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ABSTRACT OF THE DISSERTATION

Non-Parametric Approaches to Unsupervised Structure Discovery

by

Riccardo Boscolo

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2003

Professor Vwani P. Roychowdhury, Chair

For several years, blind signal or system identification problems have drawn the

attention of researchers from various fields, including physicists, engineers, com-

puter scientists, but also biologists, linguists, and economists. From a statistical

perspective, this kind of problems can be seen as a special instance of unsupervised

learning methods, which deal with the issue of finding a suitable representation of

the data, when only a minimal knowledge on the generative process is available.

In particular, for the special case of blind signal separation of linearly mixed

stationary signals, concepts from statistical information theory have allowed re-

searchers to devise novel frameworks, in which solutions to the estimation problem

that were not thought possible have been identified. The discovery of methods

allowing the blind reconstruction of statistically independent components from

linearly mixed data has led to the creation of an entire new field of research,

known as Independent Component Analysis (ICA). In the last few years, ICA has

found vast application as a data analysis tool (e.g. in biomedical and financial

data analysis), as a feature extraction technique (e.g. in speech and image pro-

cessing), as well as a pre-processing tool in the field of telecommunications (e.g.

xvi



wireless communications and multi-user detection in broadband systems). More-

over, the close connection between ICA and fields such as neural computation and

unsupervised machine learning has opened new perspectives on statistical learning

problems in general.

In this dissertation, we investigate and provide a solution to certain funda-

mental open problems in the field of blind signal separation. The first and most

relevant is the design and implementation of a universal ICA method capable of

reliably separating mixtures of signals with arbitrary statistical properties, lifting

the conventional requirement of having to provide an approximate estimate of

their distributions. This goal was achieved by designing a non-parametric esti-

mation framework, capable of simultaneously learning the statistical distributions

of the unknown signals, as well as the separating linear projection operator. The

proposed method is shown to clearly outperform current state-of-the-art ICA tech-

niques in terms of both accuracy of the separation and convergence properties.

Such claim is substantiated by several sets of simulation experiments that were

conducted comparing the proposed approach to six others popular ICA imple-

mentations.

An additional goal of this work is the investigation of certain fundamental

theoretical properties of the estimation framework associated with finding the op-

timal solution to the ICA problem. In particular, we extended the conventional

limitation that at the most one of the unknown signals can have a gaussian distri-

bution. A novel result shows that by using the proposed framework the separation

of all the non-gaussian signals is still possible, even in presence of multiple gaus-

sian signals mixed to them. We further identified a class of distributions for which

the proposed cost function has no local minima and we showed that such result

can be used to extend well-known information theory inequalities, such as the

entropy power inequality.

xvii



Finally, we applied the information-theoretic framework in the development

of a class of unsupervised exploratory methods aiming at learning patterns of

co-expression in gene expression measurement data. The proposed approach is

capable of finding patterns of associations between genes by revealing clusters of

genes which have a high degree of mutual information, only conditionally on the

expression levels of other genes. We expect that the proposed method will serve as

a useful aid for biologists in the discovery of unknown gene regulatory pathways.
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Chapter 1

Introduction

1.1 Overview and Motivation

The aim of this dissertation is the investigation of novel approaches to statisti-

cal learning within an information-theoretic framework, as well as the application

of such concepts to the problem of structure discovery in both synthetic and real

world data.

The main focus will be on the class of unsupervised learning problems [38], and

in particular, on the application to such problems of concepts deriving from sta-

tistical information theory. From a statistical perspective, unsupervised learning

methods deal with the problem of finding a suitable representation for N random

variables x = {x1, . . . , xN}, given a set of their observations.

In recent years, two closely related unsupervised learning problems have been

the subject of an extensive investigation, leading to novel approaches that have

combined concepts from the two fields of statistical learning and signal process-

ing. The first, known in the literature as Projection Pursuit (PP) [31][40][32][49],

deals with the problem of finding “interesting” lower-dimensional linear projec-

1



tions of high dimensional data, which can possibly reveal certain structure in

the data. The second is the field of instantaneous linear blind signal separa-

tion [13][18][43][46], which deals with the problem of reconstructing a set of sig-

nals from their linear mixtures, when no other assumptions on the mixing process

can be made besides its linearity. Both frameworks ultimately deal with the

fundamental issue of finding a suitable representation of the data, by seeking a

decomposition of the signals that satisfies certain properties.

As we will examine in detail in the following chapters, a large number of

learning problems, including those we just mentioned, are centered around two

concepts: statistical independence, and the related concept of mutual information

content across random variables. Several learning problems are greatly simplified

when statistical independence between all or at least groups of variables can be

assumed. Independency has also an interpretation from a neural learning perspec-

tive. As it was argued by Barlow in [3], the equivalent concepts of independency

and redundancy reduction can be seen as related to an optimum, in terms of

efficiency, coding strategy in neurons.

A typical example where conditional independence has a central role is the

problem of learning the topology and the associated parameters in Bayesian Net-

works [76][51][33][39][35]: the fundamental concept in learning with graphical

models involves the idea of estimating the properties of a large system by de-

composing the estimation problem into a set of smaller, hierarchically structured

sub-problems. Consequently, learning the properties of a sub-network becomes

independent from the remaining sub-problems, once the overall dependency struc-

ture of the network is known. Clearly, this is closely related to the issue of learning

from high-dimensional data. The ultimate goal of graphical models, in fact, is to

identify a factorial representation of the joint probability density function of a

large set of random variables, when the direct estimation of such function is un-
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feasible because of the dimensionality. In Chapter 7, we will introduce a novel

framework capable of simultaneously learning the structure of a bayesian network

and the local probability density functions in polynomial time, when a specific

model holds.

Several fundamental issues in the field of statistical unsupervised learning are

still unsolved. For example, in linear blind signal separation, although the identi-

fiability of the unknown sources under certain hypotheses has been demonstrated,

two issues are still under investigation. The first is related to the choice of a suit-

able statistical model for the unknown signals whose reconstruction is the goal

of the method. The second has to do with the properties of the resulting esti-

mation problem, and in particular with the characteristics of the cost function

associated to it. Chapter 4, 5 and 6 are dedicated to the introduction of a novel

non-parametric estimation framework for blind signal separation and to the in-

vestigation of some of its properties. Analogous problems are encountered when

attempting to solve the structure learning problem in hierarchical models: incor-

rect a-priori assumptions on the statistical properties of the unknown generating

processes often lead to an erroneous interpretation of the data.

A legitimate question that should be posed is related to the practical rele-

vance of conducting research on novel unsupervised learning techniques. There

is evidence that for specific learning problems, such as blind signal separation,

unsupervised approaches provide superior performance when compared to super-

vised approaches. In addition, it is often the case in many fields that the amount

of measurement data available greatly exceeds our understanding of the gener-

ative process. The phenomenal increase in the amount of biological data that

has become available in the last few years is a typical example. The capability

of monitoring the expression levels of genes in living cells, using high-throughput

standardized experimental procedures, has suddenly made available an enormous
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quantity of information, whose interpretation is just at its early stages. It will

be one of the goals of this dissertation to demonstrate that information theoretic

approaches and unsupervised learning can play a central role in shedding some

light on complex biological systems (Chapter 8).

1.2 Outline

The dissertation is organized as follows. Chapter 2 provides a brief introduc-

tion on the field of statistical learning, clarifying the difference between supervised

learning and unsupervised learning, which is the focus of this work. The role of

information theory in statistical learning is clarified and several concepts that are

fundamental for the rest of the discussion are introduced, such as the entropy of

a random variable, the Kullback-Leibler distance between distributions, and the

mutual information between two or more random variables. Some properties of

these quantities are also described. The chapter also introduces the problem of

learning from high-dimensional data and gives a brief review on Projection Pur-

suit, which constitutes the archetype of all dimensionality reduction techniques.

A detailed introduction to the field of blind signal separation is the focus of

Chapter 3. In this chapter, we will review not only the foundations of Independent

Component Analysis (ICA), but we will also show in a new and constructive

derivation how, under certain assumptions, the apparently dissimilar theoretical

frameworks on which most ICA algorithms are based, are indeed equivalent. The

current state-of-the-art ICA implementations will be examined and the limitations

of linear ICA as well as several open problems will be discussed.

In Chapter 4 we will introduce the main contribution of this dissertation, which

consists of a novel blind signal separation framework, based on the non-parametric

estimation of the probability density functions of the signals whose reconstruc-
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tion is attempted. The proposed method is shown to clearly outperform current

state-of-the-art ICA techniques in terms of both accuracy of the separation and

convergence properties. Such claim is substantiated by several sets of simulation

experiments that were conducted comparing the proposed approach to six others

popular ICA implementations.

An extension to a fundamental theoretical result in Independent Components

Analysis is introduced in Chapter 5. In this chapter, it is shown that the con-

ventional restriction imposed by Comon’s identifiability theorem [18], requiring

at the most one of the unknown sources to be normally distributed can indeed

be lifted. We prove in a novel and constructive proof that when several gaussian

and non-gaussian signals are mixed together, the reconstruction of all the non-

gaussian signals is always achieved by solving the same estimation problem as in

the conventional framework.

One of the fundamental unresolved issues in Independent Component Analy-

sis is to demonstrate in which instances a cost function based on the statistical

mutual information can be affected by the presence of spurious local minima.

In Chapter 2, we demonstrate the essential uniqueness of the separating solu-

tion: therefore, if the cost function is indeed affected by spurious local minima,

these will unavoidably result in a failure to obtain the desired source separation.

Chapter 6 is dedicated to the investigation of such issue. We were able to demon-

strate that for a special class of source distributions, the information-theoretic cost

function has no local minima, and the separation of the linearly mixed sources is

guaranteed regardless of the initial guess.

Chapter 7 presents an application of the proposed non-parametric unsuper-

vised learning approach. We show that for the special class of linear Bayesian

networks characterized by local conditional probability density functions that are

non-gaussian, the issue of learning the structure of the network can be cast as a
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blind signal separation problem. We also introduce certain novel concepts in the

process of deriving the proposed method, such as the concept of relaxation graph

and quasi-acyclicity of a graph.

The application of information-theoretic unsupervised learning to the discovery

of structured patterns in biological signals is the topic of Chapter 8. In particular,

we focus on the problem of learning patterns of interactions between genes in the

bacterium Escherichia Coli. After a brief introduction on the statistical analysis

of DNA microarray based measurements of gene expression levels, we discuss some

of the issues related to the problem of learning patterns of co-expression between

genes. We argue that, while traditional unsupervised learning techniques have

found only limited application to this kind of data, current approaches based on

simple pairwise correlations can be effectively extended to learning more complex

interactions within clusters of genes. Some of the issues related to the computa-

tional complexity inherent in this kind of combinatorial exploratory methods are

also examined.

In this chapter, we will also introduce GeneScreen, an integrated framework

for the analysis of gene transcription data and the systematic exploration of pat-

terns of conditional dependence between genes. The results obtained from the

application of GeneScreen to gene expression data from real DNA microarray ex-

periments are analyzed and thoroughly discussed at the end of the chapter. The

clear patterns of conditional co-expression detected using the proposed approach

demonstrate that the proposed approach can provide biologists with a valuable

tool for investigating the unknown role of certain genes whose function is not

completely understood.

In summary, the specific contributions of this dissertation are as follows:

1. The introduction of a novel framework for Independent Component Analy-
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sis, based on the non-parametric kernel based estimation of the probability

density functions of the signals whose reconstruction is attempted. The

proposed method is truly blind to the particular distribution of the original

sources, and does not require the selection of optimal working parameters.

An extensive set of simulation experiments established the performance im-

provement resulting from the proposed method, when compared to other

state-of-the-art ICA algorithms.

2. The extension of the classical identifiability theorem for ICA to mixtures

of gaussian and non-gaussian signals. A novel and constructive proof is

derived to show that, even in presence of multiple gaussian signals in the

mixtures, all the non-gaussian signals can be accurately reconstructed by

optimizing the conventional cost function based on the minimization of the

mutual information between the reconstructed signals.

3. The investigation of the uniqueness of the minima of the information-theoretic

cost function for ICA for a class of signals whose distribution follows a spe-

cific model. Namely, we demonstrate that for mixtures involving indepen-

dently and identically distributed signals, whose distribution can be approx-

imated by a Gram-Schmidt expansion involving only fourth-order Hermite

polynomials, the resulting cost function is free from spurious local minima.

4. An extension of the entropy power inequality for the class of random vari-

ables obtained as linear combinations of independent random variables. We

show that when the uniqueness of the minimum of the mutual information

as a function of the linear mixing parameters can be established, a converse

entropy power inequality holds. Specifically, when we consider statistically

dependent random variables obtained as linear combinations of other inde-
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pendent random variables, the entropy power inequality is always violated.

5. A novel application of blind signal separation to the problem of learning the

structure of linear bayesian networks. We prove that for the special class of

linear non-gaussian networks, a framework derived from ICA can be devised,

which is capable of simultaneously learning the connectivity structure of the

network as well as its local probability density models.

6. An application of information theoretic unsupervised learning to biological

data is introduced. A combinatorial exploratory method based on the esti-

mation of the co-information within clusters of genes is proposed as novel

approach for learning conditional dependency structures in gene expression

data from DNA microarray experiments.

7. The development of GeneScreen, a new tool for the statistical analysis of

gene transcription data based on exploring patterns of conditional depen-

dence between gene expression profiles. The proposed method was capable of

consistently identifying patterns of conditional co-expression between genes

in two organisms, Escherichia Coli and Saccharomyces Cerevisiae.
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Chapter 2

Information Theory and

Unsupervised Learning

2.1 Introduction

A fundamental problem in statistical learning, as well as in signal processing

in general, is to find a suitable representation of the data, in order to unveil its

inherent structure or simply find significative association patterns. We will refer

to this problem as learning from data [38]. Any learning framework can generally

be assigned to one of two broad classes, supervised or unsupervised.

In supervised learning problems, we make a distinction between input variables

(also known as regressor variables) and output variables (also known as regressed

variables). The goal is to find a model capable of predicting the output values

that are associated to specific input values, based on some sample training data.

Representative examples of supervised learning methods are classical statistical

regression, least-squares and nearest-neighbor methods, linear discriminant anal-

ysis, kernel methods (e.g. support vector machines), as well as the corresponding
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neural-network based implementation. In this work we will not deal with the su-

pervised learning problem and we invite the reader to refer to the rich literature

on the subject, for example [38], for a thorough description of the field and the

related applications.

We will focus, instead, on the class of unsupervised learning problems, and in

particular, on the application to such problems of concepts derived from statistical

information theory. From a statistical perspective, unsupervised learning meth-

ods deal with the problem of finding a suitable representation for N random vari-

ables x = {x1, . . . , xN}, given a set of their observations. For small dimensional

problems, N ≤ 3, methods for estimating directly the joint probability density

function (pdf) of x have been developed [86]. For higher dimensional problems,

the direct estimation of the pdf is usually not feasible (with the exception of very

special cases, e.g. when the random variables are statistically independent), and

one must resort to alternative approaches. Examples of unsupervised learning

techniques are cluster analysis (e.g. K-means algorithm), self-organizing maps,

principal component analysis, projection pursuit, and independent component

analysis. The reader can refer to [38] for a complete description of these methods.

An interesting perspective on unsupervised learning is provided by a class of

methods that seek lower-dimensional projections of high-dimensional data. The

idea behind these approaches is that, in some cases, it is possible to find lower-

dimensional representations of the data that preserve the original information

content, either because the data is intrinsically lower-dimensional, once a suitable

representation is identified, or simply because some of the dimensions have a

negligible information content. For example, in principal component analysis

(PCA) [47] the goal is to find the best successive linear approximations of the

data, based on the least-squares principle. Efficient algorithms for PCA have been

derived based on well known matrix decomposition techniques, such as singular

10



value decomposition (SVD) [37].

The meaning of information content and the general properties of linear pro-

jection methods will become clear once we introduce a few fundamental concepts

in the following sections.

2.2 Differential Entropy

Given a scalar random variable x, its entropy gives a measure of its uncertainty,

and is defined as [19]:

H(x)
△

= −E[log px(u)], (2.1)

where px(a) can be a continuous or discrete probability density function (pdf).

For discrete random variables, we have:

H(x) = −
∑

uk∈X

px(uk) log px(uk), (2.2)

where X is the alphabet of x. In the case of continuous random variables, the

quantity in (2.1) is usually referred to as the differential entropy, and it is defined

as:

H(x) = −
∫ ∞

−∞

px(a) log px(a)da. (2.3)

It can be easily demonstrated that the differential entropy is translation invariant.

Consider:

y = x+ α, (2.4)

where α is a constant. We have:
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Fy(u) = Pr(y ≤ u) = Pr(x ≤ u− α) = Fx(u− α), (2.5)

where Fx(u) and Fy(u) are the cumulative distribution functions (cdf) of x and

y, respectively. Hence:

fy(u) = fx(u− α), (2.6)

which clearly implies that:

H(y) = H(x+ α) = H(x). (2.7)

Of particular interest is the differential entropy of the gaussian normal distribu-

tion:

n ∼ N (µ, σ2) ⇐⇒ pn(u) =
1√
2πσ2

e
−
(u− µ)2

2σ2 . (2.8)

The expression for its differential entropy can be easily computed using the defi-

nition and it is given by:

H(n) =
1

2
log 2πeσ2, (2.9)

which shows that for normally distributed random variables the entropy increases

as the logarithm of the variance, thus supporting the intuition that the entropy can

be viewed a measure of uncertainty of a random variable. In the next section we

will re-derive a fundamental result showing that among all random variables with

a fixed given variance, the normal maximizes the entropy. This is analogous to say

that the state of a random process with known variance, is the least predictable
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when such process has a gaussian distribution, or equivalently that the normal is

the least informative among all valid distributions.

2.3 Relative Entropy and Mutual Information

In this section, we will introduce the concept of statistical mutual information

between random variables, which is pivotal to rest of the discussion. First let’s

introduce the closely related concept of relative entropy. The relative entropy is

a measure of distance between two distributions [19] and, given two probability

density functions px(u) and qx(u), it is defined as:

D(p||q) △

= Ep

[

log
px(u)

qx(u)

]

, (2.10)

where Ep represents the expectation taken with respect to the distribution px. The

quantity in (2.10) is also known as the Kullback-Leibler (KL) distance between

px(u) and qx(u). The relative entropy is always non-negative and is equal to zero

if and only if p = q almost everywhere.

In particular the Kullback-Leibler distance between two continuous random

variables can be expressed as:

D(p||q) =
∫ ∞

−∞

px(u) log
px(u)

qx(u)
du . (2.11)

The mutual information of two random variables x and y is defined as the rel-

ative entropy between their joint distribution and the product of their marginal

distributions, namely:
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I(x, y)
△

= D(pxy||pxpy) = Exy log
pxy(u, v)

px(u)py(v)
. (2.12)

For continuous random variables, it can be written as:

I(x, y) =

∫ ∞

−∞

∫ ∞

−∞

pxy(u, v) log
pxy(u, v)

px(u)py(v)
du dv. (2.13)

The mutual information between two random variables can also be expressed

in terms of their entropies. From (2.12), using Bayes’s rule [19]:

I(x, y) = Exy log
pxy(u, v)

px(u)py(v)

= Exy log
px|y(u|v)
px(u)

= −Exy log px(u) + Exy log px|y(u|v)

= −Ex log px(u)− (−Exy log px|y(u|v))

= H(x)−H(x|y). (2.14)

Therefore, the mutual information can be viewed as the decrease in uncertainty

on a given random variable, when the value of another random variable is known.

The following fundamental theorem can be derived from Jensen’s inequality [19]:

Theorem 1 (Non-negativity of the relative entropy) : For any two proba-

bility density functions px(a) and qx(a), it holds that:

D(p||q) ≥ 0 (2.15)

with equality if and only if px = qx almost everywhere.
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A fundamental property of the mutual information follows from this theorem. For

any two random variables x and y, it holds that:

I(x, y) ≥ 0, (2.16)

with equality if and only if x and y are statistically independent. Combining (2.14)

and (2.16), it follows that:

H(x|y) ≤ H(x), (2.17)

again with equality if and only if x and y are independent. Conditioning, there-

fore, decreases on average the uncertainty on a random process. The definition of

mutual information can be extended to the case of N random variables in several

ways [4]. For the purpose of this discussion we will use the following straightfor-

ward extension of definition (2.12):

I(x1, . . . , xN )
△

= D

(

px
∥

∥

∥

N
∏

i=1

pxi

)

(2.18)

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

px(u) log
px(u)

∏N
i=1 pxi

(ui)
du1 . . . duN .

We will also write this quantity as I(x). Once again I(x) ≡ 0 if and only if

x1, . . . , xN are independent random variables. By using the definition of relative

entropy (2.10), we can now show a fundamental property of the entropy of the

normal distribution [19].

Theorem 2 (Maximum entropy for a given variance) : Among all distri-

bution with a fixed variance σ2, the gaussian has the maximum entropy. Consider

an arbitrary zero-mean random variable x, such that:
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Ex2 = σ2, (2.19)

and let:

n ∼ N (0, σ2). (2.20)

From the definition of relative entropy, we have that:

0 ≤ D(x||n)

=

∫

px log(px/pn) (2.21)

= −H(x)−
∫

px log pn (2.22)

= −H(x)−
∫

pn log pn (2.23)

= −H(x) +H(n), (2.24)

where the equality
∫

px log pn =
∫

pn log pn holds because x and n have the same

moments up the second order.

The theorem shows that among all distributions with a given variance, the nor-

mal has the largest degree of uncertainty. Therefore, the gaussian is the least

informative among all distributions. One might recognize a connection between

the law of large numbers and such property. We will show in the next chapter

that, indeed, linearly mixing independent random variables results in an increase

in the overall entropy or, equivalently, in the degree of gaussianity of the resulting

variables. This result represent the foundation of exploratory methods based on

information theoretic cost functions, and, in particular, of blind signal separation

approaches based on minimizing the mutual information.
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2.4 Deviation from Gaussianity and Projection

Pursuit

We demonstrated in the previous section that the entropy can be used as a

measure of uncertainty of a process. In particular, we showed that gaussianity can

be associated to minimum information content. In this section, we will further

develop the relationship between such principle and a class of linear unsupervised

learning methods.

2.4.1 The curse of dimensionality

Consider a set of N random variables {x1, . . . , xN}, and a matrix X (size:

N × M) of M independently drawn observations of such variables. We already

mentioned in the introductory sections that learning the joint pdf of x becomes

a very difficult problem when N > 3 and no prior assumptions on the distri-

bution can be made [38]. In particular, when the number of dimensions N is

large, learning the multivariate distribution of a random vector becomes an ex-

tremely challenging tasks. The following example due to Huber [40] elucidates

the problem. Consider a sample of a 10-dimensional random vector uniformly

distributed in the unit ball. The radius of the ball containing 5% of the points

is (0.05)0.1 = 0.74, i.e. the ball is predominantly empty. Therefore, in order to

learn the distribution from the sample data, an unreasonably large sample size is

required. This problem is also known in the literature as the “curse of dimen-

sionality”. Therefore one has to resort to alternative approaches in order to learn

at least some properties of the unknown distribution.

A class of exploratory methods known as Projection Pursuit (PP) [58][50][40]

[32][71] aims at finding linear, possibly lower-dimensional, projections that can
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reveal certain “interesting” features of the data. The choice of a linear operator is

justified for several reasons: the results of a linear projection are easy to interpret

and their properties can be studied analytically. Moreover, linear operators can

reveal higher-dimensional structures present in the data by showing their lower-

dimensional “shadows”, but they cannot artificially generate such structures [32].

The general approach in PP is to seek a linear projection operator a such that

the resulting projected data:

Y = aTX, (2.25)

maximizes some index of “interestingness”, also known as projection index:

a = argmax
a

I(a), (2.26)

subject to certain constraints on a. We will focus for now on one-dimensional

projections, thus a is a N × 1 column vector. The index should possess certain

desirable properties: it should be a continuous function of a, and possibly it should

be differentiable with continuous derivatives, so that an automatic optimization

routine can be designed. In general, for a given dataset, we are interested not

only in the single projection that globally optimizes (2.26), but rather we seek a

set of projections that result in local strong maxima of the index. An alternative

approach, proposed by Friedman in [32] consists in finding one projection at the

time by maximizing (2.26) and then removing the structure in the data associated

to such optimum. The structure removal procedure should perform the task of

making “un-interesting” the projection just found, according to the selected index,

while preserving the structure along all other possible projection directions.

A well-known example of projection seeking technique is Principal Component

Analysis (PCA) [47], where the index of interestingness is given by the variance
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of the resulting projected data. The first principal component is found by solving

the problem:

max
a

var(aTXa) (2.27)

s.t. aTa = 1,

and the ith principal component is obtained by solving (2.27) with the additional

constraints that it must must be orthogonal to the previous i − 1 components.

It can be shown [47] that an analytical closed form solution to the problem of

finding the principal components of a matrix exist. This is simply obtained by

computing the eigen-decomposition of its sample covariance matrix: the resulting

eigen-vectors are the principal components and the corresponding eigen-values are

equal to the principal variances.

2.4.2 Centering and Sphering

Translation invariance is one of the desirable features of the projection index.

When the index indeed satisfies such property, it is generally more convenient to

work with mean subtracted data, so that also any arbitrary linear projection will

be zero mean. Given a matrix of observations X , we can compute the centered

data matrix as follows:

Xc = (IM − 1M1T
M)X, (2.28)

where IM is the M ×M identity matrix and 1M is a column vector of size M × 1,

with entries all equal to one. In the previous section, we described PCA as an

efficient method to extract maximally variant projection directions. Since we can

19



use PCA to derive scale effects in a given dataset, PP indices often focus on data

structures that are scale-invariant. Therefore, besides centering the data, it is a

common practice to pre-process the data matrix in such a way that its sample

covariance matrix is the identity matrix. This process is conventionally called

“sphering” as the resulting principal axes of the data will be equal to the axis

of an N -dimensional unitary sphere. Given the sample covariance matrix of the

data:

S =
XcXT

c

M − 1
, (2.29)

the sphered data matrix is given by:

Xs = S−1/2Xc, (2.30)

where S−1/2 is an inverse square root factor of S, which can be computed for ex-

ample by taking the eigen-decomposition of S and replacing the eigenvalues with

their inverse positive square roots. From (2.30), it is clear that sphering is equiva-

lent to carrying out the principal component analysis of the centered data. When

two or more observation vectors in the data matrix X are linearly dependent, the

covariance matrix S will not be full-rank in general. In this particular case, one

can show that it is still possible to obtain a sphered data matrix simply by reducing

the dimensionality of the data to the number of linearly independent components:

this is easily accomplished by taking the eigen-decomposition of S and considering

only the projection directions associated to its non-zero eigenvalues.

2.4.3 Projection Pursuit Indices

Unless explicitly mentioned, we will assume that the data matrix is centered

and sphered and we will simply refer to it as X , rather than Xs. What follows is
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a review of a selection of PP indices that have been proposed in the literature.

Friedman and Tukey suggested in [31] the following measure:

IFT (a) = s(a)d(a). (2.31)

The two terms composing the index are as follows:

s(a) =

⎡

⎣

(1−p)M
∑

i=pM

(

aTxi − X̄a

)2
/(1− 2p)M

⎤

⎦

1/2

(2.32)

X̄a =
(1−p)M
∑

i=pM

aTxi/(1− 2p)M, (2.33)

where xi is a column of the matrix X , representing a N -dimensional sample point,

and p is a parameter allowing to omit points that lie at each of the projection

extremes (the projections aTxi are assumed to have been sorted for each value of

a).

d(a) =
M
∑

i=1

M
∑

j=1

f(rij(a))U (R− rij(a)) , (2.34)

where:

rij(a) = |aT (xi − xj)|, (2.35)

and:

U(a) =
{

1, a > 0

0, a ≤ 0
(2.36)
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The function f(r) should monotonically decreasing in the range 0 ≤ r ≤ R, re-

ducing to zero at r = R. The term s(a) measures the “spread” of the data, while

d(a) measures the local density. The index (2.31) was then maximized via numer-

ical optimization with respect to the parameters defining the projections. The

spread term aimed at compensating the scale effects and, as argued separately

by Huber [40] and Jones [50], its task is efficiently replaced by a pre-processing

step where the data is sphered by using PCA. In [50] Jones re-derives the term

d(a) in (2.31) showing that it is minimized by a parabolic density function. Conse-

quently, maximizing Friedman and Tukey’s index is therefore equivalent to finding

projections of the data that have the largest degree of departure from such distri-

bution.

In [40] Huber classified projection indices into different categories according

to their equivariance properties. In particular, he emphasized the importance of

affine invariant indices, which are both translation and scale invariance. Starting

with the work of Diaconis [25], followed by that of Huber [40], Friedman [32], and

Jones [50], the concept that interestingness is related to that of non-normality

became predominant. Most heuristic arguments on the validity of such criterion

are fundamentally based on the unique properties of the gaussian distribution in

relation to the law of large numbers and to the differential entropy. The following

is a summary of a few arguments in favor of using non-gaussianity as a projection

index (from [40, 32]):

• All projections of a multivariate normal distribution are normal. There-

fore, evidence of non-normality in any projection provides evidence against

multivariate joint normality.

• The multivariate normal density is elliptically symmetric and is totally spec-

ified by its linear structure (mean and covariance).
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• Even when a few linear combinations of variables are highly structured (non-

normal), most linear combinations will look normally distributed.

• For a fixed variance, the normal distribution has the least information

(largest degree of uncertainty)

• For most high-dimensional point clouds, most low-dimensional projections

are approximately normal.

Based on these considerations, different methods to measure departure from

normality can be devised. In theory, any test statistic for testing normality would

serve the purpose. On the other hand, depending on such choice, alternative types

of distributions might be favored. Moreover, as we already mentioned, properties

such as continuity and differentiability of the index are highly desirable when an

automated projection pursuit method is sought.

In [32] Friedman proposed a PP index that measures deviation from normality

by using the following transformation of the projected data Y :

Z = 2Φ(Y )− 1, (2.37)

where Φ(·) is the gaussian cumulative distribution function given by:

Φ(u) =
1√
2π

∫ u

−∞

e−1/2t2dt. (2.38)

It is easy to show that −1 ≤ Z ≤ 1 and Z will be uniformly distributed in such

interval if Y follows a normal distribution. Therefore, the following projection

index is suggested:

IF (a) =

∫ 1

−1

[

pZ(u)−
1

2

]

du. (2.39)
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The author also suggests a procedure for removing the structure associated to an

index maximizing projection, while preserving the multivariate structure that is

not captured by it.

A PP index based on estimating the differential entropy of the projected data

was proposed by Jones et al. in [50]. We proved in a previous section that the en-

tropy of a random variable with given variance is maximized when its distribution

is gaussian. A natural choice for the projection index is thus given by:

IJS(a) = −H(Y ) =

∫ ∞

−∞

pY (u) log pY (u)du, (2.40)

subject to aTa = 1. The estimation of (2.40) requires some form of estimate of the

probability density function of the projected data Y . Jones proposes two alterna-

tive approaches in order to solve the problem. The first involves an approximation

of such pdf using a Gram-Charlier expansion [55], which allows to re-write (2.40)

as a polynomial function of the third and fourth order cumulants of the projected

data. In particular for one-dimensional projections the following approximation

is derived:

IJS(a) ≈ (κ2
3 + κ2

4/4)/12, (2.41)

where κ3 and κ4 are the third and fourth order cumulants [55] of the projected

data, respectively, which, for a zero mean and unit-variance random variable Y

are defined as:

κ3 = E[Y 3], (2.42)

κ4 = E[Y 4]− 3. (2.43)
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Jones derives in [50] also an approximation of (2.40) to two-dimensional pro-

jections.

The second approach for the calculation of (2.40) suggested in [50] relies upon

a kernel density estimate of the unknown probability density function of the pro-

jected data. Although the choice of such kernel is arbitrary, Jones’ choice of using

a gaussian kernel is justified for several reasons. First of all the normal kernel

guarantees the smoothness of the projection index as a function of the projection

direction, and, in addition, it allows a direct computation of its derivatives. More

importantly, as shown by Silverman in [86], the gaussian kernel allows the use of

an efficient algorithm for the computation of the projection index, based on the

fast fourier transform (FFT) [80], which is particularly useful when dealing with

large datasets.

In Chapter 4, we will examine all the details involved in using a kernel density

estimator within an optimization procedure.
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Chapter 3

Independent Component

Analysis: Theory and Practice

For several years, blind signal or system identification problems have drawn

the attention of researchers from various fields, including physicists, engineers,

computer scientists, but also biologists, linguists, and economists. In the last

decade, the specific problem involving the blind separation of linear mixtures of

signals has seen a quite unexpected flourishing in the amount of research and

literature dedicated to it. In this chapter, rather than having the ambition of

pursuing the gargantuan task of reviewing the entire literature of blind signal sep-

aration, we will try to provide a concise but hopefully enlightening review of the

foundations and most important theoretical results for the case of instantaneous

linear mixtures of statistically independent signals. Since no theory can really be

appreciated without showing how it can be applied, we will also provide a thor-

ough review of the most significant algorithmic implementations that have been

developed to solve such problem. Finally, we will discuss some of the questions

that are left open in this field as well as some of its inherent limitations.
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3.1 Theoretical Foundations

We will restrict our attention to the class of problems involving a vector of N

stationary and statistically independent signals s = [s1, . . . , sN ]T , which are mixed

by an unknown, full-rank mixing matrix A (size N ×N):

x = As. (3.1)

In the linear blind signal separation (BSS) literature, the signals si are conven-

tionally referred to as the “sources”, A as the “mixing matrix”, and xi as the

“mixtures”. The reconstruction of the original sources is attempted through a

linear projection of the type:

y = Wx, (3.2)

where W is usually referred to as the separating or “un-mixing” matrix.

3.1.1 Model Identifiability

The fundamental question in blind signal separation is whether the model (3.1)

is identifiable and under what conditions, considering that both the random vector

s and the mixing matrix A are unknown. Clearly, the existence of a linear solution

to the problem, given by W = A−1, seems to suggest that seeking non-linear

solutions to the identification problem posed by (3.1) may not be required.

The following fundamental result due to Darmois [23] and Skitovich [87], is

behind the main identifiability result in BSS:

Theorem 3 (Darmois-Skitovich Theorem) : Given a N-dimensional ran-

dom vector s = [s1, . . . , sN ]T , with mutually statistically independent components,

consider any two arbitrary linear combinations of such components:
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y1 = a1s1 + . . .+ aNsN (3.3)

y2 = b1s1 + . . .+ bNsN . (3.4)

If y1 and y2 are statistically independent, then it must hold that for every index i

such that ai ̸= 0 then bi ̸= 0, si has a gaussian distribution.

By applying Theorem 3, Comon [18] proved the following theorem, which is at

the basis of Independent Component Analysis (ICA):

Theorem 4 (Comon Identifiability Theorem) : Let s be a N-dimensional

vector with independent components, of which at most one is gaussian. Let C be

an orthogonal N ×N matrix and y the vector y = Cs. Then, the following three

properties are equivalent:

i. The components yi are pairwise independent.

ii. The components yi are mutually independent.

iii. C = ΛP , where Λ is a diagonal matrix (with non-zero entries in the diago-

nal) and P is a permutation matrix.

The main result following Theorem 4 is that in order to estimate the unknown

signals {s1, . . . , sN}, it suffices to seek a linear projection operator W that min-

imizes the pairwise dependency between the reconstructed components. Such

result states the equivalence between blind signal separation and inde-

pendent component analysis when the linear model assumption holds. We

will show at the end of this chapter that such equivalence no longer holds when

such assumption is violated.
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A fundamental indeterminacy affects the identifiability properties of the prob-

lem: the unknown sources can be reconstructed only up to scaling constants and

a permutation of the signals. This fact can be immediately recognized as a conse-

quence of Theorem 3: clearly, since the estimation criterion simply pursues a set

of independent signals, any arbitrary permutation of such signals or multiplication

by constant factors will equally satisfy the criterion. We will see in the following

chapters that such indeterminacy is not overly restrictive. When suitable con-

straints are included in the selected contrast function, in fact, the relationship

between mixture signals and reconstructed sources becomes uniquely determined.

Comon’s identifiability principle (Theorem 4) reveals one of the limitations of

ICA for blind signal separation, i.e. the requirements that at the most one of the

original sources is gaussian. Cruces et al. [20] recently extended this result showing

that when linear mixtures including an arbitrary number of gaussian and non-

gaussian sources are considered, all the non-gaussian signals can be reconstructed,

up to scaling and a permutation, using one of the conventional ICA contrast

functions. In Chapter 5 of this dissertation, we will present certain novel results

on the properties of the mutual information of the set of reconstructed signals,

when multiple gaussian sources are considered.

3.1.2 Uniqueness of the Separating Operator

Theorem 4 shows under what conditions the estimation problem defined by

(3.1) is identifiable. We will focus here on showing that once the indeterminacy due

to scaling and permutations is taken into account, the linear projection operator

resulting in the source separation is unique.

First let’s consider a pre-processing step that is quite common in ICA and

that will greatly simplify our discussion from now on. The idea is to subtract the
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mean of the mixtures x in such a way that:

x̂i = xi − E[xi] =⇒ E[x̂i] = 0, i = 1, . . . , N , (3.5)

and to sphere the data as in (2.30):

x̃ = S−1/2x̂, (3.6)

where S−1/2 is an inverse square root factor of S = E[xxT ], which can be computed

from the covariance matrix of the mixture variables as detailed in Chapter 2. It

is possible to show that if the original sources are at least uncorrelated and the

mixing matrix is non-singular, then the covariance matrix of the mixture data is

also non-singular, and this pre-processing step is always applicable. Therefore,

from now on we will assume that the mixture data satisfies the following two

properties:

i. E[x] = 0 (3.7)

ii. E[xxT ] = IN . (3.8)

We can now prove that when the mixture data satisfies such properties the linear

operator resulting in the source separation must belong to the manifold of orthog-

onal matrices. If the reconstructed signals are mutually independent, it must hold

in particular that:

E[yyT ] = diag{λ1, . . . ,λN}. (3.9)

Since the scaling of the reconstructed signals is anyway arbitrary, we can make

the non-restrictive assumption that λi = 1 (i = 1, . . . , N). Therefore, we have:
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E[yyT ] = E[(Wx)(Wx)T ] = WE[xxT ]W T = I. (3.10)

Since E[xxT ] = I, it must hold that:

WW T = I, (3.11)

thus W must be orthogonal. We can now continue by proving that the separating

matrix W is unique up to a permutation of its rows (notice that the scaling

issue has already been included in the normalization of the reconstructed signals).

Consider the combination of the mixing, sphering and unmixing systems:

y = WS−1/2As. (3.12)

The sphering step, in particular, ensures that:

E[xxT ] = E[S−1/2AssTAT (S−1/2)T ] = S−1/2ADssA
T (S−1/2)T = I, (3.13)

where Dss = E[ssT ] must be a diagonal matrix with non-zero entries in the diag-

onal. Since both matrices A and S are assumed non-singular, we can write:

Dss = A−1S1/2(S1/2)T (A−1)T . (3.14)

Since the random vector s has mutually independent components, from The-

orem 4 and (3.12), it implies that y will have mutually independent components

if and only if:

WS−1/2A = ΛP =⇒ W = ΛPA−1S1/2, (3.15)

where Λ is a diagonal matrix and P a permutation matrix. Now notice that, since

E[WW T ] = I, we have that:
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E[ΛPA−1S1/2(S1/2)T (A−1)TP TΛ] = ΛPDssP
TΛ = ΛDssΛ = I. (3.16)

Therefore it must hold that [Λ]ii = ±[Dss]
−1/2
ii , hence (3.15) reduces to:

W = D1/2
ss P̂ , (3.17)

where P̂ is a permutation matrix that can have positive as well as negative entries.

In summary, we proved the following theorem.

Theorem 5 (Uniqueness Theorem) : Given a N-dimensional random vector

s with statistically independent components, let A be a full-rank N × N matrix

and x the vector obtained as:

x = As. (3.18)

The linear operator W reconstructing the original signals (up to a permutation and

a sign inversion) is essentially unique and is given by the following expression:

W = D1/2
ss P̂ , (3.19)

where D1/2
ss is a square-root factor of the diagonal covariance matrix of s, and P̂ is

a generalized permutation matrix, where the non-zero entries can be both positive

and negative.

The importance of this result will become clear in the following sections, when

several types of objective functions used to enforce the independence of the recon-

structed signals will be examined. A fundamental issue in ICA is related to the

presence of sub-optimal extrema of the selected cost function. Since the optimal
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separating operator is essentially unique, local minima of the resulting optimiza-

tion procedure will, in general, result in a failure to produce the desired source

separation.

3.2 Contrast Functions for ICA

In the previous section, we have determined that the blind separation of lin-

early mixed independent stationary signals can be achieved by seeking a linear pro-

jection operator that maximizes the statistical independence of the reconstructed

signals. The next problem we are faced with is the selection of a measure of

statistical independence and of its associated objective function (also referred to

as the “contrast function”). In this section, we will review the most important

criteria that have been investigated for ICA, and we will show that, when certain

hypotheses are satisfied, all these criteria are analytically equivalent.

3.2.1 InfoMax

The first framework we are going to consider is the entropy maximization

approach suggested by Bell and Sejnowski in [5], which is popularly known in

the ICA community as InfoMax. InfoMax finds its origins in the “information

preservation” principle described by Linsker in [63], which results in a network

that maximizes the mutual information between its output and the signal portion

of the input. Linsker’s algorithm aims at extracting salient input features by

maximizing the information transfer in low noise conditions. We have shown in

Chapter 2 that the following equality holds:

I(y,x) = H(y)−H(y|x), (3.20)
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where x is the network vectorial input and y is its vectorial output, and I(y,x)

is their mutual information. When x and y are continuous random variables,

the entropies H(y) and H(y|x) are in general unbounded, thus the maximum of

I(y,x) is not well-defined. When additive noise is considered in the model we

have that:

y = Wx+ n. (3.21)

Thus, given the noise covariance matrix Cnn, it holds [70]:

H(y|x) = H(n) ≤ 1

2
log(2πeCnn) (3.22)

satisfied with equality if the noise n is a gaussian process. In this case it is evident

that:

∂I(y,x)

∂wij
=

∂H(y)

∂wij
. (3.23)

since H(n) does not depend on the network parameters. Nadal and Parga [70]

showed that even in the low-noise limit case the problem of maximizing the mutual

information, or equivalently the entropy H(y), has no solution for the class of

unbounded transfer functions. In [70], a set of possible choices for the constraints

that could be added to the optimization framework is examined. Moreover, it

is shown that, in the case of non-linear transfer functions, for a suitable choice

of the non-linearity, the maximization of the mutual information between inputs

and outputs implies a factorial form for the output distribution. We will give a

justification of this result below without giving a formal proof.
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This result is used by Bell and Sejnowski to justify the InfoMax algorithm

for ICA [5]. In particular, they propose the introduction of a fixed non-linearity,

which has the function of clipping the signal outputs:

z = f(y) = f(Wx). (3.24)

Typical choices for fi(u) are tanh(u) or the logistic function1. In general, such

non-linear functions map the real line to the interval (0, 1) and are monotonously

increasing. Thus, if the fi are differentiable they can be considered as the cu-

mulative distribution functions of some probability density functions [12]. The

importance of such property will be clarified below. In order to justify certain

common choices for the non-linearity, one has to derive a different expression for

H(z). Using basic information theory equalities, we can write:

H(z1, . . . , zN ) = H(z1) + · · ·+H(zN)− I(z1, . . . , zN ). (3.25)

The output entropy is, thus, maximized when, simultaneously, the marginal out-

put entropies are maximized and the mutual information between the output

variables is minimized. Because of the squashing non-linearity, the values of the

output variables are lower and upper bounded. It can be shown that the distribu-

tion that maximizes the entropy for amplitude-bounded random variables is the

uniform [19]. Therefore, the H(zi) are singularly maximized when2:

pzi(ui) =
pyi(ui)
∣

∣

∣

∣

dfi(ui)
dui

∣

∣

∣

∣

= 1, (3.26)

which implies:

1f(u)= 1/(1+e−u)
2Assuming that each squashing function maps the real line to the interval (0, 1).
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pyi(ui) =

∣

∣

∣

∣

dfi(ui)

dui

∣

∣

∣

∣

. (3.27)

Thus, the maximization of the output entropy requires the derivative of each non-

linearity to be equal to the pdf of the corresponding output signal. When such

hypothesis is indeed satisfied, the maximization of H(z) implies the minimization

of I(z), which results, implicitly, in the minimization of I(y), since the fixed non-

linearities cannot introduce dependence between the output variables (although

the expression of I(z) is, in general, different from the expression of I(y) when

not in the proximity of the global minimum).

We will now derive another expression for H(z) that will be used to clarify

the relationship between InfoMax and other contrast functions for ICA. Simply

notice that for one-to-one mappings between random variables, it holds:

pz(u) =
px(u)

| detJ | (3.28)

where J = ∂zi/∂xj is the Jacobian of the transformation and in the case of (3.24)

it is equal to:

J =

⎡

⎢

⎢

⎣

f ′
1(u1) 0

. . .

0 f ′
N(uN)

⎤

⎥

⎥

⎦

W (3.29)

Therefore, since the first term on the right hand side of (3.29) is a diagonal matrix:

det J = (detW ) ·
N
∏

i=1

f ′
i(ui) (3.30)

We can thus re-write H(z) as:
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H(z) = −
∫

pz(u) log pz(u)du (3.31)

= −
∫

px(u) log

(

px(u)

| detJ |

)

du (3.32)

= −
∫

px(u) log

(

px(u)

| detW ·
∏N

i=1 f
′
i(a)|

)

du (3.33)

= H(x) +

∫

px(u) log | detW ·
N
∏

i=1

f ′
i(ui)| du. (3.34)

The integral in (3.34) is well defined if and only if:

∫ ∞

−∞

f ′
i(ui) dui < ∞ , i = 1, . . . , N (3.35)

Both tanh(u) and the logistic function satisfy this property since their derivatives

integrate to 1. In particular when all the fi(ui) are monotonically increasing,

equation (3.34) can be rewritten as:

H(z) = H(x) +

∫

px(u) log

(

| detW | ·
N
∏

i=1

f ′
i(ui)

)

du. (3.36)

Therefore, since H(x) does not depend on the network parameters, maximizing

H(z) is equivalent to maximizing the second term in (3.36).

3.2.2 Mutual Information Minimization

A second approach to ICA is derived from Barlow’s redundancy reduction

principle, which was suggested by the author as a plausible coding strategy in

neurons [3]. The goal of Barlow’s approach is the design of a factorial code,

where every output unit is statistically independent from every other unit. This
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approach is equivalent to a straightforward application of the mutual information

as contrast function on the output signals, as suggested in [18].

In Chapter 2, we have shown that a valid definition of mutual information

between a set of N random variables is given by the relative entropy of the joint

probability density function and the product of its marginal pdfs:

I(y) = D

(

py(u)
∥

∥

∥

N
∏

i=1

pyi(ui)

)

=

∫

py(u) log

(

py(u)
∏N

i=1 pyi(ui))

)

du . (3.37)

This quantity is always positive and it is equal to zero if and only if the joint

pdf is equal to the product of the marginals. Following Theorem 4, the source

separation can be obtained by seeking a linear projection of the type:

y = Wx. (3.38)

The expression that relates the pdfs of y and x is simply given by:

py(u) =
px(u)

| detW | . (3.39)

Consequently equation (3.37) can be written as:

D

(

py
∥

∥

∥

N
∏

i=1

pyi

)

=

∫

px(u) log

(

px(u)

| detW | ·
∏N

i=1 pyi(ui)

)

du

= −H(x)−
∫

px(u) log

(

| detW | ·
N
∏

i=1

pyi(ui)

)

du (3.40)

Clearly, the two objective functions (3.36) and (3.40) are equivalent if:
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N
∏

i=1

f ′
i(ui) =

N
∏

i=1

pyi(ui) (3.41)

and, in particular, when:

fi(u) =

∫ u

−∞

pyi(v)dv i = 1, . . . , N. (3.42)

Obradovic and Deco [74] derived similar conclusions on the equivalence between

these two BSS principles. The importance of accurately estimating the marginal

probability density functions pyi(ui) was recognized in [70]. Bell and Sejnowski

also observed in their paper that different types of non-linearity were required in

order to separate sources with different probability density functions [5].

3.2.3 Maximum Likelihood Estimation

In the previous sections, we clarified the relationship between the contrast

functions and the distributions of the sources whose separation is attempted. We

established that the equivalence between InfoMax and the mutual information

minimization principle holds when the derivatives of the squashing non-linearities

match the pdfs of the independent sources. The relationship between the maxi-

mum likelihood (ML) principle and the contrast functions examined so far will be

the subject of this section.

Let’s first recall how the ML principle can be applied to the estimation frame-

work associated with the blind source separation problem. We will follow here

the derivation formulated by Cardoso in [12]. Let us denote a set of independent
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realizations of the mixtures x of finite size M , as x1, . . . ,xM . If we assume the

following parametric model for the density of x:

P = {pθ(x)|θ ∈ Θ}, (3.43)

then the normalized log-likelihood of a model, given the observations is equal to:

LM(θ)
△

=
1

M
log

M
∏

m=1

pθ(xm) =
1

M

M
∑

m=1

log pθ(xm). (3.44)

Since (3.44) can be seen as the sample average of log pθ(x), by the law of large

numbers, it converges in probability to its statistical expectation, when the sample

size becomes infinite:

LM (θ)
P→ L(θ)

△

= E[LM (θ)] =

∫ ∞

−∞

p(x) log pθ(x)dx. (3.45)

The expression above can be expanded as follows [12]:

L(θ) = −D(p(x)||pθ(x))−H(x). (3.46)

Considering that the relative entropy is invariant under an invertible transforma-

tion of the sample space [19], (3.46) can be written as:

L(θ) = −D (p(y)|| p(s̃)) + const. , (3.47)

where y = WAs are the reconstructed mixtures, assuming the correct model

for the density functions of the sources, and s̃ = Wxθ are the estimated source

distributions, assumed mutually independent. The following decomposition of the

KL distance holds for any vector s̃ with independent components [19]:
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D (p(y)|| p(s̃)) = D (p(y)|| p(ỹ)) +D (p(ỹ)|| p(s̃)) , (3.48)

where p(ỹ) =
∏N

i=1 p(yi) is the density function obtained by taking the product

of the marginal densities of p(y). Therefore L(θ) can be expressed as:

L(θ) = −I(y)−
N
∑

i=1

D (p(ỹi)|| p(s̃i)) + const. (3.49)

Hence, the maximum likelihood principle and the mutual information minimiza-

tion principle are equivalent when the model assumed for the density function of

the source vector is exact, so that the second term on the right hand side of (3.49)

is identically zero.

3.2.4 Negentropy Index

A final perspective to the blind source separation problem is, once again,

related to the concept of gaussianity. We will show here that, when the mixture

data is whitened using a sphering procedure of the type described in Chapter 2, the

mutual information minimization principle is equivalent to the entropy index for

projection pursuit, which measures deviation from gaussianity. This apparently

surprising result has a straightforward interpretation: the mixtures of independent

input signals {s1, . . . , sN} tend to have a larger entropy than the original signals, or

from a statistical perspective tend to be ’more gaussian’ than the original signals,

where gaussianity is measured in terms of differential entropy.

This concept can be formalized by considering the entropy power inequal-

ity [19]. The entropy power of a scalar random variable s is defined as:

N(s)
△

=
1

2πe
e2H(s) (3.50)
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Given two independent random variables s1 and s2, the entropy power inequality

states that:

N(s1 + s2) ≥ N(s1) +N(s2), (3.51)

with equality holding if and only if s1 and s2 are both normal. The inequal-

ity (3.51) can be used to prove the convexity of the entropy under a covariance

preserving transformation, i.e. given 0 ≤ λ ≤ 1, it holds that [24]:

H(λs1 +
√
1− λ2s2) ≥ λ2H(s1) + (1− λ2)H(s2), (3.52)

and analogously:

H(−
√
1− λ2s1 + λs2) ≥ (1− λ2)H(s1) + λ2H(s2), (3.53)

(note that H(as) = H(s)+ log |a|, a being a scalar parameter). Simply by adding

(3.52) and (3.53), we obtain:

H(y1) +H(y2) ≥ H(s1) +H(s2). (3.54)

which, indeed, formalizes the idea that the marginal entropies increase on average

when linearly mixing independent random variables. A natural question is, then,

whether a contrast function minimizing the sum of the marginal entropies of the

reconstructed signals can be used to seek independent components. The answer

is found by considering the following expansion of the mutual information:
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I(y1, . . . , yN) =
N
∑

i=1

H(yi)−H(y1, . . . , yN)

=
N
∑

i=1

H(yi)−H(x1, . . . , xN )− log | det(W )|, (3.55)

where y = Wx, and recalling that, when W is non-singular, it holds that H(y) =

H(x) + log | det(W )|. We already proved in (3.11) that, when the mixture vec-

tor x is sphered (i.e. E[xxT ] = I), then W must be orthogonal. In this case,

log | det(W )| ≡ 1, and the following two problems are equivalent:

min
W

I(y1, . . . , yN) ⇐⇒ min
W

N
∑

i=1

H(yi) , (3.56)

since H(x) does not depend on W . Therefore, the source separation can indeed

be obtained by minimizing the sum of the marginal entropies of the reconstructed

signals, or equivalently by maximizing the deviation of the marginal densities of

y from normality.

3.3 Cumulant Based Approximations

All the contrast functions for ICA described in the previous sections share the

problem that some estimate of the unknown probability density functions of the

source signals is required in the estimation framework. A large number of stud-

ies [13][44][45] have been directed at assessing the robustness of such estimation

framework to incorrect assumptions on the source statistics.

A simple but effective solution to this problem consists in approximating the

selected contrast function using high-order moments of the reconstructed signals.

In general, even without explicitly referring to one of the separation principles
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mentioned above, it is possible to seek a linear projection with independent com-

ponents simply by observing that the cross-cumulants [14] of the reconstructed

signals are expected to be zero when such signals are indeed independent.

In [18] Comon derives an approximation of the mutual information based on

the Edgeworth [53] expansion of the unknown density functions. In this paper

the issue of selecting a suitable subset of all possible cross-cumulants [55] of the

reconstructed signals is raised for the first time. Notice that, for example, the

straightforward minimization of just third and fourth order cross-cumulants would

require the computation of the optimal solution of a fairly large high-dimensional

problem. Comon shows that a functional based on r-order (r ≥ 3) cumulants only

is a valid ICA contrast function provided that the reconstructed variables have at

the most one null marginal cumulant of order r.

An effective solution to the problem of selecting a suitable set of high-order

cross-cumulants is the one proposed by Cardoso for example in [14], which repre-

sents the basis for JADE, a well-known ICA implementations. The author derives

approximations of the most important ICA contrast functions (e.g. maximum like-

lihood and minimum mutual information) based uniquely on second and fourth

order cumulants. Because of the linear modeling assumption, Cardoso shows that

by selecting a suitable set of high-order cumulants, the optimization of the re-

sulting contrast function can be posed as a joint matrix diagonalization problem

(namely N2 matrices, each of size N × N for the separation of N signals). A

Jacobi optimization [37] algorithm is proposed in order to estimate the optimal

orthogonal unmixing matrix when operating on sphered data. Similarly to the

cost function proposed in [18], this method requires as necessary condition that

at the most one source signal has a zero fourth order cumulant.

A moment based method approximating the negentropy maximization princi-

ple is proposed by Girolami et al. in [36]. The authors show that the negentropy
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projection pursuit index accurately approximates the score function proposed by

Bell and Sejnowski in [5], for the class of super-gaussian (positive kurtosis) dis-

tributions. Moreover, a generalization of the method to both sub-gaussian and

super-gaussian signals is provided that employs an adaptive non-linearity, which

is formed by estimating on-line the kurtosis of the latent variables. The idea of

adapting the sign of the non-linearity during the estimation procedure is also the

basis of the Extended InfoMax algorithm [61], which will be examined later on.

A thorough review of all moment based approaches for ICA is beyond the

scope of this dissertation and we invite the reader to refer to the vast literature

on the subject (e.g. [43]) for further details. Regardless of the specific choice for

the contrast function, all moment based algorithms present several advantages

and disadvantages when compared to approaches based on the estimation of the

true density functions of the unknown sources. A major advantage of cumulant

based techniques is that their computational complexity is rather unaffected by

the sample size, since they generally rely on pre-computed statistics of the sample

data, thus holding an edge in terms of computational payload when compared to

other methods. However, restrictions on the statistical properties of the unknown

sources, which depend on the specific choice of the set of cumulants, may limit their

applicability as generic ICA frameworks. Speculations on the increased sensitivity

of moment based approaches to the presence of outliers have been raised in the

literature [2][41][61], but they are largely unsubstantiated.

3.4 ICA Algorithms: State of the Art

In this section, we will give a brief review of the algorithms representing the

state-of-the-art in ICA. A more in depth analysis of numerous ICA frameworks

can be found for example in [43][59][84].
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3.4.1 Jade

Among all the cumulant based algorithms that have been developed for ICA,

Cardoso’s JADE [14, 15] has gained a vast popularity probably because of its ca-

pability of combining a generally reliable source separation, with an above average

speed of execution. JADE is based on a Jacobi technique (namely, a sequence of

planar Givens rotations) whose goal is the joint diagonalization of a maximal set

of fourth-order cumulant matrices. Formally, the algorithm attempts the mini-

mization of the following objective function [14]:

φJADE(y)
△

=
∑

ijkl≠ijkk

R2
ijkl(y), (3.57)

where Rijkl(y) is the fourth-order cross-cumulant of {yi, yj, yk, yl}, and is given

by [15]:

Rijkl(y)
△

= Cum(yi, yj, yk, yl) (3.58)

= E[yiyjykyl]− E[yiyj]E[ykyl]− E[yiyk]E[yjyl]− E[yiyl]E[yjyk]

The criterion has the restriction, common to other approaches based uniquely on

fourth-order moments, that at the most one of the unknown sources is allowed to

be zero-kurtotic.

3.4.2 InfoMax ICA and Extensions

The algorithm described by Bell and Sejnowski in [5] was characterized by

a fixed choice of the squashing non-linearity, suitable only for the separation of

highly-kurtotic signals. Lee et al. developed an algorithm capable of separat-

ing mixtures of super-gaussian and sub-gaussian sources [61] using a fixed non-

linearity (tanh(u)) and switching its sign according to the sign of the kurtosis of
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the underlying distribution. This approximate solution resulted in an improved

capability of separating different types of sources although the criterion used for

switching the non-linearity sign is heuristic.

3.4.3 Flexible Algorithms and Parametric ICA

More recently Karvanen et al. developed a maximum likelihood estimation

framework capable of separating a wide class of source distributions [29]. These are

modeled adaptively by either a Pearson model or an extended generalized lambda

distribution. The most important aspect of this approach is that several types of

sources that can be extracted by this algorithm are in general not distinguishable

using a more conventional ICA approach. For example the method developed

in [29] can reliably separate non-gaussian sources with identically zero kurtosis

but non-zero skewness. One of the problems associated with this complex model is

that the stability properties of the optimization procedure are unclear. Moreover,

as explained by the authors, some heuristics are introduced in the algorithm in

order to force the use of a tanh type of non-linearity when the source is clearly

super-gaussian or sub-gaussian.

Alternative parametric approaches to Independent Component Analysis that

employ a more flexible model for the pdf of the source signals have been intro-

duced [1][54][89]. These methods usually consist of a parametric density estima-

tion technique that alternates with a cost function optimization step in an iterative

approximation framework. Although these approaches tend to outperform stan-

dard algorithms in specific cases (e.g. skewed sources), neither their convergence

properties, nor their capability of modeling arbitrarily distributed sources, have

been fully assessed.
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3.4.4 Kernel Based Approaches

The recent introduction of kernel-based methods, such as Bach and Jordan’s

Kernel-ICA [2], demonstrate that finding a compromise between computational

complexity, performance and strong convergence properties of a blind signal sepa-

ration framework is still an open and challenging problem. The method introduced

in [2] uses a contrast function based on canonical correlations in a reproducing

kernel Hilbert space. In Chapter 4 we will compare this ICA framework with the

proposed approach, showing that not only the proposed algorithm outperforms

Kernel-ICA in terms of separation performance, but it also retains a significant

advantage in terms of computational complexity and added capability of obtain-

ing an estimate of the probability density functions of the source signals as a

by-product of the estimation procedure.

3.5 Challenges and Limitations

The fundamental identifiability theorem for ICA proves that the reconstruction

of independent signals from a set of their linear mixtures is a feasible estimation

problem. In this chapter, we identified two fundamental issues that inherently

limit such result, the first being the capability of accurately modeling the dis-

tributions of the unknown sources, the second being related to the properties of

the resulting cost function and, in particular, to the problems associated with the

risk of incurring in non-global optima of such contrast functions. One of the goal

of this dissertation is to investigate such fundamental issues and provide novel

solutions to such problems. This will be the topic, among others, of Chapters 4,

5, and 6.

Certain limitations are inherent in the ICA model and should be pointed out.

49



The most fundamental of such limitations is that Independent Component Analy-

sis cannot be regarded as a first-order linear approximation of a non-linear estima-

tion problem. Clearly, when the linearity assumption is violated, the identifiability

theorem no longer holds and seeking independent components in the data is no

longer equivalent to performing blind signal separation. This fact is better un-

derstood by observing that when the original independent signals are mapped

through certain non-linear transformations it is often the case that several sets of

independent components that are completely unrelated to the original ones can

be identified. This is a consequence of the fact that there is an infinitely large

number of non-linear mappings that preserve statistical independence.

Therefore, one of the open problems in ICA is to show whether a class of

non-linear problems exist such that a suitable modification of the conventional

estimation frameworks is still capable of providing the desired source separation

result.

50



Chapter 4

Non-Parametric ICA

In recent years, Independent Component Analysis (ICA) algorithms have pro-

ven successful in separating linear mixtures of independent source signals [5][13]

[14][18][20][36][42][61][70][74][79]. While most of the existing implementations

have been tested and compared to each other using synthetic data, significant re-

sults on separating real world mixtures of signals have been reported as well [6][52]

[60][66][67][68]. Many existing methods rely on simple assumptions on the source

statistics and are characterized by well assessed convergence and consistency prop-

erties [45]. When such hypotheses hold strictly or are only moderately violated,

most conventional ICA algorithms are capable of quickly and efficiently achieve the

desired source separation. However, such algorithms can perform sub-optimally

or even fail to produce the desired source separation, when the assumed statistical

model is inaccurate [13].

A relevant example and a well-known ICA implementation is Hyvärinen’s Fas-

tIca [41] (see Chapter 3, which requires the user to select a contrast function

according to the hypothetical (but unknown) probability density functions (pdf)

of the sources to be reconstructed. Such issues do not arise in the case of mo-
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ment based implementations of blind signal separation algorithm (e.g. Cardoso’s

Jade [15]). However, these approaches usually rely exclusively on third or fourth

order cross-cumulants in order to measure independency, and represent just an

approximation of the mutual information minimization principle [14]. Clearly,

when the separation of signals from real world data is attempted, such constraints

are highly undesirable.

Alternative methods that employ a more flexible model for the pdf of the

source signals have been introduced [1][54][89]. These methods usually consist of

a parametric density estimation technique that alternates with a cost function

optimization step in an iterative approximation framework. Although these ap-

proaches tend to outperform standard algorithms in specific cases (e.g. skewed

sources), neither their convergence properties, nor their capability of modeling

arbitrarily distributed sources, have been fully assessed. The recent introduction

of kernel-based methods, such as Bach and Jordan’s [2], demonstrate that finding

a compromise between computational complexity, performance and strong con-

vergence properties of a blind signal separation framework is still an open and

challenging problem.

In this chapter, we introduce a novel non-parametric ICA algorithm that is

truly “blind” to the particular underlying distributions of the mixed signals, es-

pecially when real world applications are sought. The proposed approach si-

multaneously estimates the unknown probability density functions of the source

signals and the linear operator that allows the separation of the mixed signals

(the so-called “unmixing matrix”). The resulting algorithm is non-parametric,

data-driven, and does not require the definition of a specific model for the score

functions.
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4.1 Joint Estimation of the Unmixing Matrix

and of the Distribution of the Source Sig-

nals

4.1.1 ICA Model and Separation Principle

The conventional generative model introduced in Chapter 3 is assumed, where

N independent and stationary source signals s1, . . . , sN are mixed by an unknown,

full-rank mixing matrix A (size N × N), resulting in a set of mixtures given by

x = As. The reconstruction of the original sources is attempted through a linear

projection of the type y = Wx, with the assumption that at the most one of the

sources has a gaussian density [18]. The basic principle behind most ICA frame-

works is the minimization of the mutual information between the reconstructed

signals [3], that is:

Wopt = argmin
W

I(y1, . . . , yN) (4.1)

This principle is characterized by having the minimum asymptotic variance, as

shown by Donoho in [26], and it can also be proved to be equivalent to the maxi-

mum likelihood (ML) principle when the source distributions are known [12][13].

Using basic information theory equalities[19], (4.1) can be written as:

min
W

N
∑

i=1

H(yi)− log | detW |−H(x). (4.2)

Since the term H(x) is a constant with respect to W , the objective function

is reduced to:
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L(W ) =
N
∑

i=1

H(yi)− log | detW | (4.3)

= −
N
∑

i=1

E [log pyi(wix)]− log | detW | , (4.4)

where wi is the ith row of the matrix W.

4.1.2 Non-Parametric Kernel Density Estimation

In order to evaluate the marginal entropies H(yi) in (4.3), a model for the

distribution of the unknown signals is necessary. In a quite effective way, Cardoso

shows in [13], that incorrect assumptions on such distributions can result in poor

estimation performance, sometimes in a complete failure to obtain the source

separation.

To tackle this issue, we propose a non-parametric model, where the probability

density functions pyi are directly estimated from the data using a kernel density

estimation technique [49][86]. The proposed approach allows a direct evaluation of

the cost function and its derivatives, thus lifting the requirement of separating the

optimization step from the step involving the re-estimation of the score functions,

as in [54] or [89]. Given a batch of sample data of sizeM , the marginal distribution

of an arbitrary reconstructed signal is approximated as follows:

pyi(yi) =
1

Mh

M
∑

m=1

φ

(

yi − Yim

h

)

, i = 1, . . . ,M, (4.5)

where h is the kernel bandwidth and φ is the gaussian kernel:
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φ(u)
△

=
1√
2π

e−
u2

2 . (4.6)

The kernel centroids Ymi are equal to:

Yim = wix
(m) =

N
∑

n=1

winxnm . (4.7)

where x(m) is the mth column of the mixture matrix. This estimator is asymp-

totically unbiased and efficient, and it is shown to converge to the true pdf under

several measures. Moreover, it is a continuous and differentiable function of the

elements of the unmixing matrix W , with its gradient being given by:

∇p(yi) =
1

Mh2

M
∑

m=1

x(m)(yi −wix
(m))φ

(

yi −wix(m)

h

)

. (4.8)

Using the kernel expansion of the source distributions, we can derive a closed

form expression for the pdf estimate of the one-dimensional reconstructed signals,

evaluated at the data points as:

pyi(wix
(k)) =

1

Mh

M
∑

m=1

φ

(

wi

(

x(k) − x(m)
)

h

)

. (4.9)

4.1.3 Objective Function Derivation

The expectation in (4.4) can be approximated by its ergodic average, as follows:
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L(W ) ≈ − 1

M

N
∑

i=1

M
∑

k=1

log pyi(wix
(k))− log | detW | , (4.10)

resulting in the following cost function definition:

L(W ) = −L0(W )− log | detW |, (4.11)

where L0(W ) is obtained by replacing the marginal pdfs pyi with their kernel

density estimates:

L0(W ) =
N
∑

i=1

E log

[

1

Mh

M
∑

m=1

φ

(

yi − Yim

h

)

]

(4.12)

≈ 1

M

N
∑

i=1

M
∑

k=1

log

[

1

Mh

M
∑

m=1

φ

(

wi

(

x(k) − x(m)
)

h

)]

.

The overall optimization problem can thus be posed as:

min
W

− 1

M

N
∑

i=1

M
∑

k=1

log

[

1

Mh

M
∑

m=1

φ

(

wi

(

x(k) − x(m)
)

h

)]

− log | detW | (4.13)

s.t. ||wi|| = 1 , i = 1, . . . , N . (4.14)

Given the sample data x(k), k = 1, . . . ,M , the objective (4.13) is a non-linear

function of the elements of the matrix W . The additional constraints (4.14) are

introduced in order to restrict the space of possible solutions of the problem to be a

finite set. Clearly, if a matrix W0 is optimal according to (4.1), so is any other ma-

trix obtained from W0 by re-scaling or permuting its rows. The constraints (4.14)
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remove the degree of freedom given by the magnitude of the sources, thus limit-

ing the solution space to all possible permutations of the reconstructed signals (a

finite set).

Although it is not strictly required in the proposed algorithm, we can assume

that the mixture data has been centered and sphered prior to attempting the

reconstruction [49], thus the problem is reduced to the estimation of an orthogonal

matrix [74]. Such pre-processing of the mixture data allows a further simplification

in the design of the kernel density estimator, since all the reconstructed signals

can be assumed to be zero-mean and unit variance random variables, due to

the constraint (4.14). Therefore, the optimal value of the parameter h, which

controls the smoothness of the functional, is a function of the sample size only

(h = 1.06M−1/5, [86]). Simulation experiments reported in section 4.3 show a

relative insensitivity of the algorithm’s performance for variations up to ±50%

from the optimal value of the bandwidth parameter.

4.2 Optimization and Global Convergence Issues

4.2.1 Optimization Algorithm

The objective (4.13) is a smooth non-linear function of the elements wij of the

unmixing matrix W . Its gradient can be computed using (4.8), as follows:

∇L(W ) = −∇L0(W )−∇ log | det(W )|

= −∇L0(W )−
(

W T
)−1

. (4.15)

If we define the following quantity:
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Zi(k,m)
△

= wi

(

x(k) − x(m)
)

/h =
1

h

N
∑

j=1

wij(Xjk −Xjm) (4.16)

we can compute the components of ∇L0(W ) as:

∂L0(W )

∂wij
=

M
∑

k=1

−
M
∑

m=1

∂Zi(k,m)

∂wij
φ (Zi(k,m))

h ·
M
∑

k=1

φ (Zi(k,m))

(4.17)

=
M
∑

k=1

−
M
∑

m=1

(Xjk −Xjm)Zi(k,m)φ (Zi(k,m))

h ·
M
∑

k=1

φ (Zi(k,m))

.

The constraints (4.14) can be enforced simply by operating the substitution:

wi =
w̃i

||w̃i||
, i = 1, . . . , N . (4.18)

Using the transformation (4.18), the matrix W can be written as W = D̃−1W̃ ,

with:

D̃ =

⎡

⎢

⎢

⎣

||w̃1|| 0
. . .

0 ||w̃N ||

⎤

⎥

⎥

⎦

, (4.19)

thus W̃ = D̃W . Then:

log | detW | = −
N
∑

i=1

log ||w̃i||+ log | det W̃ | . (4.20)

The derivatives with respect to w̃ij are thus computed as:
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∂(log | detW |)
∂w̃ij

= − w̃ij

||w̃i||2
+
[

(W̃ T )−1
]

ij
. (4.21)

When W is orthogonal (W−1 = W T ), we have:

(W̃ T )−1 = D̃−1(W T )−1 = D̃−2W̃ , (4.22)

and the coefficients of the gradient (4.21) are all equal to zero. Therefore, as

expected, the second term of the cost function (4.3) will no longer enter the opti-

mization procedure when the matrix W is orthogonal. Applying the substitution

as in (4.18), the components of ∇L0(W̃ ) can be computed as:

∂L0(W̃ )

∂w̃ij
=

1

M

M
∑

k=1

−
M
∑

m=1

(

Xjk −Xjm − Z̃i(k,m)w̃ij

)

Z̃i(k,m)φ
(

Z̃i(k,m)
)

h ·
M
∑

m=1

φ
(

Z̃i(k,m)
)

(4.23)

where, analogously to (4.16), Z̃i(k,m) is defined as:

Z̃i(k,m)
△

= w̃i

(

x(k) − x(m)
)

/h =
1

h

N
∑

j=1

w̃ij(Xjk −Xjm) (4.24)

and ||w̃i|| is arbitrarily chosen equal to one.

A natural choice for the optimization algorithm is the Quasi-Newton method

[8][27], which provides a good compromise between fast convergence, and compu-

tational payload. A backtracking technique is adopted for the selection of the step

size. The main steps of the proposed non-parametric ICA algorithm are shown

in Table 4.1. The backtracking routine ensures convergence to the closest local

minimum [73], even when the objective function is not convex.
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Table 4.1. Main steps of the Non-Parametric ICA algorithm

Non-Parametric ICA

Initialize W, α, β

Initialize the Hessian estimate H := IM×M

repeat

1. Compute the search direction: V := −H−1∇L(W )

2. Backtracking : compute the step size

µ := 1

while L(W + µV ) > L(W ) + αµ∇L(W )TV

µ:=βµ

3. Update H−1

4. Update W: W := W + µV

until
√

−V T∇L(W ) ≤ ϵ (stopping criterion)

4.2.2 Analysis of the extrema of the cost function for N=2

sources

A well-known result in blind signal separation is that, given the assumption

of linear and instantaneous mixing, the unmixing matrix is unique up to scaling

and permutations [18]. Conventionally, the unmixing operator is estimated by

minimizing a cost function derived from the mutual information measure (4.1).

Although the global minimum of (4.1) is known to yield the desired source sep-

aration, no proof is available to show that such a function has no local minima.

On the other hand, because of the uniqueness of the separation matrix (up to

permutations and scaling), proved by Comon in [18], convergence to any solution
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other than the global would result in a failure to separate the source signals. As it

was recently pointed out in [81] and [82], this specific issue is often overlooked in

other ICA frameworks, where, instead, the main concern is whether convergence

to a local minimum is obtained at all for an arbitrary initial guess [46].

The problem can be studied in detail in the case of mixtures of N = 2 sources.

In this case the unmixing matrix W can be parametrized as follows (including

implicitly the unit norm constraints on the rows of W ):

W =

[

cos θ1 sin θ1

cos θ2 sin θ2

]

. (4.25)

With a slight abuse of notation we can write the cost function as:

L(θ1, θ2) = h(θ1) + h(θ2)− log | det(W )| , (4.26)

where log | det(W )| = log | sin(θ2 − θ1)|, and h(θi) is defined as:

h(θi)
△

= H(yθi) , yθi = cos θix1 + sin θix2 (4.27)

Without loss of generality, we can assume the mixing matrix to be the 2x2 identity

matrix, so that x1= s1 and x2=s2. The extrema of cost function (4.26) must, then,

satisfy the following conditions:

∂h(θ1)

∂θ1
+ 1/ tan(θ2 − θ1) = 0, (4.28)

∂h(θ2)

∂θ2
− 1/ tan(θ2 − θ1) = 0, (4.29)

or, equivalently:
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∂h(θ2)

∂θ2
= −∂h(θ1)

∂θ1
= 1/ tan(θ2 − θ1) . (4.30)

These conditions are graphically illustrated in Figure 4.1. In order to characterize

the nature of these extrema, we can compute the Hessian of (4.26), obtaining:

[

∂2L

∂θ2

]

ij

=

⎡

⎣

∂2h(θ1)
∂θ21

0

0 ∂2h(θ2)
∂θ22

⎤

⎦+
1

sin2(θ2 − θ1)

[

1 −1

−1 1

]

(4.31)

The minima of the cost function (4.26) are found in correspondence of values

of (θ1, θ2) that satisfy the first-order conditions (4.30), and simultaneously en-

sure that the Hessian (4.31) is positive semi-definite, which requires that (see

Figure 4.2):

∂2h(θ1)

∂θ21
+

∂2h(θ2)

∂θ22
+

2

sin2(θ2 − θ1)
≥ 0 (4.32)

∂2h(θ1)

∂θ21

∂2h(θ2)

∂θ22
+

1

sin2(θ2 − θ1)

(

∂2h(θ1)

∂θ21
+

∂2h(θ2)

∂θ22

)

≥ 0. (4.33)

It can be easily verified that the cost function 4.26 is even and periodic both in θ1

and θ2 with period 2π, and that the conditions (4.30) through (4.33) are satisfied,

in particular, when θ1 = nπ/2 (n ∈ Z), θ2 = θ1 ± π/2, resulting in the source

separation.

As an example, consider the mixture of a super-gaussian (κ4 = 1.0) and a sub-

gaussian source (κ4 = −1.0), both unimodal. The entropy of an arbitrary linear

projection of the mixtures is shown in Figure 4.3 as a function of θ1,2 (the function

is symmetric with respect to the vertical axis). Clearly, in this simple example the

entropy function has only minima corresponding to the optimal solutions (θ1,2 =

0,±π/2), which satisfy conditions (4.30) and (4.33). Because of the independence
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Figure 4.1. Graphical interpretation of the conditions on the ex-

trema of the cost function (4.30). The curve 1/ tan(θ2−θ1)

is plotted for a fixed value of θ2 (not to scale).
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tives of the entropies of the two reconstructed sources

(for θ2 − θ1 = const.).
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Figure 4.3. Mixtures of a sub-gaussian signal and a super-gaussian

signal. The figure shows a plot of the entropy of a generic

reconstructed source as a function of the parameter θ.

For these particular mixtures of unimodal sub-gaussian

and super-gaussian sources, the entropy function does

not present any spurious local minima.
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Figure 4.4. Mixtures of a sub-gaussian signal and a super-gaussian

signal. The overall cost function L(W ) is plotted as a

function of (θ1, θ2). The plot clearly shows the set of

four equivalent minima, corresponding to permutations

or change of sign of the rows of the unmixing matrix.
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of the sources, the minima appear spaced by π/2, and correspond to the global

optima of the overall cost function (see Figure 4.4).

The situation is quite different in the case of mixtures of sources characterized

by a multimodal probability density function. An interesting example is given

by mixtures of natural images, where each pixel is considered as a sample drawn

from a distribution. This type of sources, in fact, tend to have a distribution

that is “heavily” multimodal. In Figure 4.5, the entropy of a generic projection

of a mixture of two images1 is plotted as a function of θ. Although the entropy

function shows minima at the optimal points (θ1,2 = 0,±π/2), several spurious

local minima appear in other locations. However, at least in this example, these

minima do not satisfy the conditions in (4.30), and do not appear in the overall

cost function, which, once again, has a unique set of equivalent global minima (cfr.

Figure 4.6). The independence of the sources, in fact, imposes a special structure

on the cost function, with the extrema of the entropy appearing in correspondence

of orthogonal rows of the matrix W (a well known fact in the ICA theory). Other

local spurious minima do not appear in the overall cost function because they

do not satisfy the first-order constraints (4.30). Nevertheless, it is still an open

problem to identify the class of distributions for which this property holds in

general, as well as to show whether the same property applies for mixtures of

N > 2 sources.

4.3 Simulation Experiments

A set of simulation experiments was conducted in order to investigate the

performance of the proposed non-parametric method. The blind separation was

attempted with each of the following algorithms: the Extended InfoMax ICA [61],

1The images can be downloaded at http://www.ee.ucla.edu/∼riccardo/ICA/images.
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Figure 4.5. Mixtures of two natural images. The entropy function

is plotted as a function of θ1,2. In this case, the en-

tropy presents several spurious local minima, which do

not correspond to independent sources. Attempting the

separation using a deflationary approach could result in

a failure to reconstruct the sources.
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Figure 4.6. Mixtures of two natural images. The overall cost func-

tion L(W ) is plotted as a function of (θ1, θ2), with a set

of four equivalent global minima clearly appearing. The

objective function is free from the spurious local min-

ima encountered when observing the entropy function

alone. At least in this case, the only values of θ1,2 that

satisfy (4.30) are either (equivalent) global minima, or

saddle points.
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FastIca [41], Jade [14], two so-called source adaptive methods, the Pearson model

ICA [54] and the EGLD model ICA [29], Kernel-ICA [2] and the proposed ap-

proach2. The algorithms were all downloaded from the websites of respective au-

thors, and in the case of FastIca, all the available contrast functions were tested,

both in deflationary mode (sources extracted one at the time), and in simultane-

ous separation mode (all the sources separated simultaneously). Both versions of

Kernel-ICA, KCCA and KGV, were tested in all the simulations.

4.3.1 Mixtures of Sources with Various Distributions

In a first experiment, 1000 realizations of six different sources, distributed as

specified in Table 4.2, were independently generated, with sample sizes ranging

between 500 and 5000, and mixed with randomly generated, full-rank (condition

number ≤ 10) mixing matrices, noiselessly.

The separation performance was evaluated in terms of median SIR (Signal-to-

Interference Ratio), defined as 10 log10

(

∑M
m=1 s

2
m/
∑M

m=1(ŝm − sm)2
)

(dB), where

s is the original signal and ŝ is the reconstructed signal. The “interfering” com-

ponents of the reconstructed signal are by definition those that are due to sources

other than the one we are attempting to separate. The results of this first exper-

iment are shown in Figures 4.7, 4.8, 4.9, and they clearly show the performance

gain obtained with the non-parametric ICA algorithm. On the average, the ‘gauss’

score function, when used in the simultaneous separation mode, resulted in the

best overall performance for FastIca, and it is the only one reported for this first

experiment. In general, SIR levels below the 8-10 db threshold are indicative of a

failure in obtaining the desired source separation.

Although the gain is more consistent in the case of skewed sources (Source

2The Non-Parametric ICA algorithm can be downloaded at http://www.ee.ucla.edu/
∼riccardo/ICA/npica.tar.gz.
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Table 4.2. Distribution of the synthetic sources used in the first

simulation experiment (see [30] for a description of the

distributions generated with the Power Method).

Source# Source type Skewness Kurtosis Pdf plot

1 Power Exponential (α= 2.0) 0.0 -0.8
−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 Power Exponential (α= 0.6) 0.0 2.2
−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 Power Method Distribution a 0.75 0.0
−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

4 Power Method Distribution b 1.50 3.0
−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 Normal Distribution 0.0 0.0
−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6 Rayleigh Distribution (β= 1) 0.631 0.245
−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a b=1.112, c=0.174, d=-0.050
b b=0.936, c=0.268, d=-0.004
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Figure 4.7. First simulation experiment. The results of attempting

the separation of the six different sources listed in Ta-

ble 4.2 are shown for various ICA algorithms (averaged

over 1000 Monte Carlo simulations). The accuracy of

the separation is measured in terms of median log signal-

to-interference ratio (SIR). The relative performance for

Source #1 and #2 is shown.
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Figure 4.8. First simulation experiment. The results of attempting

the separation of the six different sources listed in Ta-

ble 4.2 are shown for various ICA algorithms (averaged

over 1000 Monte Carlo simulations). The accuracy of

the separation is measured in terms of median log signal-

to-interference ratio (SIR). The relative performance for

Source #3 and #4 is shown.
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Figure 4.9. First simulation experiment. The results of attempting

the separation of the six different sources listed in Ta-

ble 4.2 are shown for various ICA algorithms (averaged

over 1000 Monte Carlo simulations). The accuracy of

the separation is measured in terms of median log signal-

to-interference ratio (SIR). The relative performance for

Source #5 and #6 is shown.
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#3,#4, and #6), the separation improvement is substantial also for conven-

tional sub-gaussian and super-gaussian sources (Source#1 and #2). Although

KernelICA-KGV appears to somehow match the performance of the proposed

method, Non-Parametric ICA still retains a performance gain of over 5 dB on av-

erage. It is interesting to notice that, although the “source-adaptive” algorithms

tend to outperform more conventional ICA methods in the case of non-symmetric

sources, they are often surpassed by traditional algorithms for symmetric sources.

The proposed technique delivers a consistent separation improvement for dif-

ferent sample sizes. In particular, the algorithm appears to be capable of learning

the source statistics even when the sample size is very small (e.g. 500 samples),

readily showing promising adaptive properties.

4.3.2 Skewed Sources

In a second simulation experiment, the specific sensitivity of each algorithm

to the source skewness was investigated. Using the method described in [30], we

generated samples drawn from four different sources, which are characterized by a

very small kurtosis (|κ4| < 0.2), and skewness ranging between 0.0 and 0.75. The

experiment was conducted mixing all four sources with randomly generated mixing

matrices, using 100 independent realizations of the signals, each consisting of 2000

samples. The results obtained with the various ICA algorithms are summarized in

Table 4.3. The proposed method shows a noticeable performance improvement,

confirming its capability of modeling arbitrarily distributed sources. Although

FastICA resulted in the third highest median SIR, its performance is somehow

biased by the choice of the score function ‘skew’, which assumes some a-priori

knowledge about the nature of the mixed signals.
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Table 4.3. The separation performance in terms of median SIR, as

well as 25 and 75 percentiles, is shown for mixtures of

four skewed sources (averaged over the sources), for var-

ious ICA algorithms.

Algorithm ˆSIR 25% 75%

Extended InfoMax 3.81 2.89 5.90

Jade 4.28 3.03 6.38

FastIca (’skew’ ) 18.94 16.04 22.32

Pearson ICA 14.97 11.40 19.52

EGLD ICA 16.73 12.76 21.21

Kernel-ICA (KCCA) 16.93 13.89 20.54

Kernel-ICA (KGV) 21.64 17.86 25.10

Non-Parametric ICA 23.40 18.91 27.19
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4.3.3 Convergence Properties

The convergence properties of the algorithms were empirically tested in a third

simulation experiment. The goal was to measure the approximate number of

data samples required by each method to achieve a median SIR of at least 20dB.

For this purpose, we created mixtures of four independent sources with a super-

gaussian (κ4 ≈ 2.2) symmetric pdf and we averaged the separation results over

100 simulations, for different sample sizes. The choice of standard super-gaussian

sources guarantees that the experiment is unbiased, since all ICA algorithms under

evaluation are capable of separating this type of signals accurately. Our results

show that the proposed method is able to achieve the required quality of separation

(20dB median SIR) with only 750 samples, performance matched by KernelICA-

KGV. FastICA resulted in the second-best performance (1000 samples), when the

score function was suitably chosen (in this case ‘gauss’ ).

4.3.4 Bandwidth Parameter Sensitivity

The sensitivity of the algorithm to the choice of the bandwidth parameter h

in (4.5) was evaluated following the experimental setting used in the first sim-

ulation (sources generated according to Table 4.2). In a series of Monte Carlo

simulations the bandwidth parameter was allowed to vary up to 50% from the

optimal value, computed as a function of the sample size. The results displayed

in Figure 4.10 show the obtained median SIR averaged across the 6 sources, for a

sample size equal to 1000. The experiment seems to suggest that the separation

performance is relatively insensitive to the particular choice of this parameter in

a broad range of values.
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Figure 4.10. The figure shows the results of a set of simulation

experiments aiming at evaluating the sensitivity of the

proposed technique to the choice of the bandwidth

parameter h. The error bars span between the 25

and the 75 percentiles of the SIR. This experiment

seems to suggest that variations of such a parameter

up to ±50% from the estimated optimal value do not

considerably affect the separation performance.
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4.3.5 Algorithmic Complexity

The introduction of a technique enabling the simultaneous estimation of the

unmixing matrix and of the unknown pdfs of the sources is inevitably accompa-

nied by an increase in its computational complexity. Regardless of the actual opti-

mization algorithm, a brute force implementation of the proposed non-parametric

method would require an amount of floating point operations proportional to

O(M2N) to evaluate the cost function and O(M2N2) to compute its derivatives,

where N is the number of sources and M is the sample size. This compares un-

favorably with fixed score function algorithms like FastIca whose computational

complexity is on the order of O(MN) and O(MN2), respectively, especially when

the number of samples M is very large.

On the other hand, fast density estimation techniques based on the FFT al-

gorithm can be developed, based on the observation that evaluating a density

estimate is equivalent to computing the convolution of an unevenly sampled se-

quence with a gaussian kernel [86]. At the core of the proposed non-parametric

method for ICA stands a fast density estimation algorithm of this type, which can

perform the evaluation of the cost function and of its derivatives in a time propor-

tional to O(M log2MN) and O(M log2MN2), respectively, thus minimizing the

additional payload required to achieve the increased separation performance and

reliability. Table 4.4 shows a detailed derivation of the computational complexity

of each step of the Non-Parametric ICA algorithm.

The median CPU time required to run the various ICA algorithms is shown

in Figure 4.11 for a fixed number of sources (6) and a variable number of samples

and in Figure 4.12 for a fixed number of samples (1000) and a variable number

of sources3. Clearly, fixed contrast function or moment based ICA algorithms

3The simulations were all performed under Matlab c⃝v.6.3, on a Dual Pentium IV 1.8Ghz PC
with 512Mbytes of RAM, running Red Hat Linux v7.2.
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are in general significantly faster than source adaptive methods. Although Non-

Parametric ICA is among the algorithms characterized by a higher computational

complexity, it is interesting to notice that it is on average one order of magnitude

faster than Kernel-ICA.

4.3.6 Large Scale Problems

In a separate simulation, we investigated the properties of the proposed method

for large scale problems. This was accomplished by creating mixtures of 12 up to

24 signals, randomly chosen among a set of sources, whose distributions included

both unimodal and bimodal pdfs. The separation results obtained over 100 Monte

Carlo simulations (Figure 4.13) demonstrate Non-Parametric ICA’s capability of

seamlessly handling large size problems. The decrease in median SIR which ac-

companies the increase in the problem size can be explained by considering that,

while the sample size is kept constant (M = 1000 samples), the number of pa-

rameters that needs to be estimated (N(N +1)/2) increases approximately as the

square of the number of sources. For example, the unmixing matrix has a total

of 66 unique elements when N = 12, that number increasing to 276 for N = 24

sources.

In terms of convergence properties, we noticed only a marginal increase in

the number of Newton steps required to achieve the desired separation accuracy,

with the relative CPU time required to complete the routine closely matching the

asymptotic computational complexity analysis described in Table 4.4.
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Table 4.4. Detailed analysis of the computational complexity of

Non-Parametric ICA as a function of the number of

sources (N) and the number of samples (M)

Routine Complexity

NpIca

(a) Compute search direction O(N4)

(b) Backtracking routine

Cost function evaluation (‘EstimateObjFFT’ )

1. Data rebinning O(NM)

2. FFT of re-binned data O(NM log2M)

3. FFTs multiplication O(NM)

4. Inverse FFT of pdf estimate O(NM log2M)

5. Rebinning and entropies evaluation O(NM)

(c) Gradient computation (‘EstimateGradFFT’)

1. Data rebinning O(N2M)

2. FFT of re-binned data O(N2M log2M)

3. FFTs multiplication O(N2M)

4. Inverse FFT of pdf derivative estimates O(N2M log2M)

5. Rebinning and gradient components evaluation O(N2M)

(d) Inverse Hessian update O(N4)

(e) Convergence criterion evaluation O(NM)

Overall computational complexity O(N4 +N2M log2M)
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Figure 4.11. The running time in terms of CPU seconds of various

ICA algorithms is shown for a fixed number of sources

(6) and variable number of samples. The methods ca-

pable of source adaptation are in general computation-

ally more expensive, as the separation performance is

paid in terms of running time.
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Figure 4.12. The running time in terms of CPU seconds of various

ICA algorithms is shown for a fixed number of samples

(1000) and variable number of sources. The methods

capable of source adaptation are in general compu-

tationally more expensive, as the separation perfor-

mance is paid in terms of running time.
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Figure 4.13. Large scale simulation. The median SIR (dB)

achieved by Non-Parametric ICA is shown for the sep-

aration of a number of sources varying between 12

and 24 (averaged over the reconstructed signals), and

a fixed number of samples (M = 1000).
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4.4 Conclusions

A novel non-parametric independent component analysis algorithm was in-

troduced. The proposed method is truly blind to the particular distribution of

the original sources, and does not require the selection of optimal working pa-

rameters, or suitable non-linearities to act as contrast functions. The algorithm

outperformed state-of-the-art ICA techniques in several simulation experiments,

with different types of mixtures. The capability of modeling sources with ar-

bitrary distribution, combined with the good convergence properties for small

sample sizes, make the proposed approach a particularly attractive alternative to

current ICA algorithms, especially for the analysis of real-world mixtures.
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Chapter 5

An Extension of Comon’s

Identifiability Theorem

In this chapter, Comon’s identifiability theorem for ICA (Theorem 4, Chap-

ter 3) is extended to the case of mixtures where several gaussian sources are

present. We show, in an original and constructive proof, that using the con-

ventional mutual information minimization framework, the separation of all the

non-gaussian sources is always achievable (up to scaling factors and permuta-

tions). In particular, we prove that a suitably designed optimization framework is

capable of seamlessly handling both the case of one single gaussian source being

present in the mixture (separation of all sources achievable), as well as the case

of multiple gaussian signals being mixed together with non-gaussian signals (only

the non-gaussian sources can be extracted).
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5.1 Introduction

In his fundamental work [18], Comon showed that the separation of a set of

stationary signals, instantaneously and linearly mixed, is always possible, as long

as the mixing matrix has full rank, and at the most one of the original signals

is gaussian distributed. This result is often cited in the literature as Comon’s

identifiability theorem for ICA, and it represents a well-known and widely men-

tioned result in the blind signal separation field. Most ICA algorithms are based

on contrast functions that are a functional of the probability density functions of

the unknown sources, such as the mutual information between the reconstructed

signals, or its equivalent counterparts, i.e. the InfoMax principle, or the maximum

likelihood (ML) principle.

In recent years, Cruces et al. [20][22][21] investigated several criteria for the

extraction of a subset of sources from a linear mixture, both in the instantaneous

case, and in the case of convolutive mixtures. In particular, it was shown in [22],

that a suitably designed entropy minimizing framework can be used to extract the

non-gaussian sources, from mixtures containing an arbitrary number of gaussian

distributed signals. The authors also introduced a moment-based iterative algo-

rithm that minimizes an approximation of the contrast function derived from this

principle.

In this chapter, we derive a novel proof of Comon’s identifiability theorem,

and extend the theorem to the case of multiple gaussian sources being mixed with

non-gaussian sources. All the results are derived by investigating the properties

of the optimization problem associated with minimizing the mutual information

between the reconstructed signals. In particular, we prove that, regardless of the

number of gaussian sources in the mixture, the resulting objective function always

has extrema that yield the separation of the non-gaussian sources (up to scaling
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and permutations), and the gaussian components are irrelevant in determining

such extrema.

5.2 Separation Principle and Objective Function

Definition

We make the conventional assumption (see Chapter 3) that N independent

and stationary source signals (s1, . . . , sN) are mixed by an unknown, full-rank

mixing matrix A, resulting in a set of mixtures given by x = As. The reconstruc-

tion of the original sources is attempted from the mixture data through a linear

projection of the type y = Bx. Following the mutual information minimization

principle, common to most ICA frameworks, we seek the matrix B, solution of

the optimization problem:

Bopt = min
B

I(y1, . . . , yN) , (5.1)

where I(y) is defined as in (2.19). Using basic information theory equalities, (5.1)

becomes:

min
B

N
∑

i=1

H(yi)− log | detB|−H(x). (5.2)

If we assume that the mixture data has been sphered (as in 2.30, Chapter 2), so

that E(xxT ) = I, we can restrict the search space for the unmixing matrix B to

the manifold of orthogonal matrices [13]. The problem can be simplified as:

min
B

N
∑

i=1

H(yi) (5.3)
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s.t. BBT = I , (5.4)

since log | det(B)| ≡ 1, and H(x) is a constant with respect to B. The equality

constraints (5.4) define a sub-group of the Stiefel manifold for the case of square

matrices. If we define F (B)
△

=
∑N

i=1H(yi), then the gradient of the cost function

defined on such manifold is given by [27]:

∇mF (B)
△

= ∇F (B)− B∇F (B)TB . (5.5)

where ∇F (B) is the conventional gradient of F (B) in the Euclidean space:

∇F (B)
△

=

[

∂F (B)

∂bij

]

=

⎡

⎢

⎢

⎣

∇H(y1)
...

∇H(yN)

⎤

⎥

⎥

⎦

. (5.6)

The extrema of the optimization problem (5.3) are given by all the matrices that

satisfy the condition:

∇mF (B) = 0 ⇒ ∇F (B)BT = B∇F (B)T , (5.7)

since BBT = I.

5.3 Extending Comon’s Identifiability Theorem

In this section, an alternative proof of Comon’s well-known theorem on ICA

identifiability [18] is derived, and it is extended to the case where more than

one gaussian source is present in the mixture. Under the modeling assumption

of Section 5.2, we consider mixtures of N independent sources s1, · · · , sN , with
probability density function fs1 , · · · , fsN , M of which are gaussian distributed.
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We make the further assumption that the mixing matrix A is the N ×N identity

matrix. This is not a restrictive assumption, since, if the mixture data is sphered,

the solution spaces associated to any two full rank mixing matrices simply map to

each other through an orthogonal transformation [74]. The generic reconstructed

signal can be written as:

yi = bi1s1 + bi2s2 + . . .+ biNsN i = 1, . . . , N , (5.8)

and its differential entropy is given by:

H(yi) = −
∫ ∞

−∞

fyi(u) log fyi(u)du , (5.9)

where, because of the independence between the sources:

fyi(u) =
1

|bi1|
fs1

(

u

bi1

)

∗ 1

|bi2|
fs2

(

u

bi2

)

∗ · · · ∗ 1

|biN |
fsN

(

u

biN

)

. (5.10)

The components of the gradient of H(yi) with respect to bi (ith row of B) can be

computed as:

∂H(yi)

∂bij
= −

∫ ∞

−∞

(1 + log fyi(u))
∂fyi(u)

∂bij
du (5.11)

To make explicit the dependence of the entropy H(yi) on bi, define h(bi)
△

= H(yi).

In order to satisfy the first-order conditions given by (5.7), we must have that:

⎡

⎢

⎢

⎣

∇h(b1)
...

∇h(bN )

⎤

⎥

⎥

⎦

[

bT
1 · · · bT

N

]

=

⎡

⎢

⎢

⎣

b1

...

bN

⎤

⎥

⎥

⎦

[

∇h(b1)
T · · · ∇h(bN )

T
]

. (5.12)
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The resulting set of equations is equivalent to the following set of N(N − 1)

equalities:

∇h(bk)b
T
l = ∇h(bl)b

T
k k, l = 1, . . . , N (k ̸= l) . (5.13)

Using expression (5.11), we get:

∫ ∞

−∞

log fyk(u)

[

bl1
∂fyk(u)

∂bk1
+ · · ·+ blN

∂fyk(u)

∂bkN

]

du = (5.14)

=

∫ ∞

−∞

log fyl(u)

[

bk1
∂fyl(u)

∂bl1
+ · · ·+ bkN

∂fyl(u)

∂blN

]

du .

The computation of ∂fyi(u)/∂bij can be efficiently carried out in the frequency

domain. Using the conventional definition of characteristic function of a random

variable [75]:

ΦX(ω)
△

= F{fX(x)} =

∫ ∞

−∞

fX(x)e
−ȷωxdx , (5.15)

we have from (5.10), using the convolution theorem:

Φyi(ω) = Φs1(bi1ω)Φs2(bi2ω) · · ·ΦsN (biNω) i = 1, . . . , N. (5.16)

If we assume that the pdfs fsi are continuous functions, with continuous derivatives

almost everywhere, we can exchange the order of the integral and the derivative,

and compute ∂fyi(u)/∂bij as follows:

∂fyi(u)

∂bij
= F−1

{

ωΦs1(bi1ω) · · ·Φ′
si(bijω) · · ·ΦsN (biNω)

}

(5.17)

where F−1 denotes the inverse fourier transform operator. The conditions imposed

by (5.14) are satisfied, in particular, when:
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bl1
∂fyk(u)

∂bk1
+ · · ·+ blN

∂fyk(u)

∂bkN
= 0 k, l = 1, . . . , N (k ̸= l) . (5.18)

If we substitute (5.17) into (5.18), and, under the assumption that all the charac-

teristic functions are non-zero for every ω, we divide by Φs1(bk1ω) · · ·ΦsN (bkNω)

the resulting expression, we obtain:

ωbl1Φ′
s1(bk1ω)

Φs1(bk1ω)
+ . . .+

ωblNΦ′
sN
(bkNω)

ΦsN (bkNω)
= 0 k, l = 1, . . . , N (k ̸= l). (5.19)

Notice that if and only if fsi is a gaussian pdf it holds that:

Φ′
si(αω) = −αωΦsi(αω) . (5.20)

Therefore in the special case where M = N , i.e. all the original sources have a

gaussian distribution, (5.19) simplifies as:

−(bk1bl1 + . . .+ bkNblN )ω
2 = −bkb

T
l ω

2 = 0 k, l = 1, . . . , N (k ̸= l), (5.21)

which are always satisfied because of the orthogonality constraints. Therefore, if

all sources are gaussian, the resulting objective is a constant with respect to the

elements of an arbitrary orthogonal unmixing matrix, and the separation is not

possible.

When M is strictly less than N , in order to simplify the notation, we can

assume that the first M sources, (s1, . . . , sM), are gaussian distributed. The equa-

tions in (5.19) can be simplified as:

−ω2(bl1bk1 + · · ·+ blMbkM) +
ωblM+1Φ′

sM+1
(bkM+1ω)

ΦsM+1
(bkM+1ω)

. . .+
ωblNΦ′

sN
(bkNω)

ΦsN (bkNω)
= 0

93



k, l = 1, . . . , N (k ̸= l) (5.22)

The subset of orthogonal matrices that satisfy this set of equalities is given by:

B =

⎡

⎢

⎢

⎣

Q | 0

0 | P

⎤

⎥

⎥

⎦

, (5.23)

where Q is an arbitrary M ×M orthogonal matrix, and P is a generalized per-

mutation matrix. Notice, in fact, that:

Φ′
si(bijω)

∣

∣

bij=0
= −ȷE[si] = 0 i = 1, . . . , N , (5.24)

if the sources are zero-mean1. This result shows that minima of the optimization

problem, that was derived from the separation principle (5.1), appear in corre-

spondence of matrices B that result in separation of the non-gaussian sources.

Therefore, we proved the following theorem:

Theorem 6 (Extended ICA Identifiability Theorem) Given N independent

and stationary signals s1, . . . , sN , M < N of which are gaussian distributed, the

N − M non-gaussian distributed signals can be reconstructed, up to scaling and

permutations, from any linear mixture of the type x = As, where A is a full-rank

N ×N matrix, solving the following optimization problem:

min
B

N
∑

i=1

H(yi) (5.25)

s.t. BBT = I .

1In general this is not a restriction because the mean can always be removed during pre-
processing of the mixtures.
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Notice that in the summation (5.25), the index is up to N since the number of

non-gaussian sources is not assumed to be known a-priori, thus preserving the

“blindness” of the approach to the underlying distribution of the mixed signals.

5.4 Conclusions

An extension to the conventional identifiability theorem for ICA is introduced

and rigorously proved. We show that, even when an arbitrary number of gaussian

sources is included in the set of independent signals, the conventional mutual

information minimization framework is still capable of separating all the non-

gaussian signals, without requiring an ad-hoc ICA implementation. In particular,

the main result of this Chapter is shown by investigating the properties of the

extrema of the optimization problem derived from the separation principle.
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Chapter 6

On the Uniqueness of the MI

Minimum for Special Classes of

Distributions

A large number of Independent Component Analysis (ICA) algorithms are

based on the minimization of the statistical mutual information between the re-

constructed signals, in order to achieve the source separation. While it has been

demonstrated that a global minimum of such cost function will result in the sep-

aration of the statistically independent sources, it is an open problem to show

that such cost function has a unique minimum (up to scaling and permutations

of the signals). Without such result, there is no guarantee that the related ICA

algorithms will not get stuck in local minima, and hence, return signals that are

statistically dependent. In this chapter, we derive a novel result showing that for

the special case of mixtures of two independent and identically distributed (i.i.d.)

signals with symmetric, nearly gaussian probability density functions, such objec-

tive function has no local minima. This result is shown to yield a useful extension
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of the well-known entropy power inequality.

6.1 Introduction

In the classic independent component analysis (ICA) framework (see Chap-

ter 3), a generative model is assumed where N independent stationary signals

s = {s1, . . . , sN} are mixed through a linear transformation x = As. It has been

shown (see Theorem 4) that, in absence of noise, there always exist an inverse

linear transformation of the type y = Bx, through which the reconstruction of

the original signals is possible, up to an arbitrary scaling and permutations of the

signals themselves. In particular, if we consider the statistical mutual informa-

tion (2.19) between the reconstructed signals as a function of the unmixing matrix

B, such a function has a global minimum, yielding the source separation [12][22].

Therefore, as we showed in Chapter 3, a vast number of independent compo-

nent analysis frameworks attempt to find a solution to the following optimization

problem:

Bopt = argmin
B

I(y1, . . . , yN) (6.1)

or an approximate version thereof. When the mixture data x is sphered prior

to the reconstruction (E[xxT ] = I), we proved in Chapter 3 that the unmixing

matrix B must belong to the manifold of orthogonal matrices [74]. Using some

basic information theory inequalities, the problem posed in (6.1) can be expressed

as:

min
B

N
∑

i=1

H(yi) (6.2)
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s.t. BBT = I , (6.3)

where H(yi) is the differential entropy, defined as in (2.3). The equality con-

straints (6.3) define a sub-group of the Stiefel manifold for the case of square

matrices. If we define F (B)
△

=
∑N

i=1H(yi), then the gradient of the cost function

defined on such manifold is given by [27]:

∇mF (B)
△

= ∇F (B)− B∇F (B)TB . (6.4)

where ∇F (B) is the conventional gradient of F (B) in the Euclidean space. The

extrema of the optimization problem (6.2) are found in correspondence to all the

matrices satisfying the condition:

∇mF (B) = 0 ⇒ ∇F (B)BT = B∇F (B)T . (6.5)

Several ICA algorithms optimizing different approximated versions of the cost

function (6.1) have been shown to possess good local convergence properties [41]

[46]. Although the global minimum of (6.1) is known to yield the desired source

separation [18], no proof is available to show that such a function has no local

minima. On the other hand, because of the uniqueness of the separation matrix

(up to permutations and scaling), that was proved in Chapter 3, Theorem 5,

convergence to any solution other than the global would result in a failure to

separate the source signals. The problem of convergence to sub-optimal solutions

was recently investigated for example in [81] and in [82].
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In this chapter, we address the fundamental problem of the uniqueness of the

minimum (up to scaling and permutation of the solution) of the information-

theoretic cost function in the case of linear mixtures. We show that in the case

of mixtures of two symmetric i.i.d. nearly gaussian signals, such cost function

is indeed free from spurious local minima. In addition, we derive an interesting

connection between the problem defined by (6.2) and the well-known entropy

power inequality, showing that, under the aforementioned hypotheses, not only

this inequality does not hold for dependent random variables, but it is, in fact,

always violated (converse entropy power inequality).

6.2 Extrema for Mixtures of Two Nearly Gaus-

sian Sources

We consider the traditional linear framework, where we assume that the mixing

matrix A is the 2× 2 identity matrix and the original signals are zero-mean, and

unit variance. The reconstructed signals can be written as:

y1 = b11s1 + b12s2 (6.6)

y2 = b21s1 + b22s2. (6.7)

The general case where the mixing matrix is not the identity matrix can be mapped

to this special case through an orthogonal transformation [74], as long as the

mixture data is sphered, thus preserving the characteristics of the solution space

of (6.2) (in particular, the number of extrema). We restrict our analysis to those

cases where the probability density functions of s1 and s2 are symmetric and they

can be approximated using a Gram-Charlier [90] expansion of the type:
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fsi(u) = g(u)
(

1 +
κ4,si

24
H4(u)

)

i = 1, 2. (6.8)

where H4(u) is the 4th order Chebyshev-Hermite polynomial and g(u) is the zero-

mean, unit-variance, normal probability density function. The probability density

functions of y1 and y2, can be approximated as1:

fyi(u) ≈ g(u)
(

1 +
κ4,yi

24
H4(u)

)

i = 1, 2. (6.9)

The cumulants κ4,yi can be computed as:

κ4,y1 = E[y41]− 3 = b411µ4,s1 + 6b211b
2
12 + b412µ4,s2 − 3 (6.10)

κ4,y2 = E[y42]− 3 = b421µ4,s1 + 6b221b
2
22 + b422µ4,s2 − 3 (6.11)

where µ4,si is the 4th order central moment of si.

The extrema of the cost function (6.2) must satisfy (6.5). For mixtures of two

sources these conditions can be written as:

∇H(b1)b
T
2 = ∇H(b2)b

T
1 , (6.12)

where bi is the ith row of B, and in order to make explicit the dependence of the

entropy H(yi) on bi, we can define H(bi)
△

= H(yi), i = 1, 2. Given that:

∂H(bi)

∂bij
= −

∫ ∞

−∞

(1 + log fyi(u))
∂fyi(u)

∂bij
du (6.13)

1Only the 8th order term of this Gram-Charlier expansion is non-zero and it is neglected.
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the identity (6.12) can be written as:

∫ ∞

−∞

log fy1(u)

[

b21
∂fy1(u)

∂b11
+ b22

∂fy1(u)

∂b12

]

du = (6.14)

=

∫ ∞

−∞

log fy2(u)

[

b11
∂fy2(u)

∂b21
+ b12

∂fy2(u)

∂b22

]

du .

Using (6.9) we can compute explicitly (i = 1, 2):

∂fyi(u)

∂bi1
= g(u)

(

1

6
b3i1µ4,s1 +

1

2
bi1b

2
i2

)

H4(u) (6.15)

∂fyi(u)

∂bi2
= g(u)

(

1

6
b3i2µ4,s2 +

1

2
b2i1bi2

)

H4(u) (6.16)

Now define:

D1(u,B)
△

=
1

g(u)

[

b21
∂fy1(u)

∂b11
+ b22

∂fy1(u)

∂b12

]

(6.17)

= c4,y1H4(u),

where:

c4,y1 =
1

6

(

b311b21µ4,s1 + b312b22µ4,s2

)

+ (6.18)

+
1

2

(

b11b
2
12b21 + b211b12b22

)

and:

D2(u,B)
△

=
1

g(u)

[

b11
∂fy2(u)

∂b21
+ b12

∂fy2(u)

∂b22

]

(6.19)

= c4,y2H4(u).

where:
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c4,y2 =
1

6

(

b11b
3
21µ4,s1 + b12b

3
22µ4,s2

)

+ (6.20)

+
1

2

(

b11b21b
2
22 + b12b

2
21b22

)

,

The following integrals need to be evaluated:

∫ ∞

−∞

g(u) log fyi(u)Di(u,B)du i = 1, 2 . (6.21)

where:

log fyi(u) = −1

2
log(2π)− u2

2
log(e) + (6.22)

+ log
(

1 +
κ4,yi

24
H4(u)

)

i = 1, 2 .

Substituting this expression in (6.21), we obtain:

∫ ∞

−∞

g(u)

[

−1

2
log(2π)− u2

2
log(e) + (6.23)

+ log
(

1 +
κ4,yi

24
H4(u)

)]

Di(u,B)du

Now notice that:

∫ ∞

−∞

g(u)H4(u)du = 0 , (6.24)

and:

∫ ∞

−∞

u2g(u)H4(u)du = 0 . (6.25)
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The integral (6.23) simplifies as:

∫ ∞

−∞

g(u) log
(

1 +
κ4,yi

24
H4(u)

)

Di(u)du. (6.26)

Using the following useful indefinite integral:

∫

g(u)Di(u)du = −c4,yiH3(u), (6.27)

we can integrate (6.26) per parts. If we define Xi(u)
△

= κ4,yiH4(u)/24, we obtain:

∫ ∞

−∞

g(u) log (1 +Xi(u))Di(u)du = (6.28)

= c4,yi

∫ ∞

−∞

g(u)H3(u)
X ′

i(u)

1 +Xi(u)
du,

where X ′
i(u) = κ4,yiH3(u)/6. Using (6.28), we find that (6.14) reduces to:

c4,y1κ4,y1

∫ ∞

−∞

H2
3 (u)

1 + κ4,y1/24H4(u)
g(u)du = (6.29)

= c4,y2κ4,y2

∫ ∞

−∞

H2
3 (u)

1 + κ4,y2/24H4(u)
g(u)du.

In particular, when the sources are i.i.d. (µ4,s1 = µ4,s2
△

= µ4), we have that

k4,y1 = k4,y2 ̸= 0, and the two integrals on the left-hand-side and on the right-

hand-side of (6.29) are always equal. Moreover, because their integrands are

non-negative, these integrals are also strictly positive. Thus, the conditions for

the gradient to be zero become simply:
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c4,y1 = c4,y2 (6.30)

We can now study the solutions of (6.30) in the space of orthogonal matrices.

This is achieved by operating the substitution:

[

b11 b12

b21 b22

]

=

[

cos θ sin θ

− sin θ cos θ

]

. (6.31)

Substituting in the expressions for c4,y1 and c4,y2, we obtain:

c4,y1 = −1

6
sin θ cos θ

[

(µ4 − 3)(cos2 θ − sin2 θ)
]

(6.32)

c4,y2 =
1

6
sin θ cos θ

[

(µ4 − 3)(cos2 θ − sin2 θ)
]

(6.33)

Thus, (6.30) is satisfied if and only if:

(µ4 − 3) sin θ cos θ cos 2θ = 0. (6.34)

Because of the symmetry of the problem, it suffices to study the zeros of (6.34)

in the interval [0, π/2). The solutions found in [π/2, 2π), correspond, in fact, to a

permutation or sign change of the rows of B. In this interval, (6.34) has only two

zeros, one for θ = 0 corresponding to a minimum of (6.2), and one for θ = π/4,

corresponding to a maximum of the objective function, thus proving that (6.2)

has no local minima.
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6.3 An Extension of the Entropy Power Inequal-

ity

In this section we will illustrate the connection between the result we just

proved and the well-known entropy power inequality (3.51). Let’s recall the defi-

nition of entropy power of a scalar random variable from Chapter 3:

N(s) =
1

2πe
e2H(s) (6.35)

Given two independent random variables s1 and s2, the entropy power inequal-

ity (3.51) states that:

N(s1 + s2) ≥ N(s1) +N(s2), (6.36)

with equality holding if and only if s1 and s2 are both normal. The inequal-

ity (6.36) can be used to prove the convexity of the entropy under a covariance

preserving transformation, i.e. given 0 ≤ λ ≤ 1, it holds that [24]:

H(λs1 +
√
1− λ2s2) ≥ λ2H(s1) + (1− λ2)H(s2). (6.37)

Now simply define:

λ = cos θ ⇒
√
1− λ2 = sin θ 0 ≤ θ ≤ π/2 (6.38)

Thus one can write:

H(cos θ s1 + sin θ s2) ≥ cos2 θH(s1) + sin2 θH(s2) (6.39)
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and analogously:

H(− sin θs1 + cos θs2) ≥ sin2 θH(s1) + cos2 θH(s2) (6.40)

(note that H(as) = H(s)+ log |a|, a being a scalar parameter). Simply by adding

(6.39) and (6.40) we obtain:

H(y1) +H(y2) ≥ H(s1) +H(s2). (6.41)

In particular (6.41) proves that the extremum corresponding to θ = 0 is a global

minimum of (6.2), regardless of the actual distributions of s1 and s2. The unique-

ness of this minimum, proved in the previous section, extends the inequality the-

orem showing that there are no local minima of H(y1) +H(y2), for 0 ≤ λ < 1.

This result can be used to show that a converse entropy power inequality

holds, if certain hypotheses are satisfied. Define two random variables z1 and z2

as follows:

z1 = λy1 +
√
1− λ2y2 (6.42)

z1 =
√
1− λ2y1 + λy2, (6.43)

for 0 ≤ λ < 1. Because of the uniqueness of the minimum of H(y1) + H(y2) in

this interval, it follows that the following inequality never holds:

H(z1) +H(z2) ̸≥ H(y1) +H(y2), (6.44)
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unless y1 and y2 are obtained from s1 and s2, solely through scaling or permu-

tation. In other words, the entropy power inequality is always violated by two

dependent random variables obtained through an orthogonal projection of inde-

pendent random variables.

6.4 Conclusions

We introduced a novel result proving the uniqueness of the minimum of the

information-theoretic cost function, for the special case of linear mixtures of in-

dependent and identically distributed signals with symmetric probability density

functions. Such a result, the first of its kind, can be used to show that a con-

verse entropy power inequality holds for this particular class of distributions. In

process of deriving a proof for our result, we introduced a useful framework that

can potentially be extended in order to investigate the problem for more general

classes of distributions. In particular, the method can be used to study whether

a converse entropy power inequality, proved for this special case, holds in general.

So far, in fact, examples of source distributions for which the uniqueness property

is systematically violated have not been identified.
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Chapter 7

Learning Linear Non-Gaussian

Networks

In this chapter, we show that the ICA framework we introduced in Chapter 4

can be extended to the problem of learning the structure of a specific class of

bayesian networks, called linear non-gaussian networks. These are a special case

of linear belief networks where the stochastic components are assumed to be non-

gaussian. A new algorithm is derived for learning the network topology, as well

as the local conditional probability distributions, from data. We show that when

the modeling assumption holds exactly, the conventionally NP-hard problem of

identifying the network structure is reduced to a continuous optimization prob-

lem, which is solved by a polynomial complexity algorithm. The general case is

addressed introducing the concepts of relaxation graph and relaxation matrix, in a

framework that permits effective handling of model mismatches or poor sampling.

Simulation experiments with synthetically generated data show the effectiveness

of the proposed technique in correctly reconstructing the network structure.
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7.1 Introduction

A central problem in the field of statistical learning is represented by finding

a suitable representation of the data that is both accurate and, at the same time,

simple and sufficiently general. In this context, graphical models, and in particular

bayesian networks [9][10][39][51][65][69][72][76][77] have established themselves as

a powerful and effective framework for characterizing relationships of dependency,

as well as independency, between variables in a model. These networks provide a

sparse representation of the joint probability density function of the variables of

interest, which is intuitively encoded by their topology. Therefore, under certain

assumptions, causality relationships and inference problems can be effectively in-

vestigated. Bayesian networks have found vast applications, among others, in the

fields of expert systems, fault diagnosis, optimal decision making, and in general

in all those problems involving both data modeling and inference capabilities.

Traditionally, relatively small bayesian networks are built from a-priori knowl-

edge, with the aid of an expert whose task is that of specifying the dependence

relationships between the variables in a model (i.e. the network topology), as well

as the probabilistic framework (i.e. the local conditional probability functions).

The manual construction of these networks becomes a laborious and ultimately

subjective task when the number of variables in the model becomes very large.

On the other hand, in those situations where a large number of data samples is

available, one might attempt to reconstruct the network purely from the data.

Learning graphical models from measurement data has received the attention of

several researchers in recent years [39]. In general, we must distinguish two sepa-

rate problems. The goal of the first is to learn the local probability distributions

when the network topology is given. This is classically known in statistical learn-

ing as the regression problem, representing the most general case of supervised
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learning. The second is the more challenging task of learning both the network

topology and the local probability functions. The latter can be viewed as the more

general problem of finding an optimal sparse representation of the joint probability

density function of a set of variables, given a sample of these variables.

In a standard structure learning algorithm, once a candidate network topology

is selected, its local probability distributions are estimated as regression functions

and the structure is scored according to a scoring metric (data likelihood, MAP,

minimal description length are just a few examples). The goal of the search algo-

rithm is, therefore, to identify the network structure (or the ensemble of network

structures) yielding the largest value of the selected scoring metric. Alternatively,

the problem can be posed as a constraint satisfaction problem, where a candidate

network structure that best matches the patterns of conditional mutual indepen-

dence observed in the data is sought [78]. Unfortunately, even in the case when

the maximum number of parents of any given node is constrained, the problem of

searching over the set of all possible structures is NP-hard [39], in both approaches.

Nevertheless, several approximate methods have been proposed, including heuris-

tic algorithms based on greedy search with random restarts [16], simulated an-

nealing, best-first search methods [57], and minimal description length (MDL)

techniques [83]. Specifically, heuristic methods aiming at the discovery of patterns

of conditional independence between sets of variables, based on the estimation of

their mutual information [19], have been suggested [33, 34]. In particular, the

“sparse candidate algorithm” proposed by Friedman et al. in [34] estimates the

pairwise mutual information between the variables in the model to heuristically

identify candidate nodes belonging to the same markov blanket. In the same

work, the idea of using the pairwise conditional mutual information as a measure

of modeling mismatch is also introduced.

In this chapter, we introduce a novel approach to learning bayesian networks,
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for a class of continuous graphical models which we will refer to as linear non-

gaussian networks. The proposed model differs from standard linear gaussian

networks (see for example [35]) in the fact that a strictly non-gaussian conditional

probability density model is assumed at each node. Conventionally, gaussian local

probability models are employed because of their simple formulation and because

closed-form expressions of several types of estimators are available, such as the

maximum likelihood (ML) and the maximum a-posteriori (MAP), when the prior

distributions belong to the exponential family [7]. However, especially when one

tries to model real world data, the normality assumption can turn out to be

too restrictive. In Section 7.2, the relationship between the non-gaussianity as-

sumption for the local distributions and the model identifiability is investigated.

In particular, we will prove that, for a linear model where the non-gaussianity

assumption holds, an optimal solution to the maximum likelihood problem as-

sociated with learning the network structure can be found in polynomial time,

solving a continuous optimization problem.

In Section 7.3, we will show that the proposed framework represents a for-

malization of the approach defined in [34], which is capable of systematically

identifying the optimal (according to the mutual information criterion) pattern of

conditional independencies in the graphical model. The method provides an exact

rather than a heuristic solution to the structure learning problem when the model

is constrained to the class of linear non-gaussian networks, under several different

scoring metrics. The novel concepts of relaxation matrix and relaxation graph are

introduced, in order to deal with model mismatches, as well as poor sampling

issues. A set of simulation experiments, discussed in Section 7.4 show that the

proposed framework can be used to effectively learn the network topology, by sys-

tematically extracting information about patterns of conditional independence in

the data.
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Figure 7.1. An example of a belief network topology.

7.2 Linear Non-Gaussian Networks

7.2.1 The Model

Given a set of N random variables x1, . . . , xN , a belief network or bayesian

network consists of a graph G encoding conditional statistical independence re-

lationships among such variables, and of a set of conditional probability density

functions (also known as local probability distributions) necessary to define the

joint pdf over the set of variables [10][35][48][77]. Given a network structure G,

we have that:

p(x) =
N
∏

j=1

p(xj|Paj), (7.1)

where Paj is the set of parents of node j (an example is shown in Figure 7.1).

In particular, we are interested in the case where the xj’s are continuous random
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variables and the following model for the conditional probability density functions

p(xj |Paj) holds:

p(xj |Paj) = fuj
(t−

∑

i∈Paj

aijxi), j = 1, . . . , N, (7.2)

where {fu1
, . . . , fuN

} is a set of independent and non-gaussian pdfs. This is equiv-

alent to assuming the following generative model:

xj = uj +
∑

i∈Paj

aijxi j = 1, . . . , N, (7.3)

where aij are arbitrary real coefficients. At each node j, realizations of the parent

variables Paj are linearly combined to give the mean of the child node.

The model presents a close resemblance to the one discussed in [35], with the

fundamental distinction that the local probability functions fuj
are non-gaussian.

It can also be viewed as a sparse linear regression model [10], where the noise is

non-gaussian, and with the important difference that the topology of the relations

regressor-regressed variables is not known a-priori.

7.2.2 Network Properties

To completely define the model one needs to provide the set of independent

probability density functions fuj
and the matrix A, which defines the topology of

the network:

A
△

=

{

aij ̸= 0 ∃ arc i → j

0 otherwise
. (7.4)

Certain properties of the network can be characterized noticing that this matrix

is a weighted adjacency matrix (see for example [17] for a definition), which differs
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from a standard adjacency matrix in the fact that non-zero entries represent the

weights associated with each directed arc. For example the matrix A associated

with the graph of Figure 7.1 is given by:

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1.5 0 0

0 0 −0.7 0.8 0

0 0 0 0 1.1

0 0 0 0 0.3

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.5)

The following result about the acyclicity of the graph holds. Define the matrix

Ā
△

= [|aij |], then the graph G is acyclic if and only if:

trace(Ān) = 0 n = 1, . . . , N. (7.6)

The proof can be easily derived from a standard result of graph theory, which

states that the ij element of the nth power of the adjacency matrix is equal to the

number of paths between node i and node j in the directed graph [17]. Another

property that we will not prove is that the graph defined by A is a minimal belief

network with respect to equation (7.1), i.e. it is not possible to remove an arc from

G without violating this equation. Therefore, a minimal linear non-gaussian belief

network will be defined as the graph G where a directed arc between node i and

node j exists if and only if aij ̸= 0, and where the local probability distributions

are given by (7.2).
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7.3 Learning The Network Structure

In this section, the identifiability of a linear non-gaussian network is investi-

gated. In particular, the fundamental problem of learning the network topology

from data is addressed.

7.3.1 Model Identifiability

We can write the generative equations of the model (7.3) in a matrix-vector

form as follows:

x = ATx+ u, (7.7)

where x = [x1, . . . , xN ]T and u = [u1, . . . , uN ]T . From (7.7), we obtain:

(I − AT )x = u (7.8)

It is possible to show that if the directed graph G is acyclic, then the matrix

(I−AT ) has full rank. For any directed acyclic graph, in fact, it is always possible

to define a partial ordering over the set of nodes such that if i ∈ Paj, then i < j.

Therefore, without loss of generality, we can assume that A is upper-triangular

with zeros on the diagonal, and its eigenvalues are all zero. Consequently:

eig(I − AT ) = eig(I)− eig(AT ) = [1, . . . , 1]T , (7.9)

which proves that (I −AT ) is full-rank. Therefore we can write:

x = (I −AT )−1u = Bu, (7.10)

where B
△

= (I − AT )−1. When the random variables uj are statistically indepen-

dent, the problem defined by (7.10) is known as independent component analy-
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sis [18] or independent factor analysis [1]. The goal is to obtain an estimate of

B−1 without any prior knowledge on the structure of this matrix or on the dis-

tribution of the unknown factors uj. A maximum likelihood (ML) estimator for

problem (7.10) can be derived recalling that, given a matrix B and an estimate

of the pdf fu =
∏N

j=1 fuj
we have that:

p(x|B, fu) = | detB|−1fu(B
−1x). (7.11)

Assuming that M samples are drawn independently, the normalized log-likelihood

L(B, f) for the entire data can thus be written as:

L(B, f) =
1

M
log

M
∏

k=1

| detB|−1fu(B
−1x(k)) (7.12)

=
1

M

M
∑

k=1

log fu(B
−1x(k))− log | detB|,

where x(k) is the kth data sample. The hypothesis under which the model de-

scribed by (7.10) is identifiable are derived in [18]. When the contrast function

used to reconstruct the unknown factors is a functional of the marginal pdfs fuj

(the likelihood function and the mutual information are two examples), it can

be proved that a necessary and sufficient condition for the model identifiability

is that at the most one of the unknown factors follows a gaussian distribution.

This well known result can be understood by observing in equation (7.12) that

if the pdfs are gaussian, then the matrix that maximizes the likelihood function

is defined only up to an orthogonal matrix, since uncorrelated gaussian variables

are also independent.
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7.3.2 Mutual Information

In this section, we will show that maximizing the log-likelihood function is

equivalent to minimizing the errors introduced by making erroneous assumptions

about the conditional mutual independence between variables in the network. A

measure of the error introduced by assuming that a distribution of a random

variable x is equal to q(x), when the true distribution is r(x), is given by the

Kullback-Leibler distance:

D(r||q) =
∫

r(x) log
r(x)

q(x)
dx. (7.13)

We have in Chapter 2 that this measure is always non-negative and it is equal

to zero if and only r(x) = q(x). Therefore, the following scoring metric can be

used to measure the discrepancy between the joint pdf of the variables and the

estimated conditional independency model:

D △

= D

(

p(x)
∥

∥

∥

N
∏

j=1

p(xj|Paj)

)

= (7.14)

=

∫

p(x) log
p(x)

∏N
j=1 p(xj |Paj)

dx.

In general, estimating this quantity is not possible. However, when the model-

ing assumption (7.3) holds we have that an estimate of p(xj|Paj) is given by

| detB|−1f̃u(B−1x), where f̃u is not known. Hence we can write:

D =

∫

p(x) log
p(x)

| detB|−1f̃u(B−1x)
dx (7.15)

= −H(x)−
∫

p(x) log
(

| detB|−1f̃u(B
−1x)

)

dx (7.16)

= −H(x)− log | detB|−1 −
∫

p(x)f̃u(B
−1x)dx. (7.17)
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where H(x) = −
∫

p(x) log p(x)dx is the differential entropy of x. If the distri-

bution of the variables in the model is assumed to be stationary, then H(x) is a

constant. Moreover, if we approximate the integral in (7.17) with the summation

over the data samples, we obtain:

max
B,f̃

D = max
B,f̃

− 1

M

M
∑

k=1

f̃u(B
−1x(k)) + log | detB| (7.18)

which is equivalent to maximizing the log-likelihood (7.12).

7.3.3 The Optimization Framework

Clearly, in order to maximize the likelihood function (7.12) an estimate of the

(unknown) marginal pdfs fuj
is required. We have solved an equivalent problem in

Chapter 4, where we derived a non-parametric estimation technique, performing

the joint estimation of the distributions of the unknown factors and of the inverse

matrix. The quantity fu(B−1x(k)), as well as its derivatives with respect to the

elements of B−1 are computed from the sample data. This is achieved using a

kernel density estimation technique to approximate the marginal densities fuj
:

fuj
(t) =

1

Mh

M
∑

m=1

φ

(

t− µmj

h

)

, j = 1, . . . , N, (7.19)

where h is the kernel bandwidth and φ is the gaussian kernel:

φ(t)
△

=
1√
2π

e−
t2

2 . (7.20)

The kernel centroids µmj are computed as:

µmj = zjx
(m) (7.21)
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where zj is the jth row of the matrix Z
△

= B−1. This estimator is asymptotically

unbiased and efficient, and it is shown to converge to the true pdf under several

measures. Moreover, it is a continuous and differentiable function of the elements

of the matrix Z, its gradient being given by:

∇fuj
(t) =

1

Mh2

M
∑

m=1

x(m)(t− zjx
(m))φ

(

t− zjx(m)

h

)

. (7.22)

Using the kernel expansion of the source distributions, we can derive a close form

expression for the pdf of the one-dimensional reconstructed factors, evaluated at

the data points as:

fuj
(zjx

(k)) =
1

Mh

M
∑

m=1

φ

(

zj
(

x(k) − x(m)
)

h

)

. (7.23)

Therefore, recalling that fu =
∏

fuj
(t), we can re-write the likelihood function as

follows:

L(B, f) = log | detZ| + (7.24)

+
1

M

N
∑

j=1

M
∑

k=1

log

[

1

Mh

M
∑

m=1

φ

(

zj
(

x(k) − x(m)
)

h

)]

.

We derived in Chapter 4 an efficient algorithm for the maximization of this non-

linear cost function based on the Newton method. In general, a solution to prob-

lem (7.24) can be obtained only up to a permutation matrix. It is quite evident,

in fact, looking at the expression of the likelihood function (7.12), that any per-

mutation of the unknown factors results in the same value of the likelihood1. A

generic expression for the estimate of B−1 can thus be written as:

1Notice that, unlike the independent component analysis problem, we do not have to deal
with the scaling of the unknown factors. In fact, we are not directly interested in the actual
distribution of the factors but only in the resulting expression for the local conditional pdfs.
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Z = PB−1 = P (I − AT ), (7.25)

where P is an arbitrary permutation matrix. In order to reconstruct an estimate

of A one needs to identify the permutation matrix P̃ , such that:

Z̃ = P̃Z = (I − AT ), (7.26)

or equivalently such that P̃P = I. Ideally, if the model holds exactly the matrix

P̃ can be identified by observing that one just needs to rearrange the rows of Z

to make it upper triangular. Thus, A can be estimated as:

Â = I − ZT P̃ T . (7.27)

7.3.4 The Relaxation Graph

In general, one might expect that some of the modeling assumptions will not

hold strictly, for example because the sample size is not adequate, or just because

a linear model does not accurately fit the data. As a consequence, a permutation

matrix P̃ that makes the matrix Z̃ upper triangular is not guaranteed to exist in

general.

In order to deal with model mismatches, we introduce the definitions of relax-

ation matrix and relaxation graph. Starting from a graphG and the corresponding

matrix A, we can build a new graph Gϵ obtained from G by simply adding directed

arcs of strength ϵ until the resulting graph is complete (see example in Figure 7.2).

We will refer to Gϵ as the relaxation graph of G, and to the corresponding matrix

Aϵ, obtained from A substituting ϵ to the zero elements of A, as the relaxation

matrix. Clearly, when ϵ → 0 and Gϵ → G, since:
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Figure 7.2. Relaxation graph obtained from the belief network

of Figure 7.1.

lim
ϵ→0

Aϵ = A (7.28)

In general the acyclicity property is guaranteed if:

trace(Āϵ
n
) = δ, δ → 0, n = 1, . . . , N. (7.29)

Even in the case when δ is small but non-zero, we can still talk about quasi-

acyclicity to characterize the concept that, although loops might be present, they
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are statistically insignificant.

When the model does not strictly hold, we can still apply the linearization de-

fined by (7.7) and try to estimate the optimal relaxation matrix. This is obtained

by finding a matrix Z̃ϵ = P̃ϵZ that is “as lower triangular as possible” according

to some measure, thus resulting in the essential acyclicity of the learned graph Gϵ.

We suggest the following optimality criterion for the estimation of such matrix:

P̃ϵ = argmin
P̃ϵ

N
∑

i=1

N
∑

j=i+1

[Z̃ϵ]
2
ij, (7.30)

which is a convex optimization problem defined on a discrete set. In general,

solving the problem defined by (7.30) is NP-hard. On the other hand, when the

linear model is sufficiently accurate, a simple greedy search algorithm can be used

to estimate P̃ϵ. An example of heuristic method is a top-down approach, which

consists of starting from identifying the best candidate for the first row of Z̃ϵ,

simply by choosing the row of Z whose last N − 1 elements have the smallest

sum of the squares. Then one simply proceeds by sequentially identifying the

next row down, choosing among the rows of Z that have not been yet selected.

The algorithm has an asymptotic complexity that grows as O(N2). This is the

approach we followed in our simulations (section 7.4).

7.4 Simulation Experiments

The validity of the proposed learning technique was evaluated in two simula-

tion experiments, using synthetic data generated according to the joint probability

density function associated with the network structure of Figure 7.1. For the local

conditional probability density functions, a super-kurtotic symmetric power expo-

nential density (α = 0.6), with a theoretical kurtosis k4 = 1.52, was chosen (shown
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Figure 7.3. The synthetic data used in the simulation experi-

ment was generated using a power exponential den-

sity (k4 = 1.52) as a model for the local conditional

probability density functions. A gaussian distribu-

tion is also shown for comparison.

in Figure 7.3, where a gaussian pdf is also shown for comparison). In the first

experiment, 5000 independent samples were drawn for each independent factor

uj, and samples from the variables were generated according to the linear model.

The independent factors, as well as an estimate of B−1, were computed using the

non-parametric method described in Section 7.3 (the algorithm is analogous to

the one described in Table 4.1). In this case, because of the large sample size, the

greedy search algorithm resulted in the optimal solution of problem (7.30). The

following relaxation matrix was estimated (compare with (7.5)):
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Âϵ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.000 0.029 1.496 −0.038 0.027

0.015 0.000 -0.709 0.801 −0.028

0.047 −0.036 0.000 0.030 1.097

0.018 0.002 −0.004 0.000 0.306

−0.043 0.016 −0.006 −0.015 0.000

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.31)

Figure 7.4 shows the corresponding relaxation graph (not all the weights associated

to the edges are shown). In the second simulation, only 300 samples randomly

selected from the previous dataset were used in the experiment. This example is

more challenging because, although the modeling assumption is not violated, the

small sample size makes more difficult to identify the conditional independencies

in the model. For this case, the algorithm estimated the following relaxation

matrix, using the greedy search algorithm to identify the optimal permutation

matrix:

Âϵ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.000 −0.057 1.434 0.176 0.095

0.164 0.000 -0.831 0.647 −0.019

0.123 −0.064 0.000 −0.189 1.066

0.083 0.001 0.195 0.000 0.310

−0.083 0.041 0.025 0.040 0.000

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7.32)

The corresponding relaxation graph is shown in Figure 7.5. Although the net-

work topology is learned correctly, the poor sampling resulted in some moderate

estimation errors, introducing some week loops in the network. Overall, these

preliminary simulation experiments seem to suggest that the proposed method is

fairly robust against minor model mismatches, for example due to poor sample

sizes.
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7.5 Discussion

In the previous section, we demonstrated that when the sample data is gen-

erated according to the non-gaussian linear model, then a simple greedy search

algorithm generally results in the optimal solution. However, in presence of model

mismatches and for networks with a large number of nodes, a more sophisticated

relaxation technique needs to be devised in order to solve problem (7.30). On the

other hand, the search space defined by this problem is already greatly reduced

when compared to the original space, defined by all possible network topologies.

Along this line, there are at least a few issues that deserve further investigation.

To identify the relationships between the reduced search space defined by (7.30)

and the original one is one of them. Even more crucial is to understand what kind

of information about the underlying network structure can be retrieved, using the

proposed approach, when the model does not hold at all (for example because

non-linear relationships exist between the variables in the model). In particular,

a key issue requiring further investigation is whether a similar method, allowing

a systematic identification of the patterns of conditional independence between

variables in the model, can be devised when a non-linear generative model is

assumed.

Finally, although the method was derived using the data-likelihood as scoring

function, alternative separable scoring metrics, such as maximum-a-posteriori,

BIC [39], or minimal description length, could be adopted with minimal modifi-

cations to the framework.
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7.6 Conclusions

A novel framework for learning the topology of linear non-gaussian networks

was derived. We showed that for this specific class of linear belief network, the

conventionally NP-hard problem of learning the structure from data, can be sim-

plified to a continuous optimization problem that can be solved in polynomial

time. Preliminary simulation results confirmed the validity of the proposed ap-

proach and seemed to suggest that the method is robust to poor sampling and

modeling imperfections.
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Figure 7.4. Relaxation graph learned from data in the first sim-

ulation experiment. Because of the large sample size
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Chapter 8

Learning Conditional

Co-Expression Patterns in Gene

Expression Data with

Information Theoretic

Exploratory Methods

In this chapter, a novel application of information theoretic learning to bio-

logical problems will be introduced. Specifically, we will show how some of the

methods that have been discussed in Chapter 2 and 3 can be applied to the study

of expression levels of genes. We will first provide a concise introduction on in-vitro

gene expression levels measurement using DNA microarray technology. It will be

shown, then, how the statistical analysis of DNA microarray data presents several

challenges from the point of view of statistical learning, and current approaches

for analyzing such datasets will be briefly reviewed. In particular, we will focus on
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how information theoretic learning can contribute in pursuing the ultimate goal

of such analysis, which is to shed some light on the complex interactions between

gene expressions and on their regulatory mechanisms.

8.1 Gene Expression Profiling Using DNA Mi-

croarray Data Technology

In the last three decades, several advances in biotechnology have revolutionized

the field of life science, providing biologists with new means of access to biologi-

cal information. Among these are molecular cloning, automatic DNA sequencing,

and polymerase chain reaction (PCR) [11]. More recently, DNA Microarray tech-

nology has further innovated the field with the introduction of an experimental

technique allowing the simultaneous monitoring of the expression levels of all genes

in a particular organism. Before the advent of microarray technology, molecular

biologists were capable of measuring the expression levels of only a limited number

of genes at the same time, generally by using experimental procedures that could

not be automated or standardized. With the introduction of DNA microarrays,

not only whole-genome expression profiling has become a common procedure, but

the standardization of this technology has greatly reduced the costs involved in

the experimental procedure.

Microarray chips are simply comprised of pre-arranged sets of DNA sequences,

which are laid out on the chip in selected known locations. Such DNA sequences

can be gene sequences, or parts thereof, or any kind of sequence which is part of

a known genome. In general, a microarray chip can contain a few hundreds to as

many as tens of thousands of these sequences. As more and more genomes are

fully sequenced, the capability of building microarray chips capable of detecting
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the expression levels of the entire set of genes of a given organism has dramatically

increased.

The basic principle behind microarray technology is that genes which code

for proteins are transcribed into messenger RNA (mRNA) in the cell nucleus.

The mRNA in turn is translated into a protein by ribosomes in the cytoplasm.

Therefore, the average transcription level of a given gene can be assumed to be

directly proportional to the concentration of the corresponding mRNA in the cell

at a given time. In order to be used in microarray assays, the mRNA strains need

to be extracted from the cells and purified. Since free mRNA molecules tend to

become highly unstable and degrade very quickly, it is a well-established technique

to reverse transcribe them back into more stable DNA strains. This procedure

results in the synthesis of cDNA (complementary-DNA) strings, so called because

their sequences are the complement of the original mRNA sequences.

The microarray chips are designed in such a way that specific cDNA sequences

(also referred to as “cDNA probes”) bind selectively to specific sites. In order to

measure the amount of cDNA that binds in any given site, the cDNA samples

are labeled usually with fluorescent dyes. The array holds hundreds or thousands

of spots, each of which contains a different DNA sequence. If a probe contains a

cDNA whose sequence is complementary to the DNA on a given spot, that cDNA

will hybridize to the spot, where it will be detectable by its fluorescence. In this

way, every spot on an array is an independent assay for the presence of a different

cDNA probe.

It is a common practice, also in order to reduce measurement noise, to conduct

comparative hybridization experiments, where the amounts of mRNA is measured

in two different cell populations. In this case, the same microarray chip can be

used, but the cDNA probes from the two populations are labeled using dyes of

different colors. Once the cDNA probes have been hybridized to the array and
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any loose probe has been washed off, the array must be scanned to determine how

much of each probe has bound to each spot. This is achieved through a device

which detects the intensity of emitted light at each spot, after it is excited using

a laser.

8.2 DNA Microarray Data Statistical Analysis

Before the advent of microarray technology, the analysis of the relatively small

amount of transcription data produced could easily be managed by applying sim-

ple statistical analysis tools. The sudden surge of available biological data, deriv-

ing from the introduction of microarray technology, was accompanied by a parallel

increase in the demand of analysis tools that could deal with the massive amount

of data produced.

The first issue one has to deal with when analyzing gene expression data is

the identification of all the sources of noise. In the case of DNA microarray, we

can distinguish between two major sources of error [62]: the first is biological

and can be attributed to the inherent variability of cell populations used during

an experiment. We must keep in mind, in fact, that when the expression levels

are measured as time series, the same cell culture cannot be re-used to obtain

multiple measurements. Therefore, several cultures are grown simultaneously and

for each one the mRNA is extracted at a given time to obtain a sample in the time-

series. The second source of error derives from the measurement process itself.

Several steps are required in order to obtain a data sample: mRNA extraction and

purification, complementary DNA synthesis and labeling, hybridization of cDNA

to the DNA arrays, and imaging of the hybrids. The efficiency of each step is

unknown and the errors introduced at each step are multiplicative. In general, it

can be shown that if the detected cDNA abundance in each spot is normalized
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against the total image intensity of all the spots detected, it is possible, in theory,

to correct for the errors introduced by the unknown purification efficiency as

well as for the unknown efficiency of the scanning device [62]. On the other

hand, the efficiency factors associated with the labeling and the hybridization

processes are gene dependent and cannot be compensated. A further improvement

in terms of accuracy could be achieved by performing comparative studies, where

the gene expression levels in condition 1 is compared to those in condition 2,

by simultaneously measuring the abundance of mRNA from the two cultures on

the same slide. However, the benefits of performing such comparison are limited

by likely differences in total mRNA levels in the two cultures, which may be

quite substantial considering that the growth rate of the organism might vary

considerably.

Since the measured transcription levels are relative, due to the normalization

step, the resulting distribution is highly skewed, with the down-regulated genes

assuming values between 0 and 1 and the up-regulated genes between 1 and plus

infinity. Therefore, it is a common practice to work with the logarithm of the

relative expression levels rather than with the absolute values, thus resulting in a

symmetric distribution of the measurement data.

Although DNA microarray technology resulted in the breakthrough capabil-

ity of obtaining high-throughput gene expression measurements, their statistical

analysis presents several challenges. Even when the noise present in the data

is contained within reasonable levels, we are faced with the additional issues of

having to deal with frequent missing values and poor sampling. Although the

sampling characteristics of the problem may be improved through repeat exper-

iments and averaging, it turns out that the repeatability of the experiments is

itself an open problem, since several unpredictable factors intervene in the mea-

surement process. For example a large variability in the experimental data can
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result from assaying cell cultures grown at different times, from using different

types of microarray chips and optical readers, or simply from different laboratory

personnel performing the experiments. Only a few of these sources of variability

can be tightly controlled.

Recently, Tseng et al. [88] have developed an experimental framework capable

of assessing statistical confidence intervals for each single gene. The method is

based on repeat experiments with independent cultures measured on different

slides, and on the wide use of calibration experiments. The resulting data is

analyzed using a hierarchical Bayesian model where a Markov-Chain Monte Carlo

method is used to compute confidence intervals.

As a result of both the limited sample size and the measurement noise, most

standard statistical learning approaches have hardly found application to the anal-

ysis of gene expression data. In general, the complete genome of even a simple

organism, such as a prokaryote, is made up of several thousands of genes. As a

consequence, any attempt to build a model of such network of genes will have

to deal somehow with the problem of learning the statistical properties of the

network, when only few data samples are available. Therefore, the conventional

learning framework in which the set of parameters that need to be estimated is

considerably smaller than the available sample data is somehow reversed. Several

attempts to adapt well-known statistical learning frameworks, such as Bayesian

Networks [34], Support Vector Machines (SVM) [38], K-means clustering or Self-

Organizing Maps (SOM) [56], have led to results whose biological interpretation

remains unclear.

For this reason, members of the biology community have resorted to simpler

analysis tools, which are widely accepted mainly because of their straightforward

biological interpretation: among these are Pearson correlations and its extension

to gene clustering by hierarchical agglomeration [28]. The idea consists of finding
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patterns of co-expressions between pairs of genes, or in simple terms of identifying

which genes profiles appear to be concomitantly up or down regulated. A simple

technique based on measuring correlations between gene expression profiles, paired

with genome sequencing information, was demonstrated to be a reliable predictor

of gene operons [85], being capable of accurately identifying the structural genes

belonging to the same operon.

8.3 Conditionally Informative Clusters of Genes

A consequence of adopting pairwise correlations in order to identify genes

which are co-expressed is that issues such as noise level or poor sampling become

less restrictive, simply because the learning problem is extremely simplified. Even

when a few samples are available in a DNA assay time-course experiment, it is

still possible to get accurate estimates of the cross-correlation between gene pro-

files. In other terms, the learning problem is reduced to estimating the statistical

properties of only two variables at the time, greatly reducing the complexity of

the estimation problem from the case when learning the relationships between

all genes simultaneously is the goal. The gene expression analysis tools we have

developed represent an extension of the idea of investigating the patterns of co-

expression within sub-networks of genes, and, at the same time, of retaining a

biologically meaningful interpretation of the results.

The basic idea consists of identifying groups of genes whose expression levels

are co-expressed only conditionally on the expression levels of other genes. We

will show that, although the proposed approach is capable of performing a more

traditional cross-correlation analysis, we will choose to explicitly ignore simple

dependencies, in order to focus on the novel aspect of detecting patterns of co-

expression that appear under statistical conditioning.
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Figure 8.1. The plot shows the expression time-courses of three

hypothetical genes, generated from synthetic data.

8.3.1 Conditional Mutual Information as a Measure of

Conditional Co-expression

Figure 8.1 shows the time-courses of three genes whose expression levels where

generated from synthetic data in order to simulate a case of conditional co-

expression. The scatter plots of gene-a, gene-b, and gene-c in figure 8.2 show

no clear pattern of dependency between these genes. On the other hand, when

the points in the scatter plot of gene-a versus gene-b are color coded according to

the value of gene-c1 a clear pattern of linear correlations appears. This is shown

in figure 8.3: when gene-c is up-regulated the other two genes appear to be posi-

1In this case the expression levels of gene-c are quantized according to three discrete levels.
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Figure 8.2. Scatter plots of the expression levels of the three hy-

pothetical genes.
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tively correlated, while when gene-c is down-regulated, they appear as negatively

correlated. No correlation pattern appears when gene-c is baseline or when its val-

ues are not considered at all. This is a simple example which could be explained

phenomenologically as follows: when the expression levels of gene-c is high a mech-

anism is triggered that closely relates the expression levels of gene-a and gene-b.

On the other hand, when gene-c is under-expressed the opposite trend between

gene-a and gene-b is sustained. However, when the level of gene-c is around the

reference level, the remaining two genes appear to be acting independently from

each other.

The main question is then how to select a measure that will capture such

control mechanism. Ideally, we seek a cost function which is small or zero when

no conditional structure is present in the data, while at the same time it tends to

assume large values when the data shows strong dependencies under conditioning.

A natural measure of independency, and therefore also of dependency, is given

by the mutual information as defined in Chapter 2. The expression (2.12), has a

straightforward extension to the class of conditional distribution functions. Let us

consider first the definition of mutual information between two random variables

x1 and x2 conditioned on the value of a third random variable y:

I(x1, x2|y)
△

= D
(

px1,x2|y

∥

∥

∥
px1|ypx2|y

)

. (8.1)

In the case of continuous random variables (8.1) can be expressed as:

I(x1, x2|y) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

px1,x2,y(u, v, w) log

(

px1,x2|y(u, v|w)
px1|y(u|w)px2|y(v|w)

)

dudvdw.

(8.2)

This definition can be extended to the mutual information of M random variables

x = [x1, . . . , xM ]T , conditioned on a separate set of L variables y = [y1, . . . , yL]T ,
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Figure 8.3. The co-expression pattern between gene-a and gene-

b appears under conditioning by gene-c. When

gene-c is up-regulated, gene-a and gene-b appear

positively correlated. The opposite pattern appears

when gene-c is under-expressed. No significant co-

expression patterns appear when gene-c is expressed

around the reference level.
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in a manner analogous to the definition of (2.19):

I(x|y) = Epy [I(x|y = w)] =

∫ ∞

−∞

px,y(u,v) log
px|y(u|v)

∏M
i=1 pxi|y(ui|v)

du, (8.3)

This expression provides us with a measure of the expected mutual information

of x conditionally on the value of y. Evidently, when x and y are statistically

independent, we have trivially that:

I(x|y) = I(x)

∫ ∞

−∞

py(w)dw = I(x). (8.4)

Recalling that we are after certain structure in the data that appears only under

conditioning, this result prompts us with the idea of adopting the following cost

function for our framework:

L(x|y) △

= I(x|y)− I(x). (8.5)

Clearly, we have that L(x|y) = 0 when x and y are independent. In this case,

even if a cluster of genes possesses a high information content, i.e. I(x) is large,

such structure appears regardless of the set of conditioning variables. On the

other hand, L(x|y) is a large positive number when the information content is

significantly increased under conditioning. This is the case of interest in our

framework. Notice that the quantity in (8.5) might assume negative values and

it is not lower-bounded in general.

8.3.2 Some Properties of the Cost Function

In this section, we derive certain properties of the cost function (8.5), and we

show some analogies between the proposed cost function and the concept of co-

information [4]. Consider a simple network with a single parent node x0 and two
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children nodes x1 and x2. The conditional information content of this network,

according to (8.5), is simply given by:

L(x1, x2|x0) = I(x1, x2|x0)− I(x1, x2). (8.6)

Let us consider the first term on the right hand side of (8.6):

I(x1, x2|x0) =

∫ ∞

−∞

px0
(w)I(x1, x2|x0 = w)dw (8.7)

=

∫ ∞

−∞

px0
(w)

∫ ∞

−∞

∫ ∞

−∞

px1,x2|x0
(u, v|w) log

px1,x2|x0
(u, v|w)

px1|x0
(u|w)px2|x0

(v|w)
dudvdw

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

px0,x1,x2
(w, u, v) log

px1,x2|x0
(u, v|w)px0

(w)2

px1|x0
(u|w)px2|x0

(v|w)px0
(w)2

dudvdw

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

px0,x1,x2
(w, u, v) log

px0,x1,x2
(w, u, v)px0

(w)

px0,x1
(w, u)px0,x2

(w, v)
dudvdw

= −H(x0, x1, x2)−H(x0) +H(x0, x1) +H(x0, x2) (8.8)

Therefore, recalling that I(x1, x2) = H(x1)+H(x2)−H(x1, x2), we have that (8.6)

is equal to:

L(x1, x2|x0) = −H(x0)−H(x1)−H(x2) +H(x0, x1) +H(x0, x2)+ (8.9)

+H(x1, x2)−H(x0, x1, x2).

From this expression we can notice that when considering a simple network with

one conditioning node and two children nodes, the cost function (8.5) is indeed

equal to minus the co-information between the three random variables. The

general definition of co-information of N random variables is given by [4]:
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C(x) =
∑

Ej⊆EN

qjH(xEj
), (8.10)

where Ej is the power set of j and qj is the Möbius inversion function, defined as:

qj = −(−1)|Ej | =

{

1 if |Ej | is odd

−1 if |Ej | is even
, (8.11)

where |Ej| is the cardinality of Ej . The interesting aspect is represented by the fact

that the co-information gives a measure of the total information content shared

by all the random variables, unlike the conventional mutual information which

includes all the information shared by the variables two at the time. Therefore,

maximizing (8.5) is equivalent to seeking clusters whose representatives simulta-

neously share the least amount of information between each other. We can thus

write:

max
x0,x1,x2

L(x1, x2|x0) = min
x0,x1,x2

C(x0, x1, x2). (8.12)

Notice that expression (8.9) is not altered if we exchange the variables x0, x1, or

x2. Hence, it holds that:

L(x1, x2|x0) = L(x0, x2|x1) = L(x0, x1|x2) (8.13)

Thus, the information content of the sub-network does not change if we exchange

one of the children nodes with the parent node. The following theorem generalizes

this property.
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Theorem 7 (Symmetricity Property of the Cost Function L) . Let x, y,

and z be three continuous random vectors, whose probability density functions are

null only on sets of measure zero. Given the functional L defined as:

L(x,y|z) = I(x,y|z)− I(x,y), (8.14)

the following holds:

L(x,y|z) = L(x, z|y) = L(y, z|x). (8.15)

Therefore, the cost function (8.5), can be simply denoted as L(x,y, z), where the

order of the random vectors is irrelevant.

8.4 GeneScreen: Theory and Practice

The framework outlined in the previous sections finds direct application to

the analysis of gene transcription levels measured using DNA microarray assays.

When designing a practical implementation of the algorithm seeking clusters that

maximize the cost function (8.5), several issues must be carefully considered:

1. A direct evaluation of the cost function (8.5) requires an estimate of the

multi-variate probability density function of all the N variables included in

the cluster. We have already discussed in Chapter 2 the difficulties involved

in obtaining such estimate when N ≥ 3.

2. Estimates of the conditional density functions might simplify the issues as-

sociated with the dimensionality of the problem, but these are in turn quite

difficult to obtain, in the case of continuous random variables.
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3. The noise level in the data might significantly limit the number of parameters

that can be learned with a certain accuracy.

4. The experimental procedure is affected by inherent limits in the number of

samples per gene that can be measured in a given span of time. Hence, the

sampling characteristics of any microarray assay are generally poor in the

time-domain. This issue imposes a further limitation on the capability of

estimating complex joint probability density functions, due to the limited

sample size.

5. For a sub-network of a given size, the optimization of the cost function (8.5)

requires a search through all possible combinations of nodes choosing among

the set of genes included in the experiment. We will soon see that such

number of combinations can be quite large if the parameters of the search

algorithm are not chosen properly, quickly yielding to an intractable com-

putational cost.

Let us examine in detail how we dealt with these issues.

8.4.1 Combinatorial Optimization Approach

The goal is to identify a list of sub-networks that yield large values of the cost

function (8.5). Such goal can be achieved by selecting exhaustively sub-networks

(see Figure 8.4) made up of all possible combinations of L genes as conditioning

variables (which we will refer to as parent nodes), and all possible combinations

of M genes among the remaining ones as conditioned variables (also known as

children nodes), and to evaluate the corresponding value of the cost function (8.5).

Clearly, the cost of this combinatorial approach increases quite rapidly with the

total number of genes assayed in the experiment, and it is a non-linear function
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Figure 8.4. Cluster of genes composed of L conditioning genes

and M children nodes. This cluster represents the

generic sub-network explored to identify conditional

structure.

of M and L. When a total number of N gene expression profiles are measured in

the experiment, the total number of possible sub-networks with L parent nodes

and M children nodes is given by the following expression:

K(N,M,L) =

(

N

L

)(

N − L

M

)

=
N !

M !L!(N − L−M)!
. (8.16)

For example, when dealing with N = 2, 000 genes, a choice of L = 3 and M = 5

will result in 3.5 · 1023 possible combinations! In general, for small values of M

and L, we have that:

K(N,M,L) ≈ O(NM+L). (8.17)

Hence, unless a technique is devised that allows for efficient pruning of non-

informative clusters, the problem will result computationally tractable only for

very small values of M and L. In addition, as it will be discussed more in de-
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tails in the next section, for large values of M and L we will unavoidably incur

in the problem of having to estimate high-dimensional multivariate statistics of

the data, thus requiring a particularly large number of samples in order to get a

robust estimate.

These constraints clearly suggest that a simple framework in which a sub-

network involving only three genes (one parent node and two children nodes)

should be the subject of an initial investigation and validation of the proposed

approach. From the symmetric expression of the cost function given in (8.9), it

is possible to show that the computational complexity associated with evaluating

the co-information content of each possible sub-network, when L = 1 and M = 2

simplifies as:

K(N, 2, 1) = N(N − 1)(N − 2) +N(N − 1) +N (8.18)

= N3 − 2N2 +N (8.19)

= O(N3), (8.20)

for a total number of N genes assayed. As an example, when N = 2, 000, approx-

imately 8 · 109 possible combinations need to be considered, and the correspond-

ing cost function evaluated. This kind of task can be completed in a reasonable

amount of time (a few days) by any modern off-the-shelf single-processor machine.

It is also clear that the algorithm could be easily parallelized to run on clusters

of processors, since the evaluation of the cost function for a given sub-network is

an independent task.
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8.4.2 A Moment Based Approximation of the Mutual In-

formation

In the previous section, we have seen how computational complexity consider-

ations have suggested to restrict our focus on very simple clusters involving one

conditioning node and two conditioned nodes. Different considerations, involv-

ing the feasibility of computing a consistent estimate of the conditional mutual

information, show that this is indeed a sensible choice.

The expression of the cost function given in (8.9) suggests that some kind of

estimate of the multivariate joint probability density function of the three vari-

ables in the cluster is required in order to evaluate the corresponding entropies.

However, considering that the typical experimental setting in DNA microarray

assays produces between 5 and 20 samples per gene, the poor sampling properties

generally discourage the use of fancy density estimators such as parametric models

or kernel methods. Therefore, in the design of a practical implementation of the

principle (8.12), we opted for the use of a moment based approximation of the

information theoretical quantities involved in the calculation of the cost function.

Let us first examine an expression equivalent to (8.9) that is used as a starting

point to define our working approximation:

L(x0, x1, x2) = I(x1, x2|x0)− I(x1, x2) (8.21)

= H(x1|x0) +H(x2|x0)−H(x1, x2|x0)−H(x1)−H(x2) +H(x1, x2).

This expression suggests that a method to compute univariate and bivariate en-

tropies must be devised. A moment based approximation of the univariate entropy

is obtained by approximating the marginal probability density function of each

variable using a Gram-Charlier expansion [90]. Recalling that, as we proved in

Chapter 2, the entropy is shift invariant, we can assume that all the sample data
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has been mean subtracted. Moreover, since it holds that H(ax) = H(x)+log(|a|),
where a is a deterministic constant parameter, we can re-scale each variable to be

unit-variance and compute the entropy estimate as follows:

H(xi) = H(x̃i) + log(σi), i = 1, 2 (8.22)

where σi is the standard deviation of xi, and x̃i
△

= xi/σi is unit-variance. A Gram-

Charlier approximation of px̃i
(u), including moments up to the fourth order is

given by the following expression:

px̃i
(u) = g(u) (1 + κ3,iH3(u)/6 + κ4,iH4(u)/24) , i = 1, 2 (8.23)

where H3(u) and H4(u) are the 3rd and 4th order Chebyshev-Hermite polyno-

mial [55], respectively, g(u) is the zero-mean, unit-variance, normal probability

density function, and κ3,i and κ4,i are the third and fourth order cumulants of

x̃i. For a zero mean, unit-variance random variable, these can be computed as

follows:

κ3,i = E[x̃3
i ] (8.24)

κ4,i = E[x̃4
i ]− 3. (8.25)

By substituting the approximation of px̃i
(u) considered in (8.23) in the definition

of entropy (2.3), we can compute the following approximation:

H(x̃i) ≈
1

2
log(2πe)− (κ2

3,i + κ2
4,i/4)/12, i = 1, 2. (8.26)

which is consistent with the fact that the entropy of a random variable with a

given variance is maximum if the variable is normally distributed. The maximum
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of (8.26) is indeed attained when κ3 = κ4 = 0 and is equal to the entropy of a

unit variance gaussian random variable. A similar approximation can be obtained

for the bivariate entropy. The derivation is simplified if the data is pre-whitened

as described in (2.30), so that the resulting variables are uncorrelated. Following

the notation of Chapter 2, we denote the sphering matrix as S−1/2, where S is the

sample covariance matrix of x1 and x2, and S−1/2 is an inverse square root factor

of S. Hence, if we define:

[

x̂1

x̂2

]

△

= S−1/2

[

x1

x2

]

, (8.27)

we have that:

H(x1, x2) = H(x̂1, x̂2) +
1

2
log | det(S)|, (8.28)

where S is always full rank unless x1 and x2 are linearly dependent. A detailed

derivation of an approximation of H(x̂1, x̂2) can be found for example in [49], and

is based on a bivariate Gram-Schmidt expansion of the corresponding probability

density function. The resulting expression for the approximated entropy is given

by:

H(x̂1, x̂2) ≈ log(2πe)− 1

12

[

κ2
30 + 3κ2

21 + 3κ2
12 + κ2

03 +
1

4
(κ2

40+ (8.29)

+ 4κ2
31 + 6κ2

22 + 4κ2
13 + κ2

04)

]

,

where the bivariate cross-cumulants can be computed as follows from the sample

data:
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κ30 = E[x̂3
1] (8.30)

κ03 = E[x̂3
2] (8.31)

κ21 = E[x̂2
1x̂2] (8.32)

κ12 = E[x̂1x̂
2
2] (8.33)

κ40 = E[x̂4
1]− 3 (8.34)

κ04 = E[x̂4
2]− 3 (8.35)

κ31 = E[x̂3
1x̂2] (8.36)

κ13 = E[x̂1x̂
3
2] (8.37)

κ22 = E[x̂2
1x̂

2
2]− 1 (8.38)

By combining (8.22) and (8.28), the following approximation of I(x1, x2) is ob-

tained, which involves only cross cumulants up to the fourth order:

I(x1, x2) = H(x1) +H(x2)−H(x1, x2) (8.39)

= H(x̃1) + log(σ1) +H(x̃2) + log(σ2) +H(x̂1, x̂2) +
1

2
log | det(S)|

=
1

12

{

−
[

κ2
3,1 + κ2

3,2 +
1

4
(κ2

4,1 + κ2
4,2)

]

+

[

κ2
30 + 3κ2

21 + (8.40)

+3κ2
12 + κ2

03 +
1

4
(κ2

40 + 4κ2
31 + 6κ2

22 + 4κ2
13 + κ2

04)

]}

+ (8.41)
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1

2
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An analogous expression involving conditional cross-cumulants of the variables

can be used to estimate the conditional mutual information I(x1, x2|x0).
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8.5 Simulation Results

We developed GeneScreen as a collection of computational statistic routines,

whose objective is to process gene expression data (typically from DNAmicroarray

time-course experiments), extracting significant gene association patterns. The

basic idea behind the technique used in GeneScreen is that gene expression time-

courses, which appear to be unrelated when observed as a whole, often present a

very defined structure when they are explained by a common cause. The unsuper-

vised learning framework outlined in the previous sections aims precisely at this

goal. For a given microarray assay experiment, all possible unique combinations

of three genes are considered and the co-information is used to assign a score to

each such combination. The highest scoring clusters are recorded in order to be

further evaluated. GeneScreen includes a set of tools devoted at pre-processing

of the transcription data, performing a series of tasks which include pruning the

set of genes according to a user defined criterion (e.g. their sample variance),

correcting for univariate and bivariate outliers, or accounting for missing values.

GeneScreen is implemented in C++ and it was included in DARPA’s BioSpice,

since its very first release.

In order to evaluate the effectiveness of the proposed approach in unveiling hid-

den dependencies between gene transcription levels, we considered several datasets

from experiments involving whole-genome assays of the gene expression levels of

the bacterium Escherichia Coli (E.coli), a prokaryote. Further details on the ex-

act nature of the experiments conducted are provided along with the results of

our simulations in the next section.
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8.5.1 Analysis of Escherichia Coli Expression Data

The dataset considered for our first set of simulations2 consists of a collection

of mutliple DNA microarray assays conducted on E.coli, including a total of 4291

genes and 72 sample points per gene. Table 8.1 provides a basic listing of the

experimental conditions. A detailed description of the actual experimental setting

can be found in [85].

The dataset comprises a variety of experimental conditions, some including the

perturbation of specific regulatory mechanisms, others affecting genes controlled

by different sets of transcriptional regulators. The resulting large oscillations in

the expression levels of several genes ensure that the dataset provides enough

variability to allow the consistent detection of specific patterns, in a statistically

meaningful way.

DNA microarray data is conventionally expressed as the logarithm (usually in

base 10) of the ratio between the estimated transcription level and and a reference

value. Therefore, a log-ratio value of zero indicates that the gene is expressed at

similar levels as the reference. On the other hand, a value of 0.3 or above is

equivalent to a 2-fold increase in the transcription level. We will conventionally

refer to gene levels that show at least a 2-fold increase as up-regulated or over-

expressed. Equivalently, when the log-ratio level is −0.3 or less, the gene shows

at least a 2-fold decrease in the transcription level and will be referred to as

down-regulated, or under-expressed.

This distinction is particularly relevant when we consider that, in order to

score different clusters of genes, a set of conditional entropies need to be evaluated.

Due to the small sample size, this is most efficiently achieved by discretizing the

expression levels of the parent node into three levels, according to whether the

2This dataset was kindly provided by professor James Liao’s group at the Chemical Engi-
neering Department at UCLA.
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Experiment Condition Number of

number measurements

2 Ihf+ versus ihf- 1

1 Minimal versus rich media 1

24–46 Tryptophan Regulation 23

5–15 NtrC regulation 11

16 Heat shock 1

61-66 Xylose fermentation 6

47–60 LexA regulation 14

67–69 SocRS regulation 3

70–72 MarRAB regulation 3

17–23 Transition from glucose to acetate 7

3–4 Balanced growth in acetate 2

versus growth in minimal medium

Table 8.1. Experimental conditions and corresponding number

of measurements for the E.coli dataset used in the

simulations.
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gene is down-regulated, close to the reference level (baseline), or up-regulated.

The choice of the discretization levels is arbitrary and will, in general, affect the

outcome of the exploratory analysis. In GeneScreen, such choice is ultimately left

to the user although the default thresholds of −0.3 for down-regulation and 0.3

for up-regulation were used throughout our analysis. Such choice is dictated by

considerations that are both biological and statistical. The goal is clearly to select

a level at which the up- or down-regulation can be robustly established. Due to

the large measurement error affecting the data, it is widely accepted that at least

a 2-fold increase or decrease in the measured expression level is required in order

to establish up or down regulation.

In figure 8.5 and 8.6 two different views of the highest scoring network for this

dataset are shown. The three genes belonging to this highly informative cluster

are tap, yabM and ilvY.

The tap gene, is one of four methyl-accepting chemotaxis proteins (MCPs)

in E. coli. Its product, Tap functions as a conventional signal transducer, en-

abling the cell to respond chemotactically to dipeptides. YabM is a probable

efflux transporter for sugars such as lactose and IPTG [64]. Cells over-expressing

yabM show decreased accumulation of lactose and IPTG. YabM is a member

of the major facilitator superfamily (MFS) of transporters, and its physiological

significance and regulation are still unclear. IlvY is a very well studied transcrip-

tion regulator, involved in the control of the parallel isoleucine-valine biosynthetic

pathway. Figure 8.5 shows that when the expression level of tap is generally low,

yabM and ilvY tend to be negatively correlated. On the other hand, when tap is

up-regulated, both yabM and ilvY are strongly under-expressed. A similar mech-

anism can be deducted from figure 8.6: when yabM is down-regulated we assist

to a simultaneous down-regulation of ilvY and up-regulation of tap. The same

kind of conditional structure tends to appear when tap is replaced by mbhA in
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Figure 8.5. Co-expression pattern between the genes yabM and

ilvY, when gene tap is the conditioning node.
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Figure 8.6. Co-expression pattern between the genes tap and

ilvY, when gene yabM is the conditioning node.
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Figure 8.7. Co-expression pattern between the genes hyfG and

recN, when gene yciK is the conditioning node.

the sub-network. This does not come out as a surprise since mbhA is a putative

motility protein which is also thought to be involved in chemotaxis.

A cluster of genes presenting a very peculiar structure is the one involving

yciK, hyfG, and recN, and it is shown in figures 8.7, 8.8 and 8.9.

Let us consider figure 8.7 first: this plot shows that when yciK is generally

low, the expression levels of recN are always close to zero, signifying that the

gene is always expressed to levels close to the reference. At the same time, hyfG

varies from being also around the reference level to slightly over-expressed. On

the other hand, when yciK is up-regulated the mutual behavior of the other two
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Figure 8.8. Co-expression pattern between the genes yciK and

hyfG, when gene recN is the conditioning node.
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Figure 8.9. Co-expression pattern between the genes yciK and

recN, when gene hyfG is the conditioning node.
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genes changes radically. When hyfG is down-regulated, recN is strongly under-

expressed, while when hyfG is generally close to the reference level, recN becomes

generally over-expressed. The gene yciK is thought to be a putative oxidoreduc-

tase enzyme. HyfG is part of the hyf operon and its product is a catalytic sub-unit

of hydrogenase-4, potential formate and transcriptional activator, involved in the

oxidation of ferredoxin (anaerobic respiration). Finally, recN is a protein used in

recombination and DNA repair. Figure 8.8 gives a different perspective on the

interactions taking place in this cluster. It shows that when recN is around the

reference levels, hyfG is generally slightly over-expressed or flat, while yciK is free

to vary in a wide range of values. However, when recN is either over-expressed or

under-expressed we assist to a simultaneous substantial down-regulation of hyfG

and over-expression of yciK.

The interaction between the genes narL, hmsR (also known as ycdQ), and

menB is shown in figures 8.10 and 8.11.

The gene narL is one of two response regulators in E. coli affecting anaerobic

respiration. The second is the product of the narP gene. In the presence of nitrate

the NarL protein can be phosphorylated. In this activated state phospho-NarL

can act as both an activator of nitrate and nitrite reductase transcription and

as a repressor of fumarate reductase transcription. Both actions switch anaer-

obic respiration to utilization of either nitrate or nitrite as electron acceptors.

The product of hmsR is a putative uncharacterized transport protein, belong-

ing to the family of vectorial glycosyl polymerization (VGP). The gene menB is

involved in the anaerobic respiration pathway as well. Its product, the enzyme

naphthoate synthase catalyzes a major step in menaquinone (also known as vi-

tamin K2) biosynthesis, the formation of the bicyclic ring system. By observing

the plots in figure 8.10 and 8.11 we can deduct that hmsR and menB show very

small variations from the reference level in general, while narL alternates between
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Figure 8.10. Co-expression pattern between the genes narL and

ycdQ, when gene menB is the conditioning node.
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Figure 8.11. Co-expression pattern between the genes narL and

menB, when gene ycdQ is the conditioning node.
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Figure 8.12. Co-expression pattern between the genes mbhA and

recN, when gene yebF is the conditioning node.

over-expression and under-expression according to the specific condition. On the

other hand, when menB becomes over-expressed the patterns of co-expression are

radically different with hmsR being strongly under-expressed and narL sticking

to values close to the reference level.

The conditional structure shown in figure 8.12, involves two genes that have

been examined already, i.e. mbhA and recN, and a third gene yebF, whose product

is a hypothetical protein with an unknown function.

This case is particularly compelling, since by using the proposed exploratory

method we were capable of detecting interactions between genes whose function
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is well understood and genes whose function is totally unknown. Figure 8.12

shows that when yebF is within a small interval around the reference level, both

mbhA and recN appear also stable around their reference values. However, the

up-regulation of yebF is accompanied by a significative over-expression of recN,

with no significant variations in mbhA, while its down-regulation is associated to

a concomitant down-regulation of both yebF (marginal) and recN (more signifi-

cant).

The last two clusters of genes whose significance we are going to briefly discuss

are shown in figure 8.13 and 8.14. The first involves the genes ybgF, an hypotheti-

cal protein belonging to the same transcription group as the gene tolB, acpS whose

product is an enzyme involved in the initial steps of the fatty acid biosynthesis,

and nagB whose product is a subunit of glucosamine-6-phosphate deaminase, an

enzyme involved in the glucosamine catabolism. The detected association pat-

tern (figure 8.13) shows that ybgF and acpS are positively correlated in general,

and tend to be slightly up-regulated when nagB is up-regulated or around the

reference level. On the other hand, to a down-regulation of nagB corresponds a

significative under-expression of both ybgF and acpS. The second cluster, shown

in figure 8.14 involves the genes acs, whose product acetyl-CoA synthetase is in-

volved in the acetate degradation pathway, otsB whose product is an enzyme

involved in the trehalose biosynthesis which has not been yet fully characterized,

and yibP a putative membrane protein. The association pattern between these

genes shows that acs and yibP are characterized by a strong positive correlation

when otsB is not up- or down-regulated. However, especially when otsB is over-

expressed such pattern of correlation disappears, with acs often become strongly

over-expressed (up to 10-fold) even when yibP is down-regulated.

An alternative way to interpret the results of the proposed exploratory tech-

nique is given by the hierarchical grouping of the discovered association patterns.
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Figure 8.13. Co-expression pattern between the genes ybgF and

acpS, when gene nagB is the conditioning node.
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acs, when gene otsB is the conditioning node.
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Figure 8.15 shows an example of such representation where genes belonging to the

same functional group have been highlighted using the same shade of color.

The statistical significance of the proposed exploratory method was assessed

by comparing the results obtained with the actual dataset to the results obtained

by randomly shuffling the data points in each gene time course. By applying this

technique the multivariate properties of data set are altered, while the marginal

univariate distribution of each gene is preserved. Figure 8.16 shows a histogram

comparing the distribution of the top 10% resulting scores for the original dataset

and for the shuffled one. Such results demonstrate that the detected conditional

co-expression patterns are statistically significant and can not be the product of

an arbitrary arrangement of the data. A similar technique can be used to assess

confidence levels for the statistical significance of the score assigned to a given

cluster of genes.

8.6 Discussion and Future Work

Preliminary simulation experiments, have demonstrated that GeneScreen is

capable of identifying significant association patterns between genes, which ap-

pear otherwise unrelated when their expression profiles are compared pair-wise.

The identification of such high-level dependencies represents an important step

towards the systematic discovery of regulatory mechanisms in the cell. On the

other hand, several issues are still under investigations A method for accurately

assessing the statistical relevance of a particular high-scoring cluster should be

devised. Moreover, the relationship between a specific co-expression pattern and

the underlying experimental setting should be investigated.

Patterns of co-expression involving multiple conditioning nodes and children

nodes represent the next level of improvement of the proposed approach. Consid-
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Figure 8.16. The histogram shown the 10% highest scores for

the original E.coli dataset and a dataset obtained

shuffling the data points for each gene expression

time course.
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ering the computational complexity issues arising from the resulting combinatorial

exploratory technique, efficient methods for pruning the search space should be

devised, possibly based on a-priori biological assumptions.
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