸= 0 if the quadratic polynomial γ2 − tγ − s is irreducible over Fp.

Since for every prime p there is at least one irreducible quadratic polynomial over

Fp, it is possible to choose the parameters s, t ∈ Fp such that D(α, β) ̸= 0, for

every α, β ∈ Fp.

Example d = 4. The four matrices (5.13) are obtained from the irreducible

polynomial x2 + x + 1 over F2. Therefore, all those matrices are of the following
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form ⎛

⎝a b

a a + b

⎞

⎠ , a, b ∈ F2.

Example d = 9. The polynomial x2 + x + 2 is irreducible over F3. Therefore, the

matrices Aj are of the general form of

⎛

⎝a b

b a + 2b

⎞

⎠ .

So the nine matrices are
⎛

⎝0 0

0 0

⎞

⎠ ,

⎛

⎝1 0

0 1

⎞

⎠ ,

⎛

⎝2 0

0 2

⎞

⎠ ,

⎛

⎝0 1

1 2

⎞

⎠ ,

⎛

⎝1 1

1 0

⎞

⎠ ,

⎛

⎝0 2

2 1

⎞

⎠ ,

⎛

⎝1 2

2 2

⎞

⎠ ,

⎛

⎝2 1

1 1

⎞

⎠ ,

⎛

⎝2 2

2 0

⎞

⎠ .

5.5 Conclusion

In this chapter we partially solved the problem of existence of sets of MUB in

composite dimensions. We formulated an interesting connection between maxi-

mal commuting basis of orthogonal unitary matrices and sets of MUB. We ob-

tained the necessary condition for the existence of sets of MUB in any dimension.

Using these we proved the existence of sets of MUB for dimensions which are

prime power. We provided a sharp upper bound on the size of any MUB for

any dimension. We expressed the sets of MUB observables as tensor products of

Pauli matrices. However we could not apply this method when the dimension d

is a product of different primes instead of being a prime power (the simplest case
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that belongs to this category is when d = 6) because if we do so the convenient

properties of the case d = pm no longer remain valid. For instance Theorem 5.4.2

does not hold in this case.

A useful application of our result is in secure key distribution using higher

dimensional quantum systems. Specifically we note that the protocol suggested

by Bechmann–Pasquinucci and Tittel [?] using four dimensional quantum system

will become more efficient if all the five mutually unbiased bases are used in the

protocol instead of only two as suggested by the authors.
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CHAPTER 6

A Quantum Protocol for Anonymous Broadcasts

6.1 Introduction

Quantum information has introduced many exciting new tools such as the qubit,

teleportation of quantum information, ultra-fast quantum computation, and quan-

tum cryptography protocols. In most cases, these exciting developments are be-

yond what is possible in the classical information theoretic setting. In particular,

using quantum cryptography, a secret key can be generated over a channel by

two participants that is informationally secure. This is impossible in classical

cryptography. In this paper, the basic tools of quantum cryptography are used

to build a multi-participant protocol which gives the participants the ability to

anonymously announce classical information. This protocol is shown to be secure

against any and all attacks. By security, we mean the following: an eavesdrop-

per learns nothing about who sent a particular message by eavesdropping on the

channel. This is not to say that an eavesdropper has no idea who sent a partic-

ular message. Given the content of the message, the eavesdropper may be able

to guess which of the players might have sent it; however, no protocol could ever

change that.

There does exist a classical protocol for anonymous broadcasts[?]. However,

the existing classical protocols have two problems. First, they require perfectly

secret channels, which is only possible classically with a one time pad[?]. Second,
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if there are N participants, there must be a factor of N more communication

than for a non-anonymous broadcast. The current protocol increases the cost of

anonymous broadcasts by a constant factor over that of non-anonymous broad-

casts. However, the factor is independent of the number of participants, unlike

the protocol given in [?], where the factor is the number of users, N .

This protocol has many obvious uses: for instance, it is known classically that

a secure anonymous channel implies informationally secure key distribution [?].

Furthermore, the ability to make information known anonymously is important in

a society that values the freedom of speech and information. For instance, whistle-

blowing, criticizing the government, or tipping off the police are a few of the things

that people may prefer to do anonymously. From the standpoint of cryptography,

the anonymous channel is an interesting tool that may now be added to the tool

box of the quantum cryptographer. This tool joins the ranks of quantum key

distribution[?, ?], quantum oblivious transfer given bit commitment[?, ?], and,

more recently, quantum gambling[?], all of which have been shown to be secure.

It should be noted that quantum bit commitment and coin tossing have been

shown to be impossible[?, ?]. Bit committment and coin tossing are important

primitives, and are not possible using only the tools of quantum information.

This raises the question: which protocols can be made secure with quantum

information, and which cannot? In this regard, our contribution shows that a

protocol for an anonymous channel can be constructed using only the tools of

quantum information.

6.2 Protocol for a Quantum Anonymous Channel

The protocol is based on quantum teleportation[?]. There are N users of the

protocol. There are two types of channels we will speak of: first, the virtual
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Figure 6.1: Anonymous channel with 5 users.

anonymous channel that the protocol will create, and, second, the physical quan-

tum channels that connect neighboring users. So, user i (Ui) has a quantum

channel to Ui−1 and Ui+1.

1. Ui sends half of a Bell state 1√
2
(|00⟩ + |11⟩) to Ui+1. Now each user shares

half a Bell state with each of his neighbors.

2. Each user tests these two bits with probability ptest. If the user tests, both

bits should be measured in the x basis. Otherwise, the user performs a Bell

measurement on the two bits. The quantum part of the protocol is now

over. The remaining steps involve classical processing of the measurements.

3. Each user makes an announcement: if Ui tested, he announces the outcome

of the measurement made on the bit received from Ui−1. If the user did not

test, he announces the z measurement on the Bell basis.
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4. After all the above announcements have been made, each user announces

whether or not he performed a test.

5. If no user tested, this bit is added to a string of bits k′
ix to be used for

sending anonymous messages (information bits). If the bit is a test bit, all

measurements that were not previously announced are now announced (the

other x basis measurement for testers, and the x basis Bell measurement

for those that did not test).

Note that it is crucial that step 3 happens before step 4. If step 4 occurs before

3 then a potential eavesdropper knows when to avoid attacking, and hence could

never be detected. The point of step 3 is that the eavesdropper must commit to

applying her attack before she knows if the bit will be used for testing.

6.2.1 Testing

In the case where there were some number of users that tested, the shared Bell

states serve to create a teleportation channel between the testers. Hence, the

testers verify that states sent in the x basis have high fidelity along random

sections of the network.

If each user tests with probability ptest, then the probability that someone tests

is 1−(1−ptest)N . The probability that no one tests, and hence that the channel is

used, is given by puse = (1−ptest)N . If ptest = α/N , note that limN→∞ puse = e−α

and puse ≤ e−α. So, the probability that a bit is used for sending information

is constant even as N goes to infinity. The probability that a particular player

tests a particular bit goes as 1/N .

For each user, we can consider 2(N −1) channels: the channels for which he is

the “starting node” for each of the other users (which provides N − 1 channels),
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and the channel where he is the “ending node” for each of the other users (an

additional N − 1 channels). Since each user tests with equal probability, we can

calculate the probability of testing each of these channels:

Ptest(C
+
l ) = (1 − α/N)l−1(α/N) (6.1)

For each channel, 1 ≤ l ≤ N − 1, so

α/N ≥ Ptest(C
+
l ) ≥ (1 − α/N)N−1(α/N) .

If we and look at the limit as N → ∞, then:

lim
N→∞

Ptest(C
+
l ) ≥ lim

N→∞
(1 − α

N
)N−1ptest

= e−αptest

Hence, given that a user tested, he will test the channel between him and

another user with probability O( 1
N ). Since each user tests with probability α/N ,

if there are O(N2) test bits, then there are a constant number of tests of each

channel. Note that this is different than the classical case[?], which requires N2

times as many bits to be sent. The reason for the N2 factor in both cases is the

fact that there are N2 connections; however, in our case, the security exponent

will be a function of the number of bits tested divided by N2. This does not

mean that we need to use O(N2) bits to send each message. It only means that

the message should be long when compared to N2 so that each user has many

test bits for each message.

The fidelity of each of these channels in the x basis is measured by the tests

performed by the users. All of these fidelities should be high in order to ensure

secrity of the protocol. In section 6.4, we will see how high the fidelity needs to

be.
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6.2.2 Error Correction and Privacy Amplification

Given that the above test is passed, the remaining bits are used to send anony-

mous messages. The bits from the measurement done by the users in step 2 gives

each user a string of bits (k′
i). If there were no errors on the channels used to

share the EPR pairs, the parity of these measurements would be zero. Since

there can be errors in the channel, the parity of all bits may not necessarily be

zero. We denote the z basis error between Ui and Ui+1 as ei. These errors would

accumulate in the parity:

p⃗ =
⊕

i

k⃗′
i =

⊕

i

e⃗i = e⃗ (6.2)

These errors must be corrected. Additionally, Eve, due to her interaction, may

have some knowledge about what each user measured. To combat this, a privacy

amplification technique is employed: Eve will be required to learn the syndrome

of Ui’s bits, Hk′
i.

To send information, two codes are used C1, C2, with

{0} ⊂C2 ⊂C1 ⊂GF (2n). (6.3)

where GF (2n) is the binary vector space on n bits. One code (C1) corrects any

errors on the information bits. C2 can be thought of as a “privacy amplification”

code. C1 has some parity check matrix associated with it H1, and all code words

w ∈ C1 have the relation: H1 · w = 0. C2 has some parity check matrix H2, and

all code words v ∈ C2 have the relation: H2 · v = 0. Since C2 ⊂C1, all v ∈ C2

also satisfy: H1 · v = 0, and, for w ̸∈ C2, H2 · w ̸= 0.

The error correction is used in the following way: a code word has some errors

on it u ⊕ e. The message is the coset of C2 in C1 that also includes u. The vector
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u ⊕ e is error-corrected with C1 to u, and the parity of u is computed:

H1 · (u ⊕ e) = H1 · u ⊕ H1 · e

= 0 ⊕ H1 · e

If the error is small enough to be corrected, e is now obtained. Consider u = v ⊕ s

where s ∈ C1 and v ∈ C2. The message is:

H2 · u = H2 · (v ⊕ s)

= H2 · v ⊕ H2 · s

= 0 ⊕ H2 · s

= m

For the anonymous channel, each user Ui announces ai = k′
i⊕ ui, with H2 ·ui =

mi, where mi is the message Ui wants to announce. With this public information,

anyone can compute:

H1 · (
⊕

i

ai) = H1 · (
⊕

i

(k′
i ⊕ ui)

= H1 · (
⊕

i

ei ⊕ ui)

= H1 ·
⊕

i

ei ⊕ H1 ·
⊕

i

ui

= H1 · e

Making use of the error correcting code, e is computed. We may now compute

the output of the channel:

H2 · (e ⊕
⊕

i

ai) = H2 · (
⊕

i

ui)

=
⊕

i

(H2 · ui)

=
⊕

i

mi
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We reserve the message 0 for the NULL message. We say a user Ui uses a

channel if mi ̸= 0. If each player uses the channel with probability γ/N , then the

probability that one or less persons used the channel is close to e−γ, providing a

constant fraction of the total capacity. In the case of a collision (i.e. two users

speaking at one time), each user will notice that their intended message was not

broadecast successfully. They then simply resend the message with probability

γ/N until successful.

6.3 A Protocol Based on Quantum Error Correction Codes

Recently a method of proving security for quantum protocols that relies on quan-

tum error correction codes was developed [?]. For a given protocol, one gives

an alternate protocol based on quantum error correction codes that looks the

same to Eve. What we mean is that all the classical announcements and quan-

tum states would look exactly the same to Eve in this QECC based scheme, and

therefore Eve cannot even know which protocol the participants are using. Since

in the QECC case, the players could have corrected all the errors that Eve causes,

the security result needs only to consider cases where the fidelity is exponentially

close to unity, without having to worry about the announcements done for the

error correction.

The basic idea is that the original protocol was equivalent to teleporting a

qubit around a ring. Instead, we can consider just passing a qubit around a

channel, with each user randomly applying a Pauli matrix to the qubit. In the

end, the person that “sent” the qubit could measure it and see how the output

differs from what they sent. Each user could then announce the exclusive OR of

whether they applied σx and his message bit. The user which “sent” the qubit

would announce the parity of what he sent, what he measured, and his message
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bit. Testing would proceed in the same fashion. Each player would measure the

bit with some probability in the x basis and send a random bit in the x basis.

At the end of each round, they announce if each bit was a test bit.

In the following we denote Ui to be user number i.

1. U0 initiates a round by preparing n bit state |0L⟩ in the CSS code given

by 0 ⊂C2 ⊂C1: |0L⟩ = 1
|C2 |1/2

∑
w∈C2

|w⟩. U0 chooses lz tests bits with

the value |0z⟩, and lx bits with the value |0x⟩. He concatenates these test

bits to the end of the code and applies a random permutation, π. Next, he

encrypts the entire state (see chapter 4) by choosing two random n+ lx + lz

bit strings, k0z and k0x, and applying σ[k1 z]
z and σ[k1 x]

x . This produces the

state: 1
|C2 |1/2

∑
w∈C2

(−1)w·k1 z |w ⊕ k1x⟩.

2. U0 sends the state to U1. Note that, from Eve’s point of view, since the

state is encrypted, it is totally mixed.

3. U1 measures each bit in the x basis with probability ptest,x. U1 replaces the

measured bits |0x⟩.

4. U1 chooses new random values k1z, k1x. He encrypts the state to obtain the

new keys.

5. The above 3 steps are repeated for each user until the state gets back to

U0.

6. U0 applies the inverse permutation π−1 and measures the lx x-basis test

bits and the lz z-basis test bits.

7. Each bit may or may not have been tested by player i. For each tested

bit, the user announces the value he measured. For each untested bit, he
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announces the value of kiz for that bit. The user does not disclose whether

or not the bit was a test bit.

8. After all players complete step 7, they each announce which bits they tested.

They also announce the values for kiz for these bits. At this point, the

fidelity in the x basis between any two players can be determined. If any

fidelity is too low, the protocol is aborted. If any user tested any one of

the code bits or z-basis test bits (the first n + lz bits in U0’s unpermuted

ordering), the protocol is aborted.

9. U0 discloses π. All users announce kix for the lz test bits in the z-basis. If

the fidelity is too low, the protocol is aborted.

10. Defining k′
ix to be the values of kix which have not yet been announced,

each user announces ai = k′
ix ⊕ mi, where mi is a codeword from C1. U0

XORs this ai with his state.

11. The state U0 holds looks like:

1

|C2|1/2

∑

w∈C2

|w ⊕ e
⊕

i

k′
ix

⊕

j

aj⟩ =
1

|C2|1/2

∑

w∈C2

|w ⊕ e ⊕
⊕

i

mix⟩

where e is the error. Correcting the error, U0 obtains:

1

|C2|1/2

∑

w∈C2

|w ⊕
⊕

i

six⟩

U0 computes the H2 parity of this state and announces it; this is the output

of the channel.

In the next section, we will show that the above protocol is secure. This

protocol will only succeed a small number of times due to the probability that

some user tests one of the code bits. To remedy this, U0 could have made an
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Figure 6.2: Eve attacks the state before and after a user applies σ[k]
x .

alternate state preparation: he could have simply prepared n + lz + lx EPR

pairs and sent them into the channel. Only after step 8 would U0 project some

n untested bits onto a quantum code word. From Eve’s point of view, this is

equivalent to the above case. Instead of each user applying a random set of Pauli

matrices to encrypt the state in step 4, a user could prepare an EPR pair and

measure the incoming bit in the Bell basis. This act of teleporting the state

will have the effect of applying a random Pauli matrix to the state[?]. U0 only

makes use of the quantum code in one basis (namely the z-basis), so instead of

projecting his state into a quantum code word, he could wait to receive the final

state from UN−1, measure that state with the one he holds, and perform the error

correction and syndrome measurements on the collapsed states. At that point,

the protocol is identical to one in the first part of the paper.

6.4 Security of the QECC protocol

Since the announcement from the anonymous channel is public, Eve is concerned

with who is responsible for a given announcement. Each user announces k′
i ⊕ si,

and Eve wants to know if H2si is equal to the outcome of the channel.

Since the protocol is aborted if the x-basis error rate between any two parties

exceeds what the code can correct, if we show that the protocol is secure for the

case without error correction or privacy amplification, but with x-basis fidelity

exponentially close to 1, then the security result will apply to the QECC protocol.

We call the case with no error correction or privacy amplification the simple case.
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In the simple case, each user Ui receives a state and XORs the state with a

random ki. Subsequently, Ui announces ki ⊕ mi. Eve’s job is learn if mi = 0.

The most general attack is depicted in figure 6.2. Eve does not, in general, know

the state that is coming into Ui, and wishes only to learn the change that Ui

effects in the z-basis. We can assume that she applies some unitary operation

U before Ui and V after Ui on her ancillary states. She waits until the end of

the protocol, when all announcements have been, made in order to try to learn

if what Ui announced was ki.

In the following section, we show that the bounds derived in chapter 2 can

apply (with slight modifications) to the above two-sided attack to obtain:

I(E; F (M)|A) ≤ (4 + 4
√

2)H(F (K))
√

1 − Fmin (6.4)

where Fmin is the minimum fidelity in the x basis of any channel that passes

through or terminates with the user. For the simple case, we assume this to be

exponentially close to unity, and hence we have security. In the error correction

code protocol, the code provides a fidelity exponentially close to one; hence, we

have security. Finally, since we showed that if the error-correction-based protocol

was secure, then the original protocol is secure; therefore, the original protocol is

secure. This proof follows the reduction technique introduced in [?].

6.5 Reducing Two-Sided Attacks to One-Sided Attacks

In chapter 2, we considered the case that Eve does a normal attack on qubit

with an unknown value in the z-basis. In the anonymous channel protocol, Eve

has the opportunity to attack the qubit before it arrives to the user, and again

afterwards. Intuitively, if the fidelity in the x-basis is high for all Eve’s attacks,

then her attacks should commute with σx, which is the operator that the user
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may or may not apply. In this section, we formalize this result. It will very

closely mirror theorem 2.4.2.

Theorem 6.5.1 If an eavesdropper performs the most general two-sided attack

on a user who applies σx
[k] to his incoming state, with pk = 1

2n , and subsequently

announces a = m⊕ k, then the most information the eavesdropper can learn about

any function of the message is bounded by the minimum fidelity the attack would

give in the x-basis:

I(F (M); E|A) ≤ (4 + 4
√

2)H(F (K))
√

1 − Fmin

Proof.The proof will follow closely theorem 2.4.2. The major difference will be

that we will consider attacks of the form depicted in figure 6.2. The input into

the attack will be a random state is the z-basis.

The input state that comes towards the user is a uniformly selected state in

the z-basis. This variable will be denoted as X. X is by definition independent

of K, M , and A (the key, message, and announcement, respectively). Using the

above facts, we see that H(F (M)|A, X) = H(F (M)|A), hence:

I(F (M); E|A, X) = H(F (M)|A, X) − H(F (M)|E, A, X)

= H(F (M)|A) − H(F (M)|E, A, X)

= H(F (M)|A) − H(F (M)|E, A)

+H(F (M)|E, A) − H(F (M)|E, A, X)

= I(F (M); E|A) + I(F (M); X|A, E)

≥ I(F (M); E|A)

So, if we want to bound I(F (M); E|A), it is sufficient to bound I(F (M); E|A, X).
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The states that Eve has consistent with f(m) = i given a particular announce-

ment a and input state x are:

σa,x
i ≡ 1

qi

∑

k:f(k⊕ a)=i

pkρx,k

where qi ≡
∑

k:f(k⊕ a)=i pk, and ρx,k is the state that Eve would have if the user

applies σx
[k] to an input state |x⟩⟨x|. Since pk is independent of k, we see that qi

is independent of a. The average of such states is:

σa,x ≡
∑

i

qiσ
a,x

i

=
∑

i

∑

k:f(k⊕ a)=i

pkρx,k

Since pk is independent of k, and since each input to the function f has one

output, we obtain:

σa,x =
∑

k

pkρx,k

From lemma 2.2.3 we have:

I(F (M); E|A, X) =
∑

a,x

papxI(F (M); E|a, x)

≤
∑

a,x

papx

∑

i

qi log
1

qi
|σa,x

i − σa,x|

Making use of the triangle inequality, we can obtain the following:

|σa,x
i − σa,x| ≤ |σa,x

i
′ − σa,x′| + |σa,x

i − σa,x
i
′| + |σa,x − σa,x′| (6.5)

for any choice of σa,x′ and σa,x
i

′. Our approach will be to choose those states to

be the ones that Eve would hold if, instead of the two-sided attack, the σx
[k] had

been applied to the input state |x⟩⟨x|, and Eve had then applied her two-sided

attack, U then V .
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We will use the sum notation for the first part of Eve’s attack, U :

U(|0⟩ ⊗ |i⟩) =
∑

j

|Ei,j⟩|j⟩

So, if we look at the user’s and Eve’s state together, after everything depicted in

figure 6.2, we would have:

|ψx,k⟩ = V (
∑

j

|Ex,j⊕ k⟩1|j⟩2)

Thus, ρx,k = Tr2(|ψx,k⟩⟨ψx,k|). The primed states will be derived from the case

where the user applies σx
[k] before Eve does any attack:

|ψ′
x,k⟩ = V (

∑

j

|Ex⊕ k,j⟩1|j⟩2)

Thus, ρ′
x,k = Tr2(|ψ′

x,k⟩⟨ψ′
x,k|).

There are three terms in the right-hand side of equation 6.5. In theorem 2.4.2,

we saw how to bound the first term. We now will handle the second and third

terms from equation 6.5 in turn.
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∑

a,x

papx

∑

i

qi log
1

qi
|σa,x

i − σa,x
i
′|

=
∑

a,x

papx

∑

i

log
1

qi
|qiσ

a,x
i − qiσ

a,x
i
′|

=
∑

a,x

papx

∑

i

log
1

qi
|
∑

k:f(k⊕ a)=i

1

2n
(ρx,k − ρ′

x,k)|

=
∑

a,x

papx

∑

i

log
1

qi
|
∑

k′:f(k′)=i

1

2n
(ρx,k′⊕ a − ρ′

x,k′⊕ a)|

≤
∑

a,x

papx

∑

i

log
1

qi

∑

k′:f(k′)=i

1

2n
|ρx,k′⊕ a − ρ′

x,k′⊕ a|

≤
∑

a,x

papx

∑

i

log
1

qi

∑

k′:f(k′)=i

1

2n
||ψx,k′⊕ a⟩⟨ψx,k′⊕ a|− |ψ′

x,k′⊕ a⟩⟨ψ′
x,k′⊕ a||

=
∑

a,x

papx

∑

i

log
1

qi

∑

k′:f(k′)=i

1

2n
2
√

1 −
∣∣⟨ψx,k′⊕ a|ψ′

x,k′⊕ a⟩
∣∣2

≤
∑

a,x

papx

∑

i

log
1

qi

∑

k′:f(k′)=i

1

2n
2
√

2
√

1 −
∣∣⟨ψx,k′⊕ a|ψ′

x,k′⊕ a⟩
∣∣

≤
∑

i

log
1

qi

∑

k′:f(k′)=i

1

2n
2
√

2

√
1 −

∑

a,x

papx

∣∣⟨ψx,k′⊕ a|ψ′
x,k′⊕ a⟩

∣∣

=
∑

i

log
1

qi
(
∑

k′:f(k′)=i

1

2n
)2
√

2

√
1 −

∑

a,x

1

22n

∣∣⟨ψx,a|ψ′
x,a⟩
∣∣

= H(F (K))2
√

2

√
1 −

∑

a,x

1

22n

∣∣⟨ψx,a|ψ′
x,a⟩
∣∣

≤ H(F (K))2
√

2

√√√√1 −

∣∣∣∣∣
∑

a,x

1

22n
⟨ψx,a|ψ′

x,a⟩

∣∣∣∣∣

All of the above is obtained merely by applying the triangle inequality and results

from chapter 2. We still need to look at the term under the square root in the
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last line of the above:

∑

a,x

1

22n
⟨ψx,a|ψ′

x,a⟩ =
∑

a,x

1

22n

∑

j

⟨Ex,j⊕ a|Ex⊕ a,j⟩

= FU .

where FU is the probability that the attack would cause no error in the x-basis1.

We must finally look at the third term in equation 6.5.

∑

a,x

papx

∑

i

qi log
1

qi
|σa,x − σa,x′|

= H(F (K))
∑

a,x

papx|σa,x − σa,x′|

= H(F (K))
∑

a,x

papx|
∑

k

1

2n
(ρx,k − ρ′

x,k)|

= H(F (K))
∑

x

px|
∑

k

1

2n
(ρx,k − ρ′

x,k)|

≤ H(F (K))
∑

x,k

px
1

2n
|ρx,k − ρ′

x,k|

≤ H(F (K))
∑

x,k

px
1

2n
||ψx,k⟩⟨ψx,k|− |ψ′

x,k⟩⟨ψ′
x,k||

= H(F (K))
∑

x,k

1

2n

1

2n
2
√

1 −
∣∣⟨ψx,k|ψ′

x,k⟩2
∣∣

≤ H(F (K))
∑

x,k

px
1

2n
2
√

2
√

1 −
∣∣⟨ψx,k|ψ′

x,k⟩
∣∣

≤ H(F (K))2
√

2

√√√√1 −

∣∣∣∣∣
∑

x,k

1

22n
⟨ψx,k|ψ′

x,k⟩

∣∣∣∣∣

= H(F (K))2
√

2
√

1 − FU

Where we made use of the same connection to error rates as in the previous

equations.

1refer back to chapter 2, theorem 2.4.1 to see this worked out in detail
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Putting these two bounds together with theorem 2.4.2, we have:

I(F (M); E|A) ≤ H(F (M))(4
√

1 − FUV + 4
√

2
√

1 − FU)

Note that the second and third terms in equation 6.5 yeilded bounds that only

depend on the fidelity of one of the sides, but the first term depends on the fidelity

of the two sides considered as one attack. Of course, all the fidelities are greater

than the minimum fidelity measured2, so FUV ≥ Fmin and FU ≥ Fmin, and hence

we prove the theorem.

6.6 Summary

We have described the first fundamentally multi-participant quantum cryptogra-

phy protocol. In this multi-participant protocol, a new type of attack is possible.

In section 6.5, we saw how to reduce these new attacks to the types we considered

in chapter 2. Finally, this gives security as long as the error rate is low enough

to allow a code with properties discussed at the end of chapter 3.

2In the protocol, both fidelities are estimated by test measurements
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CHAPTER 7

An Experimental Realization of a Quantum

Anonymous Channel

7.1 Introduction

In chapter 6, we introduced a new quantum protocol and also proved that this

protocol is secure. Both the protocol as well as the proof of security are stated in

a quantum information theoretic language. In this chapter, we will give a variant

of the protocol in the language of quantum optics. We will see that this protocol

is not beyond the reach of current quantum optical technology.

7.2 Tools and Terminology

The polarization state of a photon is, to many physicists, the most common

example of a two level quantum system. We will discuss two polarization bases

(see figure 7.1), {|H⟩, |V ⟩} and {|F ⟩, |S⟩}. The second basis can be written in

terms of the first:

|F ⟩ =
1√
2
(|H⟩ + |V ⟩)

|S⟩ =
1√
2
(|H⟩ − |V ⟩)

We will now describe an anonymous channel protocol in terms of physical pro-

cesses. We will forgo discussion of two aspects for now, namely production of
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Figure 7.1: Two polarization bases

singlet states: 1√
2
(|H⟩|V ⟩ − |V ⟩|H⟩), and performing polarization measurements

in both bases, MHV , MFS. We will discuss these aspects in sections 7.6 and 7.7.

In addition to polarization measurements and singlet production, we also need

an optical phase shifter (Pθ):

Pθ|H⟩ = |H⟩ Pθ|V ⟩ = eiθ|V ⟩

Note that P0 is identity operation. We will make use of the shifter at either θ = 0

or θ = π. We can see how it looks with θ = π:

Pπ|H⟩ = |H⟩ Pπ|V ⟩ = −|V ⟩

Pπ|F ⟩ = |S⟩ Pπ|S⟩ = |F ⟩

With these primitives, we can assemble a system which will allow us to perform

the anonymous channel protocol.

7.3 Experimental Procedure

We will assume that there are N participants in the protocol. As we saw in

chapter 6, the quantum phase of the protocol is really quite simple. We will

describe it slightly differently here.

Each participant, generally speaking, will make one of two actions: measure-

ment of the photon to perform a test (see figure 7.3), or phase shifting the photon

to generate a key (see figure 7.4). If no participant measures the photon in the

{|H⟩, |V ⟩} basis, the photon will be used to generate a key. One participant
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Figure 7.2: Starting a round of the experiment

will be special in that he will initiate and terminate each round. All the other

participants will behave by the same rules (see figure 7.6).

7.3.1 The First Participant

The first participant will start and finish each round. He will produce a singlet and

a reference pulse to trigger the other participants (see figure 7.2). He will measure

the photon in the {|F ⟩, |S⟩} basis with probability 1− 1
N . With probability 1

N , he

will measure in the {|H⟩, |V ⟩} basis. The optical fiber is arranged in a ring so it

will eventually loop back to the first participant. When the reference pulse arrives

back at his lab, he will measure in the same basis that he did when he emitted

the reference pulse. If he measures in the {|F ⟩, |S⟩} basis, and none of the other

participants performs a test measurement, the result of the measurement is the

bit he will use for this round of key generation. We now look at how the other

participants behave.

7.3.2 Performing a Test Measurement

In addition to the polarized photon which will arrive via optical fiber, there is also

a bright reference pulse. The bright reference pulse does not make use of any of

the quantum principles; therefore, the signal may be amplified and measured by

eavesdroppers. In order to reduce the effects of dark counts, the photo-detector is

triggered by the reference pulse. Examining figure 7.3, we see that, in addition to

measuring the incoming photon, a second photon is emitted by creating a singlet

and measuring one of the photons in the singlet pair. Of course, since the next
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Figure 7.3: Test measurement procedure

Figure 7.4: Phase shift (P0,Pπ) to generate key

participant will use the reference pulse to time his measurement (should he make

one), each participant must be careful to make sure that the his photon output

is properly timed with the reference pulse.

7.3.3 Generating a Key

If no one performs a test measurement, the photon is used to form the shared

key which will be used in the protocol. If the participant does not perform a test

measurement, he applies one of two phase shifts with equal probability. If the

participant applied the phase shift P0, he counts the value zero as his bit for this

round of the key. If he applied Pπ, he counts the bit as one. One such device that

can be electrically triggered to produce exactly such a phase shift is a Pockels

Cell.

7.4 Handling the Random Testing

As discussed in section 7.3.2, each photon needs to be tested with probability 1/N .

How can this be accomplished? One may use an electro-optical switch which can

route photons between one of two positions. One position would reflect the beam

toward the test measurement device; the other position would reflect the beam

into the phase shifter (see section 7.3.3). A simpler method would be to use a
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Figure 7.5: P-silvered mirror to randomly select test photons

Figure 7.6: Full experimental setup for each participant

partially silvered mirror for the incoming beam (see figure 7.5). In this case, the

partially silvered mirror could be produced to reflect the photon with probability

P , and to pass the photon with probability 1 − P . If the photon is reflected

into the test apparatus (see figure 7.3), the detectors would detect a photon. If

no photon is detected, we can assume that it was not a test. This setup could

resolve two difficulties. First, there is no need for a random number generator

to select photons for testing. Second, there is no need for a mechanical routing

of the photon into the testing or keying arms of the experiment. However, the

routing difficulty is not completely resolved, since recombining the beam as the

photon is leaving the experiment (see figure 7.6) would still require some kind of

electro-optical switch.

7.5 Processing the Results

After the experimental phase is complete, the participants are left with data.

This data is discussed according to the protocol to allow the participants to send

anonymous messages. First, each participant announces whether or not he tested.

After all the participants have made this announcement, each participant that

performed a test announces the value of the the first measurement (see figure

7.3). After all the above announcements are made, each participant that tested

announces the result of their second measurement. From these announcements,

everyone can compute the error rate between any two players. If the error rate
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between any two players is more than 7.5%1, the protocol is aborted. Other-

wise, they check the error rate of the non-test results. They then take a random

sampling of the non-test information (specifically, which phase shifters each par-

ticipant used and what measurements the first participant made). Using this

information, the error rate of the key material can be estimated. This needs to

be less than 7.5% as well. If this is the case, the participants are ready to make

anonymous announcements.

As we saw in chapter 6, we use two linear codes, C1 and C2, such that {0} ⊂

C2 ⊂C1 ⊂GF (2n). These codes have parity check matrices H2, H1. The code C2

needs to able to correct all the errors in the key material. The anonymous message

is encoded in C1 by selecting a random element a of C1 such that H2 · a = m,

where m is the anonymous message. Now each participant announces a ⊕ k

where k was the string of his key material. By decoding the parity of all these

announcements, one will learn the parity of the messages. If only one person uses

the channel, the result will be his message. If a participant uses the channel, but

the outcome does not decode to his message, he waits a random time and tries

again.

7.6 Producing Singlets Via Parametric Down Conversion

The singlet state 1√
2
(|H⟩|V ⟩− |V ⟩|H⟩) is often referred to as an EPR pair, named

after Einstein, Podolsky, and Rosen [?]. It was the seemingly odd properties of

this state that Einstein called “spooky action at a distance” and caused him to

doubt quantum mechanics. In fact, the strange properties of such states, which we

call entangled, are fundamental to many quantum information processing tasks

such as quantum key distribution[?], quantum state teleportation[?] and super-

1the details of the security result are given in chapter 6
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Figure 7.7: Parametric down conversion process

dense coding[?]. Therefore, the production of such states is of great importance

to experimental efforts in quantum information processing.

The basic experimental procedure for parametric down conversion is given in

figure 7.7. A laser sends a beam of photons into a non-linear crystal. Two beams

come out of the crystal. By tuning various parameters (such as the wavelength

and intensity the of laser light, the cut of the crystal, etc...), the quantum entan-

glement of the two emitted beams can be controlled. Energy and momentum are

certainly conserved in this process, and so the wavelength of the emitted beam

is larger. Recently, these sorts have experiments have been carried out by many

groups[?, ?, ?].

PDC is not, as of yet, a “push-button” process which can produce singlets

precisely on demand. In the current protocol, we are measuring the second photon

and using PDC only to produce photons with random, but known, polarization.

A system has been recently demonstrated which produces photons “pseudo-on-

demand”[?], meaning that they can be made to appear in known polarizations

at prearranged times. This sort of system would be suitable for implementation

of the current protocol.

It should be noted that, if the input beam does not contain exactly one photon,

the output will have more than one photon in each beam. In order to fit the

protocol, we need exactly one photon in each beam. This deviation from the

ideal protocol has been partially analyzed in the case of BB84[?, ?], and some

results have been obtained by assuming that Eve may only do single-photon

interactions. Full security results for such practical schemes is an open problem.

146



7.7 Performing Polarization Measurements

In the experimental procedure we have described in this chapter, we make use of

measurements of photon polarization. It may not be immediately clear how this

is to be performed. It is, in fact, quite simple.

The photon to be measured is sent through a polarization beam splitter. This

device reflects photons of one polarization, and lets photons of the orthogonal

polarization through. If photo-detectors are positioned in the paths that the

photon might take in each case, then when a detector measures a photon, the

polarization is known by which detector was activated (see figure 7.8). In the

figure, we give an example of measuring the photon in the {|H⟩, |V ⟩} basis;

however, by changing the configuration of the polarization beam splitter, this

method can be adapted to any basis.

Figure 7.8: Measurement in the H,V basis: MHV

7.8 Summary

We have given a prescription for how the protocol described in chapter 6 might

be realized with current experimental techniques. While there have been many

experimental implementations of quantum key distribution, this protocol is the

first quantum security protocol to use more than two participants. As such,

demonstration of this protocol will present interesting experimental challenges.

The rate at which the protocol could proceed is limited by the rate of the processes

described in sections 7.3.3 and 7.3.2.
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