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by
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The support vector machine (SVM) has been one of the most successful tools

for pattern recognition and function estimation in the recent ten years. The

underlying training problem can be formulated as a large quadratic programming

problem that can be efficiently solved via existing decomposition algorithms. This

assumes, however, that the kernel function and all the parameters are given and

the training vectors can be locally accessed. These assumptions do not hold for

classification problems with heterogeneous features or distributed training data.

The purpose of this thesis is to address these problems by developing methods

for kernel optimization and distributed learning.

Recent advances in kernel machine algorithms based on convex optimization

have made it easier to incorporate information from training samples with little

user interaction. As a first contribution, we generalize kernel estimation tech-

niques for binary classification to multi-class classification problems. The kernel

optimization problem for multi-class SVM is formulated as a semi-definite pro-

gramming problem (SDP). A decomposition method is proposed to reduce the
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computational complexity of solving the SDP. As a further step of generaliza-

tion, we consider kernel optimization for support vector regression (SVR). The

proposed kernel optimization methods are applied to retina ganglion cell neuron

signal analysis.

The distributed SVM training algorithm proposed in this thesis is based on

a simple idea of exchanging support vectors over a strongly connected network.

The properties of the algorithm in various configurations have been analyzed. We

also propose a randomized parallel SVM that uses randomized sampling and has

a provably fast average convergence rate.

Finally, we discuss the maximum likelihood estimation of Gaussian mixture

models with known variances. The problem is formulated as a bi-concave max-

imization problem. We work out the details of the generalized Benders decom-

position for calculating the global optimum of the bi-convex problem. Simple

numerical results are presented to demonstrate the advantage over the widely

used Expectation-Maximization (EM) algorithm.
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CHAPTER 1

Introduction

This chapter describes the fundamentals of support vector machines and the

challenges underlying kernel estimation and distributed learning. The goal is to

provide an overview of the basic concepts.

1.1 Support Vector Machine: an Overview

The Support Vector Machine (SVM) has recently become the most popular

method for classification and regression in machine learning.

1.1.1 Support Vector Classification

One of the fundamental pattern recognition problems is the linear separation

problem. We are seeking a hyperplane to separate a set of positively and nega-

tively labeled training data. The hyperplane is defined by wT x − b = 0, where

the parameter w ∈ Rm is a vector orthogonal to the hyperplane and b ∈ R is the

bias. The decision function is the hyperplane classifier

H(x) = sign(wT x + b).

The hyperplane is designed such that yi(w
T xi − b) ≥ 1, where xi ∈ Rm is a

training data point and yi ∈ {+1,−1} denotes the class of the vector xi. The

margin is defined by the distance of the two parallel hyperplanes wT x − b = 1

1



and wT x − b = −1, i.e. 2/||w||2. The margin is related to the generalization of

the classifier [Vap95].

The support vector machine (SVM) classifier is computed by solving a quadratic

programming problem. We maximize the margin over the parameters of the linear

classifier, which is defined as follows:

minimize (1/2)wT w

subject to yi(w
T xi − b) ≥ 1, i = 1, ..., N

(1.1)

The dual problem of problem (1.1) can be written as a quadratic programming

(QP) problem

maximize −(1/2)αT Qα + 1T α

subject to α ≥ 0, i = 1, ..., N,

yT α = 0,

(1.2)

where variables α ∈ RN , sample labels y ∈ RN , the Gram matrix Q ∈ RN×N

and Qij = yiyjx
T
i xj.

The support vectors (SVs) are defined as the subset of the training vectors

with non-zero dual multiplier αi. By the complementary slackness condition,

αi[yi(w
T xi + b) − 1] = 0 for all i = 1, ..., N, (1.3)

in the optimum. So the SVs lie on the margin boundary.

One must note that the problem (1.1) is not feasible if the classes are not

linearly separable. For those nonseparable problems, a set of slack variables ξi’s

is introduced. The SVM training problem for the nonseparable problem is defined

as follows:

minimize (1/2)wT w + γ1T ξ

subject to yi(w
T xi + b) ≥ 1 − ξi, i = 1, ..., N

ξ ≥ 0

(1.4)
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where the scalar γ is called the regularization parameter, and is usually empiri-

cally selected to reduce the testing error rate.

The dual of the problem (1.4) is shown as follows:

maximize −(1/2)αT Qα + 1T α

subject to 0 ≤ α ≤ γ1

yT α = 0.

(1.5)

For the general SVM optimization problem, the complementary slackness condi-

tion has the form

αi[yi(w
T xi + b) − 1 + ξi] = 0 for all i = 1, ..., N, (1.6)

in the optimum. Therefore, SVs are the vectors that lie in between the margin

boundary (including those on the boundary) and that are misclassified.

The selection of parameter γ can be referred to a more general framework:

regularized risk function or structural risk function design [VL63, KW71]:

Rreg := Remp +
1

γ
Ω,

where Rreg denotes the structural risk, Remp is the empirical risk and only depends

on the training error [VW96], Ω is the stabilization or generalization term that

reflects the prior information [SS98] and the parameter γ is used to balance these

two terms.

A nonlinear kernel function can be used for nonlinear separation of the training

data. In that case, the linear function wT x is replaced by a nonlinear function

φ(x) : Rm → Rn, where m is the dimension of original training vectors and

n is the lifted dimension. Linear kernels have n = m. The Gram matrix Q

has therefore the component Qij = yiyjφ(xi)
T φ(xj). A more general way is to

replace φ(x)T φ(x̃) by a kernel function F (x, x̃) such that Qij = Kijyiyj and

3



Kij = F (xi, xj), where K ∈ RN×N is the so-called kernel matrix. The nonlinear

kernel may lift the dimension of training vectors to a higher dimension so that

they can be separated linearly. If the kernel matrix K is positive definite, problem

(1.5) is guaranteed to be strictly convex. Correspondingly we have the decision

function of the form

H(x) = sign(
N
∑

i=1

yiαiF (xi, x) + b),

where the bias b can be obtained by averaging

b = yj −
N
∑

i=1

yiαiKij,∀j

by the KKT condition (1.6).

1.1.2 Multi-Class Support Vector Machine

We often encounter classification problems with more than two classes. Re-

searchers have generalized binary SVM to multi-class SVM, in which the label

yi may take k possible values. Various formulations have been developed with

different definitions of classifiers and different geometric explanations. There are

in general three groups of formulations: one-against-others, one-against-one and

the DAGSVM method.

The idea of the one-against-others method [Fri96, Kre99] is to construct k

binary classifiers, wT
l φ(x) + bl, l = 1, . . . , k, and to use the decision function

H(x) = argmax
l=1,...,k

(wT
l φ(x) + bl).

On the other hand, the one-against-one method constructs k(k − 1)/2 binary

classifiers, wT
ijφ(x) + bij, i < j, i, j ∈ 1, . . . , k, and the testing can be based on

the result of a voting process, namely

H(x) = argmax
l=1,...,k

∑

i6=l

sign(wT
ilφ(x) + bil).

4



if we define wji = −wij, bji = −bij, ∀i < j.

The DAGSVM method is actually a modified one-against-others method. The

difference is in the testing phase. Instead of voting, DAGSVM builds a generalized

decision tree, a directed acyclic graph (DAG), that has k(k− 1)/2 internal nodes

and k leaves [PCS99]. A good comparison of these three formulations has been

done by Hsu and Lin in 2002 [HL02].

A simplified one-against-other method, Crammer and Singer’s method [CS01],

is of special interest due to its simplicity and relatively better performance [HL02].

In Crammer and Singer’s work, the decision function

H(x) = argmax
l=1,...,k

(wT
l φ(x))

is used. The primal problem has the form:

minimize 1
2

∑k
l=1 wT

l wl + γ1T ξ

subject to wT
yi
φ(xi) − wT

l φ(xi) ≤ (1 − dl
i) − ξi, i = 1, . . . , N, l = 1, . . . , k

(1.7)

where

dl
i =











1 if yi = l

0 otherwise.
(1.8)

This formula has only N slack variables ξi, i = 1, . . . , N . The term wT
l wl is still

related to the generalization error [PCS99].

The dual problem of (1.7) is

minimize 1
2
αT (K ⊗ I)α − dT α

subject to 1T αi = 0

α ≤ γd,

(1.9)

where ⊗ denotes the kronecker product, I is a k-by-k identity matrix, αi ∈ Rk×1,

α = [αT
1 , αT

2 , . . . , αT
n ]T ∈ RkN×1, d = [dT

1 , dT
2 , . . . , dT

N ]T ∈ RkN×1 is a constant

vector and the l-th component of vector di, dl
i, is defined in (1.8).
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The decision function based on the dual solution is

arg max
l=1,...,k

N
∑

i=1

αl
iF (xi, x),

where F is a predefined kernel function.

Our kernel learning technique proposed in Chapter 2 for multi-class SVM is

based on Crammer and Singer’s formulation.

1.1.3 Support Vector Regression

Regression is a further step of generalization that allows the label yi to take

any real value. The support vector regression (SVR) has been widely applied in

financial forecasting [CT03], gene prediction [Xu05], time series [TBW03], signal

coding/coding, density estimation [CHH04] and other functional estimations due

to its flexibility of estimating real-valued functions. The basic idea is to minimize

a pre-defined risk function over the parameters of the regressor.

To define a risk function, we start from the maximum likelihood estimation.

The likelihood of samples (x1, y1), . . . , (xN , yN) given an underlying functional

dependency f is given by

Prob((x1, y1), ..., (xN , yN)|f) = ΠN
i=1Prob(yi|xi, f)Prob(xi). (1.10)

To maximize the likelihood (1.10) over f is equivalent to minimizing the em-

pirical risk Remp if the loss function c is defined as

c(x, y, f(x)) = − ln Prob(y|x, f),

since the empirical risk Remp can be written as

Remp :=
1

N

N
∑

i=1

c(xi, yi, f(xi)).

6



Therefore, one may easily see that the Laplacian loss function |y − f(x)| cor-

responds to the density model exp(−|y − f(x)|)/2; the Gaussian loss function

|y − f(x)|2/2 corresponds to the density model exp(−|y − f(x)|2/2)/(2
√

2π), the

polynomial loss function |y−f(x)|d/d corresponds to the density d
2Γ(1/d)

exp(−|y−
f(x)|d), and etc.

To preserve the property that the number of support vectors (SVs) is limited,

Vapnik used the ε-insensitive loss function

c(x, y, f(x)) = |yi − f(xi)|ε ≡ max{0, |y − f(x)| − ε},

which does not penalize errors below the tolerance ε [Vap95]. We, again, start

from the estimation of a linear function

f(x) = wT x + b, (1.11)

based on independent and identically distributed (IID) training samples

(x1, y1), . . . , (xN , yN )

where xi ∈ Rm, yi ∈ R, w ∈ Rm, b ∈ R and f : Rm → R.

The total risk can be written as

R =
∫

c(f, x, y)dProb(x, y),

where Prob(x, y) is the joint probability of an observation pair (x, y) and c is the

loss function. Since we never know the true Prob(x, y), we may use a regularized

risk function

R := Rε
emp +

1

γ
Ω (1.12)

where

Rε
emp :=

1

N

N
∑

i=1

|yi − f(xi)|ε

7



is the empirical risk,

Ω :=
1

2
||w||2

is the regularization term and γ is an empirically selected scalar used to balance

these two terms. A small ||w||2 means that the linear regressor (1.11) is flat in

the feature space. Simple geometry may verify that the flatter the function f ,

the larger the margin [Vap95].

To minimize (1.12), we have

minimize 1
2
wT w + γ1T (ξ + ξ∗)

subject to wT x + b − y ≤ ε + ξ

y − wT x − b ≤ ε + ξ∗

ξ, ξ∗ ≥ 0,

(1.13)

where ξ ∈ RN and ξ∗ ∈ RN is the allowed error ”above” and ”below” the margin

boundary.

The corresponding dual problem has the form

minimize 1
2
(α∗ − α)T K(α∗ − α) − yT (α∗ − α) + ε1T (α∗ + α)

subject to 1T (α∗ − α) = 0

0 ≤ α∗, α ≤ γ.

(1.14)

where the dual variable α∗, α ∈ RN and the training kernel matrix K ∈ RN×N .

The component of the kernel matrix K can be written as Kij = φ(xi)
T φ(xj).

That is, we are actually estimating a function

f(x) =
N
∑

i=1

(αi − α∗
i )φ(xi)

T φ(x) + b.

Kernel selection in regression therefore can be considered as regressor modeling.

8



1.1.4 Training Algorithms

The problem of training an SVM was developed by Vapnik in 1995 [Vap95, CV95].

The training problem is equivalent to a box constrained quadratic programming

(QP), that can be solved by standard optimization algorithms [Vap95, CV95,

Sch96]. These algorithms, however, are only able to solve some small and medium

size problems since they require loading of the whole Gram matrix.

Osuna, in 1997, proposed a decomposition algorithm [OFG97b]. The basic

idea is to separate the training vectors into two sets: a working set and a non-

working set. Only the working set is solved. A nonsupport vector in the working

set is then replaced by one in the nonworking set in each iteration such that the

objective value keeps decreasing. This algorithm, however, requires the working

set to contain all support vectors, which is an unrealistic assumption for large

classification problems (say, a problem that has 50,000 training samples). This

algorithm was improved in 1997 by Osuna, et al., themselves [OFG97a]. This

improved decomposition algorithm is often called the chunking algorithm. The

chunking algorithm chooses a working set arbitrarily, solves the subproblem and

replaces a training vector in the working set by one in the nonworking set that

violates the Karush-Kuhn-Tucker optimality conditions (KKT) such that the ob-

jective value can be improved. The advantage of the chunking algorithm is that

the working set may be smaller than the set of support vectors.

In order to further increase the computing speed, Platt, in 1998, proposed a

sequential minimization optimization (SMO) algorithm for training SVM, which

later became the the standard algorithm for large scale SVM training problems.

The basic idea of the SMO method is to simplify the numerical QP optimization

by selecting two Lagrange multipliers, the largest possible optimization problem

that can be solved analytically, to optimize in each step. Therefore, the SMO
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can be considered a special case of chunking: the number of variables of the

working set is fixed to two. Selection of the two multipliers depends on checking

of the KKT conditions, which dominates the run time, especially when the kernel

matrix is not sparse. Both chunking and SMO algorithms are decomposition

algorithms that have been extensively studied [Joa98, CB01, FL02]. Among

the different implementations, the SVMlight has the fastest reported performance

[Joa98] in selected applications. A parallel version of the SVMlight was proposed

by Zanghirati and Zanni in 2003 [ZZ03]. Another sequential algorithm is the

successive overrelaxation (SOR), proposed by Mangasarian and Musicant in 1999

[MM99]. The SOR is a matrix splitting method used for boxed constrained

QP that is essentially sequential. SOR also has several parallel versions [AJ86,

BFM90].

1.2 Learning with Unknown Kernels

The traditional support vector machine assumes that the underlying kernel ma-

trix is given. The assumption is not true if the feature sets are heterogeneous.

Homogenous features have uniform structure and composition throughout,

such as pixels of images, frequencies of vocabularies, etc. Heterogeneous fea-

tures, on the contrary, have varying scales. Heterogeneous features usually come

from different modalities, multiple feature extraction approaches or distinct time

scales.

One can always make homogenous feature measurements into a vector without

worrying about the relative scaling problem. It is always a bad idea, however,

to vectorize heterogeneous features since the ”weaker” feature may dominate the

feature space and the testing result may be worse than the case that only one set
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of features are used. Centering and normalization does not help here because the

metric is difficult to be introduced for heterogeneous features. Examples can be

found in Section 2.4.

There are two groups of methods dealing with heterogeneous features: one is

decision fusion; the other is feature fusion. Namely, decision fusion transforms

the decision space and feature fusion transform the feature space. Voting (for

example, Adaboost) [DHS00], decision tree [Val04] and Bayesian network [NH01]

are all widely used decision fusion methods, which compose the final strong clas-

sifier based on the independent weak classifiers constructed from heterogeneous

features. These methods suffer from the fact that each feature set is used inde-

pendently to generate a weak classifier.

Functional combination of heterogeneous features is a way to make the final

decision that depends on joint information of features. The main difficulty for

functional combination is the parameter estimation. If an empirical posterior is

given, one can minimize the KL divergency of the true posterior and the empirical

posterior over the combined features [HKC04]. The weakness of this method is

that there must be a good empirical posterior available that may not be true in

reality.

If we apply a linear combination to p kernel matrices K1, K2, . . ., Kp, formed

from p sets of heterogeneous features, the resulting kernel matrix K can be written

as

K = µ1K1 + µ2K2 + ... + µpKp,

where µ.’s are unknown linear coefficients.

11



Selection of Kernels

Except for the fact that the kernel matrix should be positive definite [Mer09],

there is almost no consensus on how to select kernel matrices for a specific appli-

cation. The question is ”what is the best kernel for a given application?”.

Selection of kernel should always reflect one’s prior knowledge about the prob-

lem at hand [SS02]. There have been extensive research on properties of poly-

nomial kernels [SSM98, VGS97], radial basis kernels [BGV92, GBV93, GBV93],

ANOVA kernels [ONR95, SGV99, Wah90], and other kernels [Bur98, UCS99].

The kernel selection problem can be considered a special case of the hetero-

geneous features combination problem. Using different kernel function, the same

feature set will be projected to different spaces. The projected features are no

longer homogenous. We again may use a linear combination of different type of

kernels with unknown coefficients to algorithmically select the best kernel. For

details, please refer to Section 2.3.

Learning kernels for the binary support vector machine training problem has

been attacked by Lanckriet, et al. in 2004 [LCB04]. Their method is to construct

a semi-definite programming problem (SDP) by looking at the dual of problem

(1.5).

In this thesis, we apply a similar technique to the more general SVM multi-

class classification problem and functional estimation problem. We improve the

efficiency of solving the underlying optimization problem by using a matrix de-

composition method and provide results on multiple applications.
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1.3 Distributed Learning Algorithms

Distributed learning is necessary if a centralized system is infeasible because of ge-

ographical, physical and computational reasons. The applications of distributed

learning methods cover geoscience [PG98, JL99], defense system [Bas98, CZB97],

imaging [LKT98] and etc. The popularity of distributed learning is due to the

availability of advanced sensor networks, wired and wireless network communi-

cation technology [LCK04], and numerous successful distributed learning algo-

rithms.

Current distributed learning algorithms can be summarized into four cate-

gories: Bayesian learning [FHL03], Dempster-Shafer theory [Bra00], fuzzy set

theory [SH01] and neural networks [XLB02]. Bayesian learning accumulates dis-

tributed or temporal evidence, say x1 and x2, by calculating the posterior of a

certain event E

p(E|x1, x2) = p(x1|E, x2)p(x2|E)
p(E)

p(x1, x2)
.

In classification, E is usually a set of labeling results. The optimal result can

be achieved by minimizing a Bayes risk function given the α and β error risk

measurements. Bayesian learning needs a set of definitions of the likelihood

functions, which requires the knowledge of the distribution family that may not be

available in practical applications. Fuzzy set theory defines various set operations

that are able to compromise the membership value in different sets. The fuzzy sets

fusion is now becoming popular because of its capability of quantifying the events

in the real world, say human language. The performance of fuzzy algorithms is,

however, hard to evaluate because of its arbitrary representation of events. The

Dempster-Shafer theory combines evidences by using a normalized orthogonal
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sum

mc(H) =

∑

∀X,Y :X∩Y =H m1(X)m2(Y )
∑

∀X,Y :X∩Y =∅ m1(X)m2(Y )
,

where mi(.) is a basic probability assignment function for site i and H is an

intersection of events set X and Y [Bra00]. That is, we can always calculate the

”likelihood” of the intersection of distributed events. Again, it requires many

pre-defined probabilities. Neural networks and hidden Markov models (HMM)

work by approximating the real system behavior and usually require a sufficient

amount of training data and training time. The optimality of a neural network

is usually unknown, while an HMM may suffer from an inappropriate model

structure.

The objectives of a distributed learning algorithm usually include robustness

to noise, efficient representation for data of high-dimension and large volume, de-

cision precision and certainty. The performance is usually measured by simulation

comparison. Optimality criteria are seldom emphasized due to the complexity of

the problem, and the arbitrary definition and assignment of likelihood functions,

probabilities [Bra00], fuzzy sets association values [SH01], etc.

According to a statistical review [VMB01], eleven percent of distributed learn-

ing methods considered physically distributed data processing. For such prob-

lems, there are some additional objectives: robustness to network topology [ZL03]

and efficient communications [VV97]. The information that is actually trans-

ferred could be the raw data, the features or local decisions.

Efficient Information Carrier: Support Vectors

Support vectors (SVs), namely the training data that have non-zero α values, lie

physically inside the margin or are misclassified. Those vectors carry all the clas-

sification information of the local data set. Exchanging support vectors, instead
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of moving all the data, is a natural way to fuse information among distributed

sites. However, to the best of our knowledge, no research has been done using

such a technique.

We exploit the idea of exchanging SVs in a deterministic way and a random-

ized way in our distributed learning algorithms in Chapter 4 and 5.

1.4 Maximum Likelihood Estimation of Gaussian Mix-

ture Models with Known Variances

This is a relatively independent topic from the support vector machine. But it is

rather interesting and related to global optimization.

Gaussian mixture models are a type of density model that comprises of a

number of Gaussian functions. The density function has the form

f(y) =
n
∑

j=1

wj
1√
2πsj

exp {−(y − µ)2

2sj

}.

These component functions are combined to provide a multimodal density esti-

mation. In a model inference problem, we are given a set of data and want to

estimate the model parameters (w, µ, s) from these data. The maximum likeli-

hood estimation is one of the most popular methods in parameter estimation.

Unfortunately there is no efficient way to solve the globally optimal solution of

the following maximal likelihood problem even when the variances s are known.

maximize
∑N

k=1 log
∑n

j=1 wj
1√
2πsj

exp {− (y−µ)2

2sj
}

subject to w � 0,1T w = 1,

where the variables are w and µ.

In Chapter 6, we reformulate the maximum likelihood estimation of Gaussian

mixture model with known variances as an equivalent biconvex problem. All the
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varieties of EM algorithms can be viewed as greedy solutions to this problem.

One implication of the biconvexity of this formulation is that there exist global

optimization methods that exploit this kind of structure. As an example, we

worked out the details of generalized Benders decomposition [Geo72, FV93] and

present numerical results for some simple cases.

1.5 Contributions

Our contributions in this thesis can be summarized as follows:

� We show that the SDP kernel learning technique can be efficiently applied in

multi-class SVM training problems. The main obstacle is the big Nk×Nk

matrix in the objectives, where N is number of training samples and k is

the number of classes. We decomposed the SDP problem such that the size

of each LMI constraint is the same as that in the binary problem, which

consists of a (N + 1) × (N + 1) matrix, and there are only k such LMI

constraints.

� We apply the kernel learning technique to the regression problem, that

provides a unique way of ”model-free” regression. A linear model can be

verified by comparing the testing errors of a linear kernel with that of the

optimal kernel. New pattern has been discovered via our method for the

retina ganglion cell coding problems.

� We exploit a simple idea of exchanging support vectors over a strongly

connected network as a distributed learning algorithm. The algorithm is

proved to converge to the global optimal classifier in finite steps. Extensive

numerical results are provided to analyze the performance of the algorithm

in different network configurations, various initial data distribution, and
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different implementation methods.

� Further adding a carefully designed sampling mechanism, we propose a

novel parallel randomized support vector machine (PRSVM). We prove

that our algorithm, on average, converges to the global optimum classi-

fier/regressor in less than (6δ ln(N + 6r(C − 1)δ)/C iterations, where δ de-

notes the underlying combinatorial dimension, N denotes the total number

of training vectors, C denotes the number of working sites; and r denotes

the size for a working set. The average convergence rate is faster than the

randomized support vector machine training algorithm in [BDT01] by a fac-

tor of C. The numerical results on synthesized data and a real geometric

database show that our algorithm has good scalability.

� The maximum likelihood estimation problem of Gaussian mixture models

with known variance is formulated as a bi-concave maximization problem.

This bi-concave structure can be exploited by global optimization meth-

ods, such as the generalized Benders decomposition. The details of the

generalized Benders decomposition have been worked out. Simple numer-

ical results are presented to demonstrate the potential advantage of our

method over the widely used EM algorithm.

The report is organized in the following way. We first present an overview

for the support vector machine and its kernel estimation and distributed learning

problem as well as related researches in Chapter 1. Then, we present our formula-

tion and applications of kernel learning technique for multi-class SVM and SVM

regression estimation in Chapter 2 and Chapter 3 respectively. The distributed

SVM method is presented in Chapter 4, followed by its randomized version in

Chapter 5. Chapter 6, introduces global optimization methods for maximum
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likelihood estimation of Gaussian mixture models with known variances. The

last chapter, Chapter 7, concludes this thesis briefly.
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CHAPTER 2

Kernel Optimization for Multi-Class Support

Vector Machines

2.1 Introduction

2.1.1 Kernels

Support vector machines are also called kernel machines. A kernel function

F (x, x̃) is a generalized dot product in a feature space:

F (x, x̃) = φ(x)T φ(x̃),

where

φ : Rm → Rn

is a nonlinear mapping that lifts the training vector to a higher dimension space

in which they can be scattered by a hyperplane. That is,

The kernel matrix K is defined as:

Kij = F (xi, xj), i, j = 1, . . . , N.

If both training and testing can be carried out using the form of K exclusively, we

do not need the explicit map φ. Instead, we may directly design kernel functions.

There are several popular choices of nonlinear kernel functions: inhomoge-
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neous polynomial kernels

F (x, x̃) = xT x̃ + 1,

Gaussian kernels

F (x, x̃) = exp

(

−||x − x̃||2
2σ2

)

,

and sigmoid kernels

F (x, x̃) = tanh(κ(xT x̃) + θ),

where κ > 0 and θ < 0.

2.1.2 A Formulation of Multi-Class Support Vector Machines

We consider a classification problem with Ntr training samples: (x1, y1), . . . , (xNtr , yNtr),

where xi ∈ Rm,∀i are the feature vectors, yi ∈ {1, 2, . . . , k},∀i are the labels and

k is the number of possible classes. A general multi-class classification training

problem is to seek a classifier H : X → Y such that the structural risk

R = Remp +
1

γ
Ω

is minimized, where Ω is the generalization term, Remp is the empirical risk and

a parameter γ is used to balance these two terms. The empirical risk can be

expressed as the sum of the training errors. That is

Remp :=
1

Ntr

Ntr
∑

i=1

(1 − δyi
(H(xi))),

where

δy(ỹ) =











1, if y = ỹ

0, other wise.

In the one-against-others method, we construct k hyperplanes y = wT
l x +

bl, l = 1, . . . , k and the decision function has the form

H(x) = argmax
l=1,...,k

(wT
l x + bl).
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That is, for a sample i, to exclude it from one class l, l 6= yi, we need to compare

a pair of binary classifiers, such that

(wyi
− wl)

T φ(xi) + (byi
− bl) ≥ 1, l 6= yi. (2.1)

Crammer and Singer [CS01] further omit the bias bl, l = 1, . . . , k and allow Ntr

slack variables for general linear non-separable cases. Their multi-class SVM

primal problem has the form

minimize 1
2

∑k
l=1 wT

l wl + γ1T ξ

subject to wT
yi
φ(xi) − wT

l φ(xi) ≥ (1 − δl(yi)) − ξi, i = 1, . . . , Ntr, l = 1, . . . , k,
(2.2)

where w is the variable and ξ is the slack variable. The constraints can be

considered inequalities (2.1) with added slack variables.

The corresponding dual problem may have the form

minimizeα
1
2
αT (Ktr ⊗ I)α − dT α

subject to 1T αi = 0

α ≤ γd,

(2.3)

where α = [αT
1 , αT

2 , . . . , αT
Ntr

]T ∈ RkNtr is the variable vector and αi ∈ Rk [CS01].

The operator ⊗ denotes the Kronecker product, I is a k-by-k identity matrix,

d = [dT
1 , dT

2 , . . . , dT
Ntr

]T ∈ RkNtr×1 is a constant vector, where the l-th component

of vector di is δl(yi).

The generalization term
∑k

i=1 wT
l wl is inspired as followed. The margin of the

binary classifier (2.1) is defined as 2/||wi − wj||. Define

gij = wi − wj

and

bij = bi − bj.
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Figure 2.1: A diagram of the one-against-one binary classifier (plotted in the solid

line), the one-against-others binary classifiers (plotted in the dot-dash lines) and the

relationship of their normal vectors.

The hyperplane

gT
ijφ(x) + bij = 0

is also a binary classifier in the one-against-one method, where we have k(k−1)/2

such classifiers to compose the final multi-class classifier. In Figure 2.1, two

binary one-against-others classifiers hyperplanes wT
1 x+ b1 = 0 and wT

4 x+ b4 = 0,

are plotted in the dot-dash lines. The corresponding one-against-one classifier

hyperplane gT
41x + b41 = 0 are plotted in the solid line.

Platt, in 2000, showed that the generalization error Ω is proportional to the

margin
∑

i<j ||gij|| in his modified one-against-one method, DAGSVM [PCS99].

One may observe that if ||wi||2 + ||wj||2 is bounded, ||gij||2 is also bounded. That

is, the generalization error will be limited by bounding ||wi||2+||wj||2 from above.
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Therefore, we can choose the generalization term to be

Ω :=
k
∑

i=1

wT
l wl.

Our kernel optimization technique proposed in this chapter is based on Cram-

mer and Singer’s formulation for its simplicity and the slightly better performance

comparing with other known multi-class SVM formulations [HL02].

2.1.3 Transduction Problem

In this chapter, we focus on the transduction problem. The transduction prob-

lem is the problem of completing the labeling of a partially labeled data set by

estimating the classifier on the given points. That is, in a transduction problem,

we do not intend to learn a general classification function. Instead, we are only

interested in labeling the given unlabeled data points.

For a general multi-class problem, there are k classes and N data points,

including Ntr unlabeled and training data and Nt testing data. Throughout this

chapter, we use Xtr ∈ RNtr×m to denote the labeled training set and Xt ∈ RNt×m

to denote the unlabeled testing set, where each row of the matrix X is a vector

xi ∈ Rm. The label is stored in a vector y ∈ RNtr . The kernel matrix

K =







Ktr Ktr,t

KT
tr,t Kt





 , (2.4)

where the block matrices Ktr, Ktr,t and Kt are the optimal training, mixed and

testing block that we want to learn.

Since the objective is only to complete the label of a finite testing set, there is

no need to learn the general kernel function F . Instead, we only learn the kernel
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matrix K. The estimated label for testing vector xj can be written as

ŷj = argmax
l=1,...,k

Ntr
∑

i=1

(αl
iKtr,t(i, j)),

where αl
i is the l-th component of vector αi and Ktr,t(i, j) denotes the ij element

of matrix Ktr,t.

2.1.4 Challenges and Related Work

The selection of kernels should reflect our prior knowledge about the problem at

hand [SS02]. An even better choice of kernel is one that not only reflects our

prior information but also considers the current labeled training data.

Lanckriet, et al. in 2004 proposed a semi-definite programming (SDP) for-

mulation to optimize kernel matrices for the binary SVM by applying duality

[LCB04]. The detail is omitted since our derivation is similar but works for a

more general problem.

It is not trivial to extend the technique to the multi-class SVM transduction

problems. The main obstacle is the big Ntrk×Ntrk matrix in the objective, where

Ntr is the number of training samples and k is the number classes.

In this chapter, we decompose the SDP problem such that the size of each

linear matrix inequality (LMI) in the resulting problem is (Ntr + 1)-by-(Ntr + 1)

that is the same as that in the binary problem and there are only k such LMI

constraints.

We also present two distinct applications. One is for handwritten digits clas-

sification. In this application, we apply the proposed method to select the best

kernel matrix from a set of given matrices. The other application is the retina

neuron signal source classification problem. The second application is used to

demonstrate the ability and the advantage of combining heterogeneous features
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by using the proposed method.

2.2 Formulations for Kernel Optimization

We start from Crammer and Singer’s simplified version of one-against-other fixed

kernel version [CS01] and derive our kernel learning formulation.

Let ω(K) denote the optimal value of the problem (2.3) for a given K. If the

kernel matrix is unknown, we are trying to solve the following problem

maximize ω(K)

subject to Tr(K) = c

K � 0,

(2.5)

where we add a normalization constraint Tr(K) = c for variable K.

Now we show that the multi-class SVM transduction problem can be formu-

lated as an SDP problem if the underlying kernel matrix K is unknown.

Theorem 1 The problem (2.5) is equivalent to the following SDP problem (2.6):

minimizet,ν,λ,K t

subject to







Ktr ⊗ I d − ν + BT λ

(d − ν + BT λ)T t − 2γdT ν





 � 0

K � 0

Tr(K) = c

ν ≥ 0

(2.6)

where the identity matrix I ∈ RNtr×Ntr, the constant matrix B ∈ RN×kNtr,

B = I ⊗ 1T ,

and the unit vector 1 ∈ Rk.
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Proof. Let ω(K) denote the optimal value of the problem (2.3) for a given K.

We formulate ω(K) as an expression of K by applying the duality. The problem

of maximizing ω(K) is then formulated as an SDP problem.

For any fixed kernel matrix K that satisfies the constraints Tr(K) = c and

K � 0, define the Lagrangian of problem (2.3) with α as variables by

L(α, ν, λ) = αT (Ktr ⊗ I)α − 2dT α − 2λT Bα + 2νT (α − γd),

where λ ∈ RN and ν ∈ RkNtr . By duality, the optimal objective value ω(K) of

the problem (2.3) satisfies

ω(K) = max
ν≥0,λ

min
α

L(α, ν, λ).

By setting ∂L
∂α

= 0,

α∗ = (Ktr ⊗ I)−1(d − ν + BT λ),

Note that K � 0 infers K ⊗ I � 0. By substituting the optimal value of α into

the Lagrangian, we have

ω(K) = max
ν≥0,λ

{−(d − ν + BT λ)T (Ktr ⊗ I)−1(d − ν + BT λ) − 2γdT ν}.

Define −t to be the lower bound of ω(K) over K. The problem

maximize ω(K)

subject to K � 0,Tr(K) = c, µ ≥ 0

is equivalent to

maximizet,ν,λ,K −t

subject to −(d − ν + BT λ)T (Ktr ⊗ I)−1(d − ν + BT λ) − 2γdT ν ≥ −t

K � 0

Tr(K) = c

ν ≥ 0.

(2.7)
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The result follows immediately after applying Schur complement to the first con-

straint.

2.2.1 A Decomposed Formulation

One may note that in problem (2.6), the linear matrix inequality (LMI) of the

first constraint has dimension (kNtr + 1)-by-(kNtr + 1). We now show that this

constraint can be decomposed into k constraints of (Ntr + 1)-by-(Ntr + 1) dimen-

sion.

Theorem 2 The problem (2.6) is equivalent to the following SDP problem (2.8):

minimizes,ν,λ,K 1T s

subject to







Ktr dl − ν l + λ

(dl − ν + λ)T sl − 2γ(dl)T νl





 � 0, l = 1, . . . , k

K � 0

Tr(K) = c

νl ≥ 0, l = 1, . . . , k

(2.8)

where s ∈ Rk, of which the l-th component is denoted by sl, ν l = [ν l
1ν

l
2 . . . ν l

Ntr
]T

and constant vector dl ∈ RNtr and the i-th component of vector dl is δl(yi).

Proof. We start from the first constraint of the problem (2.7):

(d − ν + BT λ)T (Ktr ⊗ I)−1(d − ν + BT λ) + 2γdT ν ≤ t.

Note that (Ktr ⊗ I)−1 = K−1
tr ⊗ I. Let (K−1

tr )ij denote ij elment of the matrix

K−1
tr . We have

(d − ν + BT λ)T (Ktr ⊗ I)−1(d − ν + BT λ) + 2γdT ν

= (d − ν + BT λ)T (K−1
tr ⊗ I)(d − ν + BT λ) + 2γdT ν

=
∑k

l=1

∑Ntr
i=1

∑Ntr
j=1((d

l
i − ν l

i + (Bl)T λi)(d
l
j − ν l

j + (Bl)T λj)(K
−1
tr )ij + 2γdl

iν
l
i)

=
∑k

l=1((d
l − ν l + (Bl)T λ)T K−1

tr (dl − ν l + (Bl)T λ) + 2γ(dl)T νl)

(2.9)
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where Bl ∈ RN×Ntr is a constant matrix such that the i-th element of B l is the

((i−1)k+ l)-th element of B. One may immediately note that B l = I,∀l. There-

fore, the constraint
∑k

l=1(d
l − ν l +(Bl)T λ)T K−1

tr (dl − ν l +(Bl)T λ)+2γ(dl)T νl ≤ t

holds if and only if

(dl − ν l + λ)T K−1
tr (dl − ν l + λ) + 2γ(dl)T νl ≤ sl,∀l (2.10)

and
k
∑

l=1

sl ≤ t.

The result follows after we apply Schur complementary lemma to each of the

inequalities of (2.10).

Throughout this chapter, the Sedumi [Stu99] Matlab toolbox is used to solve

SDP problems and the MOSEK toolbox [AA00] is used to solve standard QP

problems.

2.3 Application: Handwritten Digits Classfication

An immediate application of the proposed multi-class SVM kernel learning al-

gorithm is the kernel selection. We applied this algorithm to the MNIST hand-

written digits database [LBB98] for digits classificcation. The MNIST database

of handwritten digits has a training set of 60,000 vectors. The digits have been

size-normalized and centered in a fixed-size image. This database is a standard

database online for benchmarking classification algorithms.

All the digits images are centered in a 28×28 image. A set of random samples

of such images are given in Figure 2.2. We vectorize each image to a 781 vector.

The problem is to classify all those 10 digits.

Assuming that there is no prior information to select kernels, we choose four
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Figure 2.2: A set of random samples of the MNIST handwritten digits database.

candidate kernels: linear kernel

K1(i, j) = xT
i xj,

quadratic kernel

K2(i, j) = (1 + xT
i xj)

2,

Gaussian kernel

K3(i, j) = e(x1−x2)T (xi−xj)/(2σ2),

and sigmoid kernel

K4(i, j) = tanh(κxT
i xj + θ),

where Kl(i, j) denotes the i-th row and j-th component of matrix Kl for all l.

We fix the kernel parameter σ = 0.5, κ = 1 and θ = 0 and the regularization

parameter γ = 16 for simplicity. We tried all linear combinations of the four

candidate kernels on a randomly selected set of 200 training samples and 100

testing samples. There are totally one four-kernel cases, four three-kernel cases,

six two-kernel cases and four single-kernel cases. We did the same experiment for

100 times and present the average result in Table 2.1, where ERRte denotes the

average testing error rate.
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Kernel µ1 µ2 µ3 µ4 ERRte

µ1K1 + µ2K2 + µ3K3 + µ4K4 0.0939 -0.1986 1.5721 -0.4673 13.5%

µ1K1 + µ2K2 + µ3K3 -0.1769 -0.2336 1.4105 \ 13.9%

µ1K1 + µ2K2 + µ4K4 -0.2249 0.0229 \ 1.2020 22.0%

µ1K1 + µ3K3 + µ4K4 -0.1677 \ 1.6535 -0.4858 13.4%

µ2K2 + µ3K3 + µ4K4 \ -0.1383 1.6070 -0.4687 14.0%

µ1K1 + µ2K2 1.0116 -0.0116 \ \ 20.4%

µ1K1 + µ3K3 -0.4927 \ 1.4927 \ 14.8%

µ1K1 + µ4K4 0.0000 \ \ 1.0000 22.0%

µ2K2 + µ3K3 \ -0.3345 1.3345 \ 15.0%

µ2K2 + µ4K4 \ -0.0000 \ 1.0000 23.1%

µ3K3 + µ4K4 \ \ 1.4369 -0.4369 14.8%

K1 \ \ \ \ 20.6%

K2 \ \ \ \ 16.8%

K3 \ \ \ \ 14.7%

K4 \ \ \ \ 22.4%

Table 2.1: Kernel selection and the testing error for the MNIST Database. The

result shows that the Gaussian kernel K3 always has a significantly large positive

coefficient. If K3 is involved in kernel combinations, the testing errors are low.
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The results in Table 2.1 show that the testing errors can be dramatically

improved by including the candidate kernel matrix with large positive coefficient.

That is to say, the SDP kernel optimization method may select the best kernel

algorithmically.

2.4 Application: Retinal Ganglion Cells Classification

The proposed kernel learning method in multi-class SVM training problems has

another important application: classification with heterogeneous features. The

traditional fixed kernel method either assumes that all components in a feature

vector are equally important or assigns a pre-defined weight to different compo-

nents before applying kernel functions. For details, one may refer to the reference

regarding locality-improved kernels [BB99, SSS98, BGL00]. Either way assumes

that one has sufficient knowledge before the actual learning process, which is

usually not true in practice. Our kernel method provides a way of combining

heterogeneous features by jointly learning a set of weights. For example, suppose

feature X1 and X2 are heterogeneous and we have no prior knowledge about their

relative importance to the underlying classification problem. We may design a

kernel matrix K such that K = µ1K1+µ2K2, where K1 and K2 are proper kernels

for feature X1 and X2. After solving the SDP problem, one gets an improved

classifier as well as a naturally combined kernel matrix K. This method has been

successfully applied in the mouse retina ganglion cell identification problem.

2.4.1 The Problem

The data set we analyze consists of signals from 17 retina ganglion cells from a

mouse, recorded from a multi-electrode array. The visual stimulus is an 1.5 hour
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long spatially uniform flicker, in which intensity values (ranging from 0 to 255)

are drawn randomly from a Gaussian distribution with mean 127 and standard

deviation 54 every 100 ms. There are 53,460 frames (1 frame = 0.1s). The

response of the 17 cells are 17 spike trains. The firing rate ranges from 4.2 to

77.4 Hz.

Zhong, et al., classified the 17 neurons into 3 classes: Fast-ON, Slow-ON and

OFF [ZBJ05] based on the mutual information of the stimulus and the neurons’

response. We further discovered that there exists significant drifting in a neu-

ron’s response to the stimulus intensity level over time, based on SVM regression

analysis with kernel learning technique (see Section 3.4 of Chapter 3). The drift-

ing analysis suggests that shorter time series, say, 500 frames, shall be used to

capture a neurons’ behavior. An interesting question arises: given a segment of

the spike train, can we classify it into one of the three classes? A special case is

that, if one neuron from each classes is selected, can we identify which neuron it

is based on its spike train?

We formally state our problem as follows. There are 315 (105×3) segments of

spike train. Each segment contains 500 input symbols and 500 output symbols.

The 315 pieces of signals are drawn from 3 neurons responses to 105 frames of

input symbols, the intensities of the input image. Among the 315 samples, 180

samples are labeled and the rest 135 samples are not labeled. By ”labeled”, we

mean the neuron that generates the spike train is given. The problem is to label

the 135 unlabeled samples based on the training on the labeled 180 samples.

To further simplify the problem, we quantize the input image intensity into

3 bits. That is there are 8 different input symbols. The output symbols are the

number of spikes in each frame.

Two heterogeneous features are extracted from the data set: one is the condi-
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tional energy transition probabilities; and the other is the frequencies of the code

words.

2.4.2 Conditional Transition Probability Matrices

By using the term ”conditional energy transition probabilities”, we assume that

a neuron’s firing behavior is based on its energy level, which depends on the

previous energy level and the current condition (the input symbol). The energy

level is only a logical concept and has nothing to do with real physical energy.

We first model a dynamic Bayesian network and then use each sample to

train this network by the EM algorithm [DLR77]. The advantage of training

the dynamic network separately using each sample piece of the spike train rather

than the whole spike train is that the initial distribution π may neutralize the

effect the drifting so that learned conditional transition probabilities are more

accurate.

The dynamic Bayesian network is indeed a simplified input output hidden

Markov model (IOHMM) without the output subnetwork [BF95]. We may also

consider the model as an augmented hidden Markov model (HMM), since the

only difference between the proposed model and an HMM is that the former one

has nin conditional transition matrices, where nin is number of different input

symbols, while a typical HMM has one transition matrix. We assume that there

are nstate = 10 energy levels. That is, there are nstate hidden states, denoted by

si, i = 1, ..., nstate. At level 0, the probability that there is no firing in the next

frame is equal to 1. At level i, the number of spikes in the next frame follows a

Poisson distribution with firing rate λi = 2i−1. Since the observation o is discrete

and finite and we know that ot ∈ {0, 1, 2, ..., nout−1}, t = 1, ..., T where nout = 40
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and T = 500. We normalize the observation probabilities such that

nout−1
∑

o=0

Prob(o|s) = 1.

The output probability matrix is denoted by B ∈ Rnstate×nout , with component

B(o, s) = Prob(o|s). By definition,

B(o, s) =















0 if s = 0

(2s−1)oe−2s−1
/o!

∑nout−1
o=0 (2s−1)oe−2s−1

/o!
otherwise.

We always fix the pre-defined matrix B.

The conditional state transition matrix is denoted by Ax ∈ Rnstate×nstate with

component Ax(si, sj) = Prob(sj|si, x), where x ∈ {0, 2, ..., nin − 1} is an input

symbol.

The training problem is a classic HMM training problem. That is, to maxi-

mize Prob(Y ,X|λ) over the parameter λ = (Ax, x = 0, ..., nin − 1, B, π), where

X and Y denotes a specific input and output sequence. This is a non-convex

programming problem and a local optimum can be found by the EM algorithm.

The Expectation-Maximization steps can be implemented as follows.

Expectation: To estimate the distribution wt(i, j) = Prob(st = j|st−1 = i).

We have

ζt(i, j) =
αt(i)Axt

(i, j)B(j, yt+1)βt+1(j)
∑nstate

i=1

∑nstate
j=1 αt(i)Axt

(i, j)B(j, yt+1)βt+1(j)

where αt+1(i) and βt(i) can be calculated by forward backward induction

as follows:

αt+1(j) = [
nstate
∑

i=1

αt(i)Axt
(i, j)]B(j, yt+1)

with initialization

α1(j) = πjB(j, y1),∀j

34



Probabilities0.1 0.2 0.9 1

Figure 2.3: Gray level indices of probabilities. The transition probability is in-

dexed by intensity level. The highest intensity denotes probability 1 and lowest the

intensity level denotes probability 0. This is one way of feature visualization.

and

βt(i) =
nstate
∑

j=1

Axt
(i, j)B(j, yt+1)βt+1(j)

with initialization

βT (i) = 1,∀i.

Maximization: To maximize the likelihood over the parameters Ax,∀x and

π as follows:

πi =
ζ1(i, j)

∑nstate
j=1 ζ1(i, j)

and

Ak(i, j) =

∑

t:xt=k ζt(i, j)
∑

t:xt=k

∑nstate
j=1 ζt(i, j)

.

We repeat the EM algorithm 10 times starting from randomized starting

points and record the one with the largest log-likelihood to avoid the worst local

optimum. So, we solve 3150 augmented HMM training problem totally. The

learned conditional transition matrix serves as a feature in our later analysis.
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To visualize the features, we plot the average conditional transition matrices

of the three neurons. We use grey level to index the probabilities. That is, the

highest intensity denotes probability 1 and the lowest intensity denotes probabil-

ity 0. The grey level indices of probabilities are given in Figure 2.4.2. The three

neurons’ average conditional transition matrices are given in Figure 2.4-2.6. Ac-

cording to Zhong et al. [ZBJ05], neuron 6 belongs to the Fast-ON class, neuron

9 belongs to the OFF class and neuron 16 belongs to the Slow-ON class. Our

conditional matrix further confirms Zhong’s conclusion and obviously provides

more information:

Neuron 6: When the input image has intensity lower than level 4, the neu-

ron’s energy states tend to go down. That is, the firing rate is going down.

Otherwise, the energy level jump up 1 or 2 steps with high probability.

Neuron 9: Whatever the input intensity is, the energy level always goes to

level 2 with very high probability. That is to say, the neuron tends to fire

at a consistent rate.

Neuron 16: When input intensity is low, the energy level tends to maintain

the same up to level 3. When input intensity is high, the energy level tends

to maintain the same up to level 5. There is no jump-up with very high

probability observed as in Figure 2.6. This shows why neuron 16 is classified

as Slow-ON.

The conditional transition matrix is an important feature for neuron classifi-

cation, which characterizes the dynamics of neurons under different stimuli. Let

matrix X1 ∈ RN×m1 denote the feature data, where N is number of samples, and

m1 = ninn
2
state = 800 is the dimensionality of this feature. Each row of X1 stores

nin transition probability matrices row by row.
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x = 0 x = 1 x = 2 x = 3

x = 4 x = 5 x = 6 x = 7

Figure 2.4: The average conditional transition probabilities gray index map of

neuron 6. Each image is corresponding to the average transition probability matrix

1
N6

∑N6
i=1 Ai

x, ∀x, where N6 is the number of training samples for the neuron 6. One

may note that when x ≤ 3, the neuron tends to jump down to state 1; when x = 4, 5,

the neuron tends to remain or jump up to state 2 and when x = 6, 7, the neuron

tends to jump up to state 3 or 4

.
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x = 0 x = 1 x = 2 x = 3

x = 4 x = 5 x = 6 x = 7

Figure 2.5: The average conditional transition probabilities gray index map of

neuron 9. Each image is corresponding to the average transition probability matrix

1
N9

∑N9
i=1 Ai

x, ∀x, where N9 is the number of training samples for the neuron 9. One

may note that the neuron tends to jump to state 2 regardless of the input symbol

x.
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x = 0 x = 1 x = 2 x = 3

x = 4 x = 5 x = 6 x = 7

Figure 2.6: The average conditional transition probabilities gray index map of neu-

ron 16. Each image is corresponding to the average transition probability matrix

1
N16

∑N16
i=1 Ai

x, ∀x, where N16 is the number of training samples for the Neuron 16.

One may note that the Neuron 16 has a broader distribution of transition probabil-

ities that means it may go up to high energy state with relatively high probability.

There is no jump-up with very high probability observed.
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2.4.3 Frequency of Code Words

Recall that there are nout = 40 different output symbols per frame, corresponding

to different number of spikes in a frame. We say that the neuron signal has 40

codes from 0 to 39. Since the input stimuli are IID and the three neurons receive

the same stimulus, the difference of the frequency of code words among the three

neurons is only due to neuron’s intrinsic difference. By using the frequency of

code words, we ignore the order of the codes in a sample sequence. This feature

emphasizes the pure firing rate.

Let X2 ∈ RN×nout denote the feature data extracted from frequency of codes.

So, X2(i, j) denotes the number of frames where the neuron fires j − 1 spikes in

i-th sample sequence.

2.4.4 Combining Features

The proposed kernel learning method enables us to combine the two features. We

use a linear kernel for both features since the sample size is limited. That is

K1 = X1(X1)
T

and

K2 = X2(X2)
T .

A linear combination is used to combine the two features such that

K = µ1K1 + µ2K2.

We compare the testing error of the optimal kernel K and those of fixed kernel

K1 and K2 in cross validation. We have 315 samples. Each time we randomly

select 180 samples as training samples and 135 samples as testing samples. We

repeat the procedure 100 times. We also vectorize the two feature sets X1 and X2
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Kernel ERRte σERRte

0.863K1 + 0.137K2 0.082% 0.0023

K1 0.311% 0.0037

K2 2.948% 0.0107

Kvec 2.897% 0.0105

Table 2.2: Comparison of the performance between the optimal kernel, fixed kernels

of homogeneous features and a kernel of vectorized features, where ERRte is the

average testing error and σERRte is the standard deviation of testing errors among

100 experiments. The result from the best individual feature kernel K1 can be

considered as the result of voting since there are only two candidates. The kernel

Kvec from the vectorized feature has very bad result that is close to that of the worst

kernel K2. The optimal combined kernel achieves the best testing error.

into a one matrix Xvec ∈ RN×(m1+nout) after normalization. The corresponding

linear kernel

Kvec = Xvec(Xvec)
T .

The average performance of the optimal kernel, the two fixed individual kernels

and the kernel of the vectorized feature is summarized in Table 2.2. The results

show that learning a kernel that combines heterogeneous features improves the

classification accuracy significantly. Since there are only two candidates, the

result from the best fixed kernel of individual feature can be considered the result

of a voting process. This example clearly demonstrates the weakness of the voting

method: it ignores the feature with higher testing error. The vectorized feature

is even worse since the bad feature dominates the result and the good feature X1

is wasted.
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2.5 Conclusion and Discussion

In this chapter, we proposed a method to optimize the kernel matrix jointly with

the classifier in a multi-class SVM training problem. We also presented a de-

composition method. After decomposition, the proposed SDP problem has only

k − 1 more LMIs than similar formulation proposed by Lanckriet [LCB04] for

binary SVM transduction problems. This result shows that the kernel optimiza-

tion method for multi-class SVM training problems can be used as easily as for

binary SVM problems.

The kernel learning method has been applied to two applications: kernel selec-

tion and combining heterogeneous features. Applications in real-world database

show that the proposed method may have significant advantages in improving

the quality of the resulting classifier .

The kernel selection method has been tested in the MNIST database. An

obvious result is that the proposed kernel learning method may select the best

multi-class kernel or kernel combination algorithmically.

The application on combining heterogeneous feature for the neuron identifica-

tion and classification problem shows that the proposed method may significantly

increase the classification accuracy. This method is superior to the widely used

voting algorithm and the intuitive feature vectorization approach.
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CHAPTER 3

Kernel Optimization for Regression Estimation

3.1 Introduction

Regression estimation is a very popular method in pattern recognition and signal

processing. The basic idea is to minimize a cost function over the parameters of

the regression function. The choice of the cost function is application dependent.

For simplicity, in our research, we take the most commonly used ε-insensitive cost

function [Vap95]:

|y − f(x)|ε ≡ max{0, |y − f(x)| − ε}. (3.1)

The primal support vector machine regression problem can be considered a

linear regression problem. To estimate a linear regressor

f(x) = wT x + b, (3.2)

one minimizes the empirical error with a regularization term

1

2
wT w + γ

Ntr
∑

i=1

|yi − f(xi)|ε, (3.3)

where w ∈ Rm, b ∈ R, f(x) : Rm → R, Ntr denotes the number of training

vectors and γ is an experimentally selected parameter. This problem can be
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re-written in a quadratic programming formulation:

minimize 1
2
wT w + γ1T (ξ + ξ∗)

subject to wT xi + b − yi ≤ ε + ξi, i = 1, ..., Ntr

yi − wT xi − b ≤ ε + ξ∗i , i = 1, ..., Ntr

ξ, ξ∗ ≥ 0,

(3.4)

where ξ ∈ RNtr and ξ∗ ∈ RNtr are the allowed errors ”above” and ”below” the

margin boundary.

The dual problem of problem (3.4) is

minimize 1
2
(α∗ − α)T Ktr(α

∗ − α) − yT (α∗ − α) + ε1T (α∗ + α)

subject to 1T (α∗ − α) = 0

0 ≤ α∗, α ≤ γ1,

(3.5)

where the dual variables α∗, α ∈ RN
tr , the training data Xtr ∈ RNtr×mtr , each row

of Xtr is a data vector xi ∈ Rm, the kernel matrix Ktr ∈ RNtr×Ntr and its ij

element Ktr(i, j) = xT
i xj.

We have the following complementary slackness conditions between optimal

primal and dual solutions:

αi(ε + ξi − yi + wT xi + b) = 0,

α∗
i (ε + ξi + yi − wT xi − b) = 0,

(3.6)

and

(γ − αi)ξi = 0, (γ − α∗
i )ξ

∗
i = 0. (3.7)

3.1.1 Kernels

Using the kernel trick in support vector classification problems, we may lift the

dimension of a feature vector x to higher dimension via a function φ(x) : Rm →
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Rn. Define kernel function F (x, x̃) = φ(x)φ(x̃). We have the kernel matrix

K(i, j) = F (xi, xj),

where K(i, j) denotes the ij element of the matrix K. The regressor has the form

f(x) =
Ntr
∑

i=1

(αi − α∗
i )F (xi, x) + b.

That is to say, via the kernel trick, we may estimate a general nonlinear regressor.

The definition of the kernel function F (x, x̃) also determines the regressor model

f(x).

Traditional support vector regression (SVR) assumes the kernel is predefined

and fixed. Researches have been focusing on how to select the kernel matrix and

determine the parameters. One approach is to use a heuristic selection of param-

eters [SMS99, MH99, Kwo01, CM04]. Multiple parameters can also be used to

improve the performance but the SVM training algorithm needs to be executed

multiple times for every selected parameter setting [CVB02]. These references

provide general practical guidelines for parameter selection but the selection is

far from the optimum and may not be suitable for specific applications. Another

approach is to use meta-learning method to determine kernel and parameters

[KBS02, CSB04]. The idea is to learn a set of data characteristics measurements

with multiple settings of parameters and to construct a relationship between

data sets and parameters by using statistics tools, say K-mean clustering. This

method requires much additional information, namely, meta-data, whose defini-

tion however remains vague. That is, one may encounter the problem of selecting

meta-data instead of selecting parameters.

The selection of the kernel function F is equivalent to regressor modeling and

depends on the prior information of the problem we are solving. When the prior

information is vague, a wrong model may result in large testing error.
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3.1.2 Transduction Problem

A transduction problem is a problem of evaluating the function value on a set

of testing data from a set of training data, for which the function value is given.

That is, in a transduction problem, we do not intend to learn a general regressor.

Instead, we are only interested in evaluating the function value on the testing

data points.

For a regression problem, there are N data points, including Ntr training data

and Nt testing data. Throughout this chapter, we use Xtr ∈ RNtr×m to denote

the labeled training set and Xt ∈ RNt×m to denote the unlabeled testing set,

where each row of the matrix X. is a vector xi ∈ Rm. The given function value

is stored in vector y ∈ RNtr . The kernel matrix

K =







Ktr Ktr,t

KT
tr,t Kt





 , (3.8)

where the block matrixes Ktr, Ktr,t and Kt are the optimal training, mixed and

testing block that we want to learn. Since the objective is only to complete the

label of a finite testing set, there is no need to learn the general kernel function.

Instead, we only learn the kernel matrix K.

The regression estimate f : RNt×m → RNt for testing sample Xt takes the

following form

f(Xt) = (α∗ − α)T Ktr,t + b1. (3.9)

By the complementary slackness conditions (3.6), b is

b = yi + ε − (α∗ − α)T Ktr(., i) if 0 < αi < γ

b = yi − ε − (α∗ − α)T Ktr(., i) if 0 < α∗
i < γ,

(3.10)

where Ktr(., i) denotes the i-th column of the matrix Ktr. A useful observation

is that α∗
i αi = 0, since the corresponding constraints in problem (3.5) cannot be

active at the same time.
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In the chapter, we propose a novel method that is able to optimize the kernel

matrix from the training samples. Our method can incorporate a broader family

of regressor models, and algorithmically select a linear combination of them.

3.2 Kernel Optimization

Many techniques applied in support vector classification (SVC) can be used in

support vector regression (SVR) because of the similarity of the underlying op-

timization problems. We extend Lanckriet’s semi-definite programming (SDP)

formulation for binary classification problem [LCB04] to support vector regression

training problems.

Let ω(K) denote the optimal value of the problem (3.5) for a given K. If the

kernel matrix is unknown, we are trying to maximize ω(K) over K:

maximize ω(K)

subject to Tr(K) = s

K � 0,

(3.11)

where we add a normalization constraint Tr(K) = s.

Now we show that the SVM regression estimation problem can be formulated

as an SDP problem if the underlying kernel matrix K is unknown.
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Theorem 3 The problem (3.11) is equivalent to the following SDP problem (3.12):

minimize t

subject to







Ktr y + λ1 + ν − υ − δ + η

(y + λ1 + ν − υ − δ + η)T t − 4γ1T (δ + η)





 � 0

−ε1 + ν + υ − δ − η = 0

K � 0

Tr(K) = s

ν, υ, δ, η ≥ 0

(3.12)

where t, λ, ν, υ, δ, η,K are variables, λ ∈ R and ν, υ, δ, η ∈ RNtr.

Proof. Let ω(K) denote the optimal value of the problem (3.5) as a function of

K. We formulate ω(K) as an expression of K by applying duality. The ω(K) is

then maximized over K using an SDP problem.

Define α+ = α∗ + α and α− = α∗ − α. The problem (3.5) is equivalent to the

following problem (3.13).

minimizeα
1
2
α−T Ktrα

− − yT α− + ε1T α+

subject to 1T α− = 0

0 ≤ α+ + α− ≤ 2γ1

0 ≤ α+ − α− ≤ 2γ1

(3.13)

For any fixed kernel matrix K that satisfies the constraints Tr(K) = s and K � 0,

define the Lagrangian of problem (3.5) by

L(α, ν, υ, δ, η, λ)

= α−T Ktrα
− + 2ε1T α+ − 2yT α− − 2λ1T α− − 2νT (α+ + α−)

−2υ(α+ − α−) − 2δT (2γ1 − α+ − α−) − 2ηT (2γ1 − α+ + α−).

(3.14)

By duality, the optimal objective value ω(K) of the problem (3.13) satisfies

ω(K) = max
ν,υ,δ,η≥0,λ

min
α+,α−

L(α, ν, υ, δ, η, λ).
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Note ω(K) is bounded as α+ goes to infinity if and only if

−ε1 + ν + υ − δ − η = 0.

By setting ∂L
∂α−

= 0,

α− = K−1
tr (y + λ1 + ν − υ − δ + η).

By substituting the optimal value of α− into the Lagrangian, we have

ω(K) = max
ν,υ,δ,η≥0,λ

−(y+λ1+ν−υ−δ+η)T K−1
tr (y+λ1+ν−υ−δ+η)−4γ1T (δ+η).

Define −t to be the lower bound of ω(K) over K. The problem

maximize ω(K)

subject to K � 0,Tr(K) = c

is equivalent to

maximize −t

subject to −(y + λ1 + ν − υ − δ + η)T K−1
tr (y + λ1 + ν − υ − δ + η)

−4γ1T (δ + η) ≥ −t

−ε1 + ν + υ − δ − η = 0

K � 0

Tr(K) = c

ν, υ, δ, η ≥ 0,

(3.15)

where t, ν, υ, δ, η, λ,K are variables. The theorem now follows immediately after

applying Schur complement to the first constraint.2

The estimated function value on the testing points has the following form

(α−)T Ktr,t + b1 (3.16)

where b can be expressed as:

b = yi + ε − (α−)T Ktr(., xi) if −γ < α− < 0

b = yi − ε − (α−)T Ktr(., xi) if 0 < α− < γ,
(3.17)

inferred from (3.10) and the fact that at least one of α∗
i and αi is 0.
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3.3 Numerical Experiments

We use several synthesized one-dimensional examples to examine the benefits of

learning a linear combination of different kernels.

Fifty training vectors and fifty testing vectors are generated from the following

model

y(x) = gl(x) + ηl(x) (3.18)

where x, y ∈ R, ηl(x) ∈ R is zero mean uniformly distributed additive noise in

[−1, 1] and gl(x) is the regressor we want to learn. We made seven examples: a

linear function

g1(x) = x + 1,

a quadratic function

g3(x) = 0.2(x2 + 1),

a cubic function

g3(x) = 0.04(x3 + 1),

a polynomial function

g4(x) = x7/15000 + x2/5,

another polynomial function

g5(x) = (x3 + 1)/25 − x7/15000,

a Gaussian function

g6(x) = 5 exp{−x2},

and a difference of Gaussians function

g7(x) = 8

(

exp{−x2} − 0.5 exp{−x2

5
}
)

.
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We test the polynomial kernels of order 1 to 7 and their optimal linear com-

bination. The linear kernel is denoted by

K1(i, j) = xT
i xj + b,

and polynomial kernels are denoted by

Kd(i, j) = (1 + xT
i xj)

d, d = 2, . . . , 7.

Their linear combination is

K =
7
∑

d=1

µdKd.

The testing error e is measured by averaging the ε-insensitive errors. That is

e :=
1

Nt

Nt
∑

i=1

|yi − f(xi)|ε. (3.19)

In this section, we fix ε = 1 for all problems.

We determine the parameter γ by selecting the value γ = 2p, p = −5, ..., 50

with the lowest testing error. We only present the result for the best γ.

The Sedumi [Stu99] Matlab toolbox was used to solve SDP problems and

MOSEK [AA00] was used to solve standard SVM regression problems.

The testing errors of all kernels including the fixed polynomial kernels and

their optimal combination for all seven problems are listed in Table 3.1.

To further demonstrate the accuracy of regression estimation of the traditional

SVM regression method and the proposed kernel learning method, we present the

testing plot in Figure 3.1-3.7.

The results have a few implications:

• If one or more candidate kernels work well (see problem 2 and 3), the learned

optimal linear combination kernel usually achieves the best testing result

that the best candidate kernel achieves.
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Prob. e

l K1 K2 K3 K4 K5 K6 K7 K

1 0.020 0.020 0.066 0.092 0.092 0.092 0.092 0.067

2 1.129 0.042 0.128 0.000 0.108 0.063 0.086 0.000

3 0.327 0.328 0.022 0.042 0.042 0.042 0.042 0.000

4 1.305 0.486 0.159 0.159 0.042 0.153 0.111 0.020

5 0.188 0.177 0.188 0.136 0.098 0.107 0.044 0.042

6 0.926 0.798 0.789 0.439 0.446 0.304 0.341 0.368

7 0.836 0.808 0.840 0.757 0.755 0.577 0.559 0.572

Table 3.1: Testing error of different kernels. The testing error e is the averaged

ε-insensitive error defined in (3.19). This table shows that the optimized kernel

in general has the best performance. Higher order polynomial kernels suffer from

the curse of the dimensionality (see problem 1, 2 and 3) but lower order of kernels

suffer from the limited regression capability (see problem 2, 3, 4, 5, 6, and 7). The

optimal kernel has a good balance of different kernels. It may achieve much better

performance than fixed kernels (see problem 4).

52



−5 0 5
−6

−4

−2

0

2

4

6
K1

Testing data
Regression estimation

−5 0 5
−6

−4

−2

0

2

4

6
K2

Testing data
Regression estimation

−5 0 5
−6

−4

−2

0

2

4

6

8
K3

Testing data
Regression estimation

−5 0 5
−6

−4

−2

0

2

4

6

8
K4

Testing data
Regression estimation

−5 0 5
−6

−4

−2

0

2

4

6

8
K5

Testing data
Regression estimation

−5 0 5
−6

−4

−2

0

2

4

6

8
K6

Testing data
Regression estimation

−5 0 5
−6

−4

−2

0

2

4

6

8
K7

Testing data
Regression estimation

−5 0 5
−6

−4

−2

0

2

4

6
K

Testing data
Regression estimation

Figure 3.1: The testing result of problem 1. For the linear model, all kernels work

very well.
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Figure 3.2: The testing result of problem 2. For the quadratic model, except for

the linear kernel, all kernels work very well.
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Figure 3.3: The testing result of problem 3. For the cubic model, except for the

linear and quadratic regressor, all kernels work very well.
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Figure 3.4: The testing result of problem 4. For a given polynomial model, the

optimal kernel works much better than fixed kernels.
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Figure 3.5: The testing result of problem 5. For the given polynomial model, the

optimal kernel has the best performance.
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Figure 3.6: The testing result of problem 6. For the Gaussian model, the combined

kernel works very well.
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Figure 3.7: The testing result of problem 7. For the difference of Gaussian model,

the combined kernel works very well.

• When none of the fixed kernels work well, their optimal linear combination

may dramatically decrease the testing error (see problem 4) or work at least

well as the best fixed candidate kernels (see problem 5, 6 and 7).

• Lower order models can be accurately estimated by regressors of the same

or higher order. But if the regressor has too high order, it also causes

larger testing error. The optimal kernel achieves a good balance of different

kernels.

3.4 Application: Retina Ganglion Cell Signal Encoding

The data set we analyze in this section is the same as that in Section 2.4.

The problem is to estimate the response from the stimulus, i.e., an encoding

problem. We first quantize the response spike train by counting the number
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of spikes within two adjacent stimuli, that is within 100 ms. The number of

spikes at time i after the i-th stimulus is the response yi ∈ {0, 1, . . . , 39}. The

stimulus is recorded by a moving window with length q. For example, a stream

[0, 0, 5, 4, 3, 2, 1] will be recorded by a q = 4 moving window into x1 = [0, 0, 5, 4]T ,

x2 = [0, 5, 4, 3]T , x3 = [5, 4, 3, 2]T and x4 = [4, 3, 2, 1]T . Longer window length

means a more general model, since in general any response is a response of all

previous stimuli. However, longer window length means higher dimension and

therefore suffers from the ”curse of the dimensionality”. We fix q = 20 in this

application.

We then use the proposed SVM regression kernel optimization technique to

encode the stimuli.

3.4.1 Linear Model Verification

We are interested in verifying a model

y = wT x + b,

where y ∈ Rn, x ∈ Rnq, w ∈ Rq and b ∈ R. We use the proposed kernel

optimization technique to learn an optimal linear combination of the polynomial

kernels of order one to seven, and compare the testing error of the traditional SVM

regression estimation using a linear kernel. For both methods, the parameter γ

is fine tuned. We randomly pick 500 frames as the training data and the next

100 frames as the testing data. The experiments are repeated 10 times and we

present the average performance here.

The comparison of testing error of the optimal kernel and the linear kernel

are summarized in Table 3.2.
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Neuron 1 2 3 4 5 6 7 8 9

ErK 2.00 2.06 0.31 1.19 2.93 1.04 0.52 1.80 0.75

ErK1 2.37 2.09 0.71 0.80 3.48 1.16 0.49 2.00 0.72

Neuron 10 11 12 13 14 15 16 17

ErK 0.75 0.82 1.28 0.96 0.62 0.30 1.16 0.93

ErK1 0.64 0.66 1.18 0.95 0.71 0.33 1.80 0.97

Table 3.2: Comparison of testing errors of a linear kernel and the optimal kernel.

ErK1 and ErK denote the average estimation error with a linear kernel and the

optimal kernel respectively. The linear kernel works pretty well except for neuron 3

and 16, where the optimal kernel works much better. This shows that most neurons

can be encoded by linear filters while neuron 3 and 16 can not be accurately encoded

by linear filters.

3.4.2 Encoding via Optimal Linear Filter

The encoding problem is to estimate the retina cell’s response to the stimuli. If

we assume the time dependency is only significant in 20 frames, we are estimating

ŷt = f(xt, xt−1, ..., xt−20).

Since we know that the linear kernel works very well in this application, at

least as well as the optimal linear combination of the polynomial kernels from

order one to seven. We then solve the traditional SVM regression problem to

learn the underlying linear filter coefficients, w. Since we are not sure if the

process is stationary, we solve the problem in the following fashion. We pick up

500 frames and solve for w, use the next 100 frames to test it and record the test

error. We then pick up the next 500 frames and train them and pick up the next

up the next 100 frames to test.
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The averaged w over time is presented in Figure 3.8. The results match the

previous results obtained using information theory by Zhong et al. [ZBJ05] very

well. But one may note these are only averaged results.

3.4.3 Non-Stationary Behavior

We present the non-stationary behavior of every component of the filter coefficient

vector w for each neuron. Noting that usually the last four components, w20, w19

,w18 and w17 (corresponding to epoch 0, -1, -2, and -3), are significant, we only

plot these four components in Figure 3.9 to Figure 3.12 to save space.

The plotted results are very interesting. Actually, most of neurons’ behavior

is not stationary. We summarize the shift pattern here. The response of neuron

1, 3, 4, 9 is getting stronger to the stimulus at epoch -1 (corresponding to w19).

The response of neuron 15 and 16 is getting stronger to the stimulus at epoch -2

or -3 (corresponding to w18 and w17). The response of Neuron 5, 7, 8, 10, 11, 12,

13 is getting weaker for the stimulus at epoch -1 (corresponding to w19).

That is to say, neurons have in general two models of getting ”tired”. One

model is ”dizzy”. That is, neurons are more likely to response to the previous

stimuli instead of the current one. Neuron 1, 3, 4, 9, 15, and 16 belong to such

model. The other model is ”memoryless”. That is, neurons tend to forget the

previous stimulus when getting ”tired”. Neurons 5, 7, 8, 10, 11, 12, and 13 belong

to this category.

3.5 Conclusion

I applied a recently developed SDP kernel learning method to support vector

regression problems. The regression problem turns out to be more interesting
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Figure 3.8: Average linear filter for neurons. The results match the previous

obtained results using information theory by Zhong et al. [ZBJ05]
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Figure 3.9: Dynamics of the encoding filter coefficients for neuron 1, 2, 3 and 4.

From the left to the right, the w20, w19, w18 and w17 of neurons. are plotted against

time. From the top to bottom are neuron 1, 2, 3, and 4. This figure demonstrates

the non-stationary behavior of neurons.
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Figure 3.10: Dynamics of the encoding filter coefficients for of neuron 5, 6, 7 and 8.

From the left to the right, the w20, w19, w18 and w17 of neurons. are plotted against

time. From the top to bottom are neuron 5, 6, 7, and 8. This figure demonstrates

the non-stationary behavior of the neurons.
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Figure 3.11: Dynamics of the encoding filter coefficients for of neuron 9, 10, 11

and 12. From the left to the right, the w20, w19, w18 and w17 of neurons. are plotted

against time. From the top to bottom are neuron 9, 10, 11, and 12. This figure

demonstrates the non-stationary behavior of the neurons.
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Figure 3.12: Dynamics of the encoding filter coefficients for of neuron 13, 14, 15,

16 and 17. From the left to the right, the w20, w19, w18 and w17 of neurons. are

plotted against time. From the top to bottom are neuron 13, 14, 15, 16 and 17.

This figure demonstrates the non-stationary behavior of the neurons.
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than classification problem. The reason is that the kernel matrix for regression

estimation is directly related to the underlying model of the regressor.

The SDP kernel learning method provides a unique way of model-free regres-

sion. It is able to algorithmically determine the kernel matrix among a family

of candidate kernel and their linear combination. This is the first time that the

optimum kernel can be found for the SVR.

In the application of the retina neuron encoding problem, two different non-

stationary firing patterns are discovered after verifying the linear filter.
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CHAPTER 4

Distributed Support Vector Machine

4.1 Introduction

Distributed learning is necessary if a centralized system is infeasible because of

geographical, physical or computational reasons. The objectives of distributed

data mining usually include robustness to changes in the network topology [ZL03],

efficient representation for high-dimensional and massive data sets, reduced syn-

chronization and communication, reduced duplication, better load balancing and

good decision precision and certainty.

In distributed classification, we classify distributed data sets according to dis-

tributed training samples. The support vector machine (SVM), which is able

to minimize the structural error risk function [Vap95, CV95], is one of the most

popular algorithms in classification. Current parallel methods include matrix

multi-coloring successive overrelaxation (SOR) method [AJ86, BFM90] and vari-

able projection method (VPM) in sequential minimal optimization (SMO) [ZZ03].

Those methods are excellent in terms of speed. However, they all need centralized

access to the training data and therefore cannot be used in distributed classifica-

tion applications.

In this chapter, we consider the following problem. The training vectors are

distributed over C sites. Each site is a node within a strongly connected network,

i.e., a directed network in which it is possible to reach any node starting from
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any other node by traversing edges in the direction(s) in which they point.

There are Nl training vectors in site l and N training vectors in all sites such

that
∑C

l=1 Nl = N . Each training vector is denoted by xi i = 1, ..., N where

xi ∈ Rn,and yi ∈ {+1,−1} is its label.

Note that the support vectors (SVs) are a natural representation of the dis-

criminant information of the database of the underlying classification problem.

We propose a distributed support vector machine (DSVM) for distributed data

classification. The basic idea of the DSVM is to exchange SVs over a strongly

connected network and update the local solutions for each site iteratively. Our

algorithm is based on the observation that the number of support vectors (SVs)

may be very limited for the local classification problems. Huge amount of SVs are

usually an evidence that the problem is ill defined [Dom02]. We prove that our

algorithm converges to a global optimal classifier for an arbitrarily distributed

database across a strongly connected network.

4.2 Algorithm

The distributed support vector machine (DSVM) training algorithm works as

follows. Each site within a strongly connected network classifies the local data

set via a standard SVM algorithm, passes the found SVs to its descendant sites

and receives SVs from its parent sites at each iteration. The algorithm of DSVM

consists of the following steps.

Initialization

We initialize the algorithm with t = 1, l = 1 and V 0,l = ∅, ∀l. The training set

at iteration t in site l is denoted by St,l. S0,l is initialized arbitrarily such that
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∪C
l=1S

0,l = S, where S denotes the total sample space.

Iteration

Each iteration consists of the following steps.

1. For any site l, l = 1, ..., C, once it receives SVs from its parent sites, we

repeat the following steps.

(a) Merge the support vectors from the parent sites that are not included

in the current site. That is,

St,l := St−1,l ∪ {xi : xi ∈ V t,m, ∀m ∈ UPSl, xi /∈ St−1,l},

where UPSl is the set of all parent sites of site l.

(b) Solve the SVM training problem at site l:

maximize −(1/2)
∑

i,j:xi,xj∈St,l αiαjyiyjx
T
i xj +

∑

i:xi∈St,l αi

subject to 0 ≤ αi ≤ γ, ∀i : xi ∈ St,l

∑

i:xi∈St,l yiαi = 0.

Record the optimal objective value htl,l and the solution αt,l.

(c) Find the set V t,l = {xi : αt,l
i > 0} and pass them to all immediate

descendant sites.

2. If ht,l = ht−1,l for all l, stop; otherwise, t := t + 1 and go to step 1.

Every site starts to work once it receives SVs from its parent sites. In step

1(b), we start solving the newly formed problem from the best solution currently

available and update this solution locally. We use SVMlight [Joa98] as the local

solver. The numerical results show that the computing speed can be dramatically

68



increased by applying the available best solution αt−1 as the initial starting point

in Step 1(b). We are going to discuss this issue later in this chapter.

Now, we use a small example to demonstrate the convergence property. We

randomly generate 200 independent two-dimensional data sampled from two in-

dependent Gaussian distributions. We randomly distribute all the data over 5

sites. We assume that the 5 sites form a Round-Robin network. The DSVM con-

verges in 4 iterations and the local results are shown in the Figure 4.1. One may

observe the decreasing of the local margins and their convergence to an optimal

classifier.

We give the proof of the global convergence in the next section.

4.3 Proof of Convergence

In this section we prove that the DSVM method on a strongly connected network

converges to the optimal classifier in a finite number of steps.

The proof is sketched as follows. The DSVM converges in a finite number of

steps since the number of training vectors is finite. The objective value for any

site, say site l, at iteration t is always greater or equal to the maximum of the

objective of the same site in the last iteration and the maximal objective values

of its parent sites due to accumulation of local SVs. Therefore, the stopping

criterion, ht,l = ht−1,l for all l and t > T , can be satisfied in finite number of

iterations.

After the convergence, the support vectors of adjacent sites are identical, by

uniqueness of the optimal solution for a strictly convex problem.

Since the network is strongly connected, the support vectors of all sites over

the network are identical. Let V ? denotes the converged support vector set. The

69



Figure 4.1: Demonstration of data distributions in iterations of the DSVM algo-

rithm. Distributions of training vectors in 5 sites before iteration begins (the first

row) and in iteration 1 to 4 (the 2nd to the 5th rows) are plotted with the local

optimal classifiers. These figures show how all local classifiers converge to the global

optimal classifier.

solution defined by

α?
i =











αt,l, if xi ∈ V ?

0, otherwise

is always a feasible solution for the global SVM problem (1.5). By KKT opti-

mality conditions, V ? is also the support vector set for the union of the training

samples from one site and is parent sites. By induction, V ? is the support vector

set for the union of the training samples from all sites. Therefore, the solution

α? is the global optimum.
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4.4 Performance Studies

We first present a toy example to demonstrate the performance of the distributed

support vector machine training algorithm (DSVM) over different configurations

of topology, size of network, and sequential or parallel implementation, which is

followed by a thorough analysis of a handwritten digits classification database

using DSVM. The SVMlight is used as our local SVM solver since SVMlight has

reported fastest performance in selected applications [Joa98]. We first introduce

our terminology used in this section.

N : total number of training samples;

C: total number of distributed sites;

N s: total number of support vectors for the entire problem;

T : total number of DSVM iterations;

δ: average number of transmitted training vector per iteration at one site;

∆: total number of transmitted vectors;

Nt,l: number of training samples in site l at iteration t;

Nmax: maximum number of training sample among all sites among all iter-

ations;

e: elapsed CPU seconds of running DSVM.

Through out this section, the machine we use to solve local SVM problem is

Pentium 4 2.26GHz with 512KB RAM.
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N0,1 N0,2 N0,3 N0,4 N0,5

class 1 338 116 485 197 264

class 2 106 168 58 144 124

Table 4.1: A randomized initial distribution of training data of the toy example.

4.4.1 A Toy Example

To demonstrate the properties of our algorithm, we generate two classes of 2D

data from two independent distributions.The partitioning result is shown in Table

4.1.

We use an SVM Gaussian kernel with unit variance in each site and select the

parameter γ to be 10. Since we already proved that the DSVM always converges

to a regular SVM training problem solution, we do not need to worry about

the classification quality in this chapter. Therefore, we did not fine tune the

parameters.

Size of Network and Scalability

We use fully connected networks and compare the performance for three different

sizes, C = 5, C = 10 and C = 20. The performance is presented in Table 4.2.

The results show that our algorithm scales very well with C when the network

size is not too large. That is, larger networks achieve less training time since

a larger network means that more servers and more computations can be done

parallel. The results also suggest that the size of network has limited effect on

the communication overhead per exchange.
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C T δ ∆ Nmax e

5 6 8.5 1017 635 0.80

10 4 13.0 4680 690 0.43

20 4 10.2 15504 888 0.29

Table 4.2: Algorithm performance in networks of different size. Experiments show

that larger fully connected networks allow the advantage of shorter processing time

but has the disadvantage of more training data accumulation. The result also sug-

gests that the size of network has a limited effect on the communication overhead

per exchange, measured by δ

Network Topology

We first test a fully connected network shown is Figure 4.2. The DSVM algorithm

finds support vectors pretty fast (in four iterations).

Then we test sparser networks. The Round-Robin network, the sparsest

strongly connected network shown in Figure 4.3 and a randomly generated strongly

connected network shown in Figure 4.4 are used. The results are summarized in

Table 4.3, where R-R means the Round-Robin network. The results show that

the DSVM in denser (but not too dense) networks has significantly better perfor-

mance in terms of the number of iterations and the elapsed CPU seconds than a

very sparse network. However, if the data accumulation and communication cost

are the main concern, a sparser network should be used.

Sequential Implementation

In order to further decrease the communication cost and data accumulation,

the DSVM can be implemented sequentially in a Round-Robin network. That
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N C Kernel N s Network T δ ∆ Nmax e

2000 5 Gaussian 78 R-R 11 13.4 734 697 1.30

Full 6 8.5 1017 778 0.80

Random 6 4.7 1156 742 0.40

Seq. R-R 15 33.0 495 648 0.55

Table 4.3: Algorithm performance for different network topologies and type of

implementations. Experiments show that denser network has the disadvantage of

more data accumulation. Sequential implementation achieves much less data accu-

mulation than parallel implementation. The best computing time is achieved by a

randomly strong connected network.

1 

2 

3 4 

5 

Figure 4.2: Diagram of a fully connected network with 5 sites. This is the densest

network.
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Figure 4.3: Diagram of a Round-Robin network with 5 sites. This the sparsest

strongly connected network.
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3 4 

5 

Figure 4.4: Diagram of a random strongly connected network.
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Figure 4.5: Comparison of data accumulation of the parallel and distributed im-

plementations. The first row shows the initial distribution of the training data in 5

sites. The 2nd row shows the data distribution in the last iteration (10th iteration)

after a sequential implementation. The 3rd row shows the data distribution in the

last iteration (8th iteration) after a parallel implementation. A unit variance Gaus-

sian kernel is used in the DSVM algorithm. This figure shows that the algorithm

converges without merging all the data and the sequential implementation achieves

less data accumulation.
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is, each site begins to calculate its local solution only after receiving SVs from

its parent site. A different trick for setting the initial solution is applied here.

Instead of using one site’s own α, we use the incoming α as the initial solution

since the incoming solution is C iterations better than one site’s own solution of

the last iteration in a Round-Robin network. The results are also listed in Table

4.3. We observe that sequential implementation might be even faster than parallel

implementation in some given examples. The data distribution in each site during

the sequential and parallel iterations of the DSVM is presented in Figure 4.5.

Comparing the second row (the last iteration of a sequential implementation)

and the third row (the last iteration of a parallel implementation), one may

clearly see the improvement of the sequential implementation in terms of data

accumulation. This explains why sequential implementation of the DSVM might

be even faster than the parallel version.

4.4.2 Handwritten Digits Classification

We test our algorithm on a large scale database: MNIST database of handwritten

digits [LBB98]. The MNIST database of handwritten digits has a training set of

60,000 vectors. The digits have been size-normalized and centered in a fixed-size

image. This database is a standard database online for people to compare their

training methods.

All the digits images are centered in a 28x28 image. We vectorize each image

to a 784x1 vector. The problem is to classify digit 0 from the rest. For simplicity,

we use linear kernel and set γ = 10. This problem has 60000 samples of dimension

784-by-1 and 1235 support vectors.
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σ T δ ∆ Nmax e

0 5 25.6 8015 2686 75.82

196.3 5 29.8 8330 3111 79.48

620.1 6 23.4 7875 3804 99.18

1204.3 5 27.1 7588 4403 83.11

1763.4 5 25.6 7175 5302 90.26

Table 4.4: Algorithm performance over the initial distribution of training data.

In this table, σ denotes the standard deviation of initial training data distribution.

This table shows that the unbalanced initial training vector distribution has very

limited effect on the data accumulation (in terms of the total number of transferred

vectors ∆) and the computing time e.

Effect of Initial Data Distribution

Before we present our main result: the scalability, we first test the effect of the

initial data distribution on the DSVM.

We use 8 sites and 15000 randomly selected training samples. We randomly

distribute the training data several times and record the standard deviation of the

data distribution. When the data are distributed evenly, the standard deviation

of the initial data distribution, σ is 0. The results presented in Table 4.4 show

that the effect of the initial distribution on training time and communication

cost is very limited. We therefore may use a randomly distributed example to

demonstrate the scalability.
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Figure 4.6: Computing time use the size of networks. Left. Elapsed computing

time for a sequential implementation in a Round-Robin network. Right. Elapsed

computing time for a parallel implementation in a fully connected network. Parallel

implementation takes the advantage of the multiple servers and scales very well.
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Figure 4.7: Data accumulation versus the size of networks. Left. Maximum num-

ber of training samples in a site after the convergence in a sequential implementation

over a Round-Robin network. Right. Maximum number of training samples in a

site after convergence in a parallel implementation over a fully connected network.

Sequential implementation achieves less data accumulation.
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Scalability

We test how the DSVM scales with the network size. We choose the number

of nodes to be 2, 4, 8, and 16. We do these experiments two times: one using

parallel implementation with a fully connected network and the other using a

sequential implementation with a Round-Robin network. Figure 4.6 and 4.7 pro-

vides the performance measurements in term of CPU seconds and maximum local

data accumulation Nmax respectively. The results show that the sequential im-

plementation in the Round-Robin network has less data accumulation, while the

parallel implementation in the fully connected network achieves approximately

linear scalability over the network size when the size is limited.

Online Implementation

Since the DSVM constructs local problem by adding critical data, the local SVM

training problem is, therefore, essentially a problem adjustment which appends

variables and constraints based on the problem of the last iteration. A naive on-

line implementation is to input the best available solution as the initial solution

so that each problem has a warm start. To show the effect of online implemen-

tation, we plot the computing time in each iteration is presented in Figure 4.8.

The initial sharp increasing of CPU seconds is due to the sharp increase of the

number of local SVs. The later decrease of CPU seconds is due to the advantage

of the online implementation.

4.5 Conclusions and Future Research

The proposed distributed support vector machine (DSVM) training algorithm

exploits a simple idea of training distributed support vector machine by exchang-
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Figure 4.8: Effect of the online implementation. Top. The number of training

vectors, support vectors and the computing time of site 1 per iteration of the DSVM,

implemented sequentially over a Round-Robin network. Here one iteration means

that the solution in site 1 has been updated once. Bottom. The number of training

vectors, support vectors and computing time of site 1 per iteration of the DSVM

implemented parallel over a fully connected network. These two figures show that

the initial increase of the computing time is mainly caused by the increasing of

the number of support vectors. The later reduction in the computing time is the

result of the online implementation. Comparing these two figures, one may observe

that sequential implementation gain more than the parallel one from the online

implementation. The reason is that in sequential implementation each site may get

the most current α value as the input.
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ing support vectors. The algorithm has been proved to converge to the global

optimal classifier in finite steps. Simulations and real-world database tests show

that this algorithm is fast and robust. The properties of this algorithm can be

summarized as follows.

The DSVM algorithm is able to work on multiple arbitrarily distributed

working sets and achieves close to linear scalability if the size of network is

not too large.

Data accumulation during SVs exchanging is limited if the overall number

of SVs are limited. The communication cost is proportional to the num-

ber of SVs. Sequential implementation over a sparse network achieves the

minimum data accumulation.

The DSVM algorithm is robust in terms of computing time and communi-

cation overhead to the initial distribution of the database. It is suitable for

classification over arbitrary distributed databases.

In general, denser networks achieve less computing time while sparser net-

works achieve less data accumulation.

On-line implementation is much faster. When a better on-line solver for

DSVM becomes available, the DSVM problem may be solved much more

efficient. This is also one of our future research direction.

We believe that certain randomization techniques will enable the algorithm

to avoid the possible worst case scenario: the algorithm keeps accumulating data

until some site contains most of the data, though we did not encounter this

problem in applications. Regarding the future research, We are interested in
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developing theoretically provable convergence rates and/or bounds for the DSVM

or a slightly modified version.
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CHAPTER 5

Parallel Randomized Support Vector Machine

5.1 Introduction

Sampling theory has a long successful history in optimization [Cla88, AS93]. The

application to the SVM training problem was first proposed by Balcazar et al. in

2001 [BDT01]. However, Balcazar et al. assume that the SVM training problem

is a separable problem or a problem that can be transformed to an equivalent

separable problem by assuming an arbitrary small regularization factor γ (D and

1/k in [BDT01] and [BDT02]). They also stated that there were a number of

implementation difficulties so that no relevant numerical results could be provided

[BDT02].

We propose a novel parallel randomized SVM (PRSVM) in which multiple

working sets can be worked on simultaneously. The basic idea of the PRSVM is

to randomly shuffle the training vectors among a network based on a carefully

designed priority and weighting mechanism and to solve multiple local problems

simultaneously. We prove that our algorithm, on average, converges to the global

optimum classifier/regressor in less than (6δ/C) ln(N + 6r(C − 1)δ) iterations,

where δ denotes the underlying combinatorial dimension, N denotes the total

number of training vectors, C denotes the number of working sites; and r denotes

the size for a working set. Since the RSVM is a special case of the PRSVM, our

proof naturally works for the RSVM. Note that, when C = 1, our result reduces
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to the bound in [BDT02].

This chapter is organized as follows. We first define basic concepts and termi-

nologies for the general support vector machine in Section 5.2, which is followed

by the presentation of the algorithm in Section 5.3. We then derive the theoreti-

cal global convergence rate in Section 5.4, and provide an application in Section

5.5. We conclude our result in Section 5.6.

5.2 Support Vector Machine and the Sampling Lemma

In this section, we show that a general support vector machine may be modeled

as an abstract problem that is called LP-type abstract problem [Cla88, AS93,

BDT01, GW00]. The violators and extremes of the LP-type problem are defined

by using the KKT optimality conditions. The concepts and definitions are used

in the later proposed algorithm.

SVM Training Problems

The linear nonseparable SVM training problem has the primal form

minimize (1/2)wT w + γ1T ξ

subject to yi(w
T xi + b) ≥ 1 − ξi, i = 1, ..., N

ξ ≥ 0

(5.1)

where variables w ∈ Rm, b ∈ R and slacks ξ ∈ RN . The predefined parameter γ

is a regularization parameter and is usually empirically selected.

The corresponding dual of the problem (5.1) is shown as follows:

maximize −(1/2)αT Qα + 1T α

subject to 0 ≤ α ≤ γ1

yT α = 0,

(5.2)
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where variables α ∈ RN , sample labels y ∈ RN , the Gram matrix Q ∈ RN×N

and Qij = yiyjx
T
i xj.

The LP-type Problem

The set of training vectors is denoted by X . That is, each element of X is a

row vector of a matrix X. Throughout this paper, we use CALLIGRAPHIC
style letters to denote sets of the row vectors of a matrix denoted by the same

letter with italic style. One may note for each training set X , there is a unique

constraint set that involves training vectors of rows of X. For simplicity, we also

use X to denotes the corresponding constraint set in problem (5.1) and (5.2).

Let φ(R) be the optimal value of the problem (5.1) with training set R,R ⊆
X . The mapping R → φ(R) satisfies locality and monotonicity conditions

[GW00]. For support vector machines, the monotonicity property can be ex-

pressed as

φ(X1) ≤ φ(X2), for all X1 ⊂ X2 ⊂ X ,

as the optimal value φ(X2) may be reduced by removing constraints.

The locality property can be expressed as follows.

If φ(X1) = φ(X2) and φ(X2) < φ(X2 ∪ {x}), then φ(X1) < φ(X1 ∪ {x}),
for all X1 ⊂ X2 ⊂ X , x ∈ X .

The basis of an LP-problem (X , φ) is a inclusion-minimal subset B ⊆ X such

that φ(B) = φ(X ). Therefore, for an SVM training problem, a basis is a minimal

subset of active constraints X and corresponding training vectors such that the

optimal value will not change by adding more constraints from X\B. In this

chapter, a basis is called a set of necessary support support vectors. That is,

if any constraint corresponding to a necessary support vector is removed, the
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optimal value will increase (for a minimization problem).

Violators, Extremes and the Combinatorial Dimension

Let (Xp, φ) be a partial problem of the SVM problem (X , φ), where Xp ⊆ X :

minimize 1
2
||w||2 + γ

∑

i:xi∈Xp
ξi

subject to yi(w
T xi + b) ≥ 1 − ξi, ∀i : xi ∈ Xp

ξi ≥ 0, ∀i : xi ∈ Xp.

(5.3)

For the optimal solution (wp, bp) or αp of problem (Xp, φ), the basis is the neces-

sary support vector set, SVp. The violators of a partial problem are the vectors

that violate the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality

conditions. The KKT conditions for the entire problem (5.1) and (5.2) are listed

as follows:

yi(w
?T xi + b?) ≥ 1 − ξ?

i , ξ?
i ≥ 0, (γ − α?

i )ξ
?
i = 0, ∀i,

0 ≤ α? ≤ γ1, yT α = 0, w =
N
∑

i=1

(α?
i yixi),

where w?, b?, ξ? and α? are the optimal solution of the problem (5.1) and (5.2)

respectively.

If we define ξi and αi for the training vector xi to be 0 for xi ∈ X\Xp, the

only condition needed to be tested is

yi(w
?T xi + b?) ≥ 1, xi ∈ X\Xp.

Any training vector that violates the above conditions is called a violator to the

partial problem (Xp, φ). Let V(Xp) denote violators of Xp and E(Xp) denote

extremes of Xp. Violators and extremes satisfy the following properties:

V(Xp) := {x ∈ X\Xp | φ(Xp ∪ {x}) 6= φ(Xp)},
E(Xp) := {x ∈ Xp | φ(Xp\{x}) 6= φ(Xp)}.
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Therefore we have

x violates Xp ⇔ x is extreme in Xp ∪ {x}.

For a set of random samples R of size r that can be uniformly sampled, we

consider the expected values

vr := E|R|=r(|VR|)
er := E|R|=r(|ER|)

The combinatorial dimension of (X ,φ), denoted by δ, is the size of largest

basis of X . The size of the largest basis, δ is naturally the largest number of

support vectors for all subproblems (Xp, φ), Xp ⊆ X . For separable problems,

δ is bounded by one plus the lifted dimension, i.e., δ ≤ n + 1. For general

nonseparable problems, we do not know a bound for δ before we actually solve

the problem. What we can do is to set a sufficiently large number to bound δ

from above.

The Sampling Lemma

Gartner proved the following sampling lemma [GW00]:

Lemma 1 (Sampling Lemma). For 0 ≤ r < N ,

vr

N − r
=

er+1

r + 1
.
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Proof. By definition, we have






N

r





 vr =
∑

R

∑

x∈X\R[x violates R]

=
∑

R

∑

x∈X\R[x is extreme in R∪ {x}]
=

∑

Q

∑

x∈Q[x is extreme in Q]

=







N

r + 1





 er+1,

where [.] is the indicator variable for the event in brackets and the last row follows

the fact that the set Q has r + 1 elements. The Lemma immediately follows. 2

For an LP-type problem (X ,φ) with combinatorial dimension δ, the sampling

lemma yields

vr ≤ δ
N − r

r + 1
. (5.4)

It follows that |E(R)| ≤ δ.

5.3 Algorithm

We consider the following problem: the training data are distributed in C + 1

sites, where there are C working sets and 1 nonworking set. Each working site

is assigned a priority number p = 1, 2, ..., C. We also assume that each working

site contains r training vectors, where r ≥ 6δ2 and δ denotes the combinatorial

dimension of the SVM problem.

Define a function u(.) to record the number of copies of elements of a training

set. For training set X , we define a set W such that W contains the virtually

duplicated copies of the training vectors. We have |W | = u(X ). We also define

the virtual set Wp corresponding to training set Xp at site p.

Our parallel randomized support vector machine (PRSVM) works as follows.
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Initialization

Training vectors X are randomly distributed to C + 1 sites. Assign priorities to

all sites such that each site gets a unique priority number. Set u({xi}) = 1, ∀i.

Hence, u(X ) = N . We have |Xp| = |Wp| for all p. Set t = 0.

Iteration

Each iteration consists of the following steps.

Repeat for t = 1, 2, ...

1. Randomly distribute the training vectors over the working sites according

to u(X ) as follows. Let S1 = W .

For p = 1 : C

Choose r training vectors, Wp from Sp uniformly (and make sure r ≥ 6δ2);

Sp+1 := Sp\Wp;

End For

2. Each site with priority p, p ≤ C solves the partial problem (5.3). Record

the solution (wp, bp) for site p. Send this solution to all other sites q, q 6= p.

3. Each site with priority q, q = 1, ..., C + 1, checks the solution (wp, bp) from

site with higher priority p, p < q. Define Vq,p to be the training vectors in

the site with priority q that violate the KKT condition corresponding to

solution (wp, bp), q 6= p. That is,

Vq,p := {xi|yi(w
pT xi + bp) < 1, xi ∈ Xq, xi /∈ Xp}

.
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4. If
∑C+1

q=p+1 u(Vq,p) ≤ |Sp|/(3δ) then u({xi}) = 2u({xi}), for all xi ∈ Vq,p,

∀q 6= p, ∀p;

until ∪q 6=pVq,p = ∅ for some p.

Return the solution (wp, bp).

The priority setting of working sets actually defines the order of sampling.

The highest priority server gets the first sampled batch of data, lower one gets

the second batch and so on. This kind of sequential behavior is designed to help

define violators and extremes clearly under a multiple working site configuration.

Step 2 involves a merging procedure. If u({xi}) copies of vector xi are sampled

to a working set Wp, only one copy of xi is included in the optimization problem

(Xp, φ) that we are solving, while we record this number of copies as a weight of

this training vector.

The merging procedure has two properties:

Property 1 A training vector that is not in working set Xp must not be a violator

of the problem (Xp, φ) if one or more copies of this vector are included in the

working set Xp. That is, xi /∈ V(Xp), if xi ∈ Xp.

Property 2 If multiple copies of a vector xi are sampled to a working set Xp,

none of those of vectors can be the extreme of the problem (Xp, φ). That is,

xi /∈ E(Xp) if u({xi}) > 1 at site p.

The above two properties follow immediately by definitions of violators and

extremes.

One may note that the merging procedure actually constructs an abstract

problem (Wp, φ′) such that φ′(Wp) = φ(Xp). By definition, (Wp, φ′) is a LP-type
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problem and has the same combinatorial dimension, δ, as the problem (Xp, φ). If

the set of violators of (Xp, φ) is Vp, the number of violators of (Wp, φ′) is u(Vp).

Step 4 plays the key role in this algorithm. It says that if the number of

violators of the LP-type problem (Wp, φ
′) is not too large, we double the weights

of the violators of (Wp, φ
′) in all sites. Otherwise, we keep the weights untouched

since the violators already have enough weights to be sampled to a working site.

One may note when C = 1, the PRSVM is reduced to the RSVM. However,

our RSVM is different from the randomized support vector machine training

algorithm in [BDT01] in several ways. First, our RSVM is capable of solving

general nonseparable problems, while Balcazar’s method has to transfer nonsep-

arable problems to an equivalent separable problems by assuming an arbitrarily

small γ. Second, our RSVM merges examples after sampling them. Duplicated

examples are not allowed in the optimization steps. Third, we test the KKT

conditions to identify a violator instead of identifying a misclassified point. In

our RSVM, a correctly classified example may also be a violator if this example

violates the KKT condition.

5.4 Proof of the Average Convergence Rate

We prove the average number of iterations executed in our algorithm, PRSVM,

is bounded by (6δ/C) ln(N + 6r(C − 1)δ) in this section. This proof is a gener-

alization of the one given in [BDT01]. The result in [BDT01] becomes a special

case of our PRSVM.

Theorem 4 For a general SVM training problem the average number of itera-

tions executed in the PRSVM algorithm is bounded by (6δ/C) ln(N +6r(C−1)δ).

92



Proof. We consider an update to be successful if the if-condition in the step 4

holds in an iteration. One iteration has C updates, successful or not.

We first show the bound of the number of successful updates. Let Vp denote

the set of violators from sites with priority q ≥ p for the solution (wp, bp), namely

Vp :=
⋃

q≥p

Vq,p.

By this definition, we have

u(Vp) =
C+1
∑

q=p+1

u(Vq,p). (5.5)

Since the if-condition holds, we have

C+1
∑

q=p+1

u(Vq,p) ≤ |Sp|/(3δ) ≤ u(X )/(3δ). (5.6)

By noting that the total number of training vectors including duplicated ones in

each working site is always r, we have

p−1
∑

q=1

u(Vq,p) ≤ r(p − 1) ≤ r(C − 1) (5.7)

and

∑

q 6=p u(Vq,p) =
∑C+1

q=p+1 u(Vq,p) +
∑p−1

q=1 u(Vq,p)

= u(Vp) +
∑p−1

q=1 u(Vq,p)
(5.8)

Let uk(X ) denote the total weights u(X ) after k successful updates. At each

successful update, we have

uk(X ) ≤ uk−1(X )(1 +
1

3δ
) + 2r(C − 1).

It follows by doubling (5.8) and substituting (5.5), (5.6) and (5.7) into (5.8).

Since u0(X ) = N , after k successful updates, we have

uk(X ) ≤ N(1 + 1
3δ

)k + 2r(C − 1)3δ[(1 + 1
3δ

)k − 1]

< (N + 6r(C − 1)δ)(1 + 1
3δ

)k.
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Let X0 be the set of support vectors of the original problem (5.1) or (5.2). At

each successful iteration, some xi of X0 must not be in Xp. Hence, u({xi}) gets

doubled. Since, |X0| ≤ δ, there is some xi in X0 that gets doubled at least once

every δ successful updates. That is, after k successful updates, u({xi}) ≥ 2k/δ.

Therefore, we have

2
k
δ ≤ u(X ) ≤ (N + 6r(C − 1)δ)(1 +

1

3δ
)k.

By simple algebra, we have

k ≤ 3δ ln(N + 6r(C − 1)δ).

That is, the algorithm terminates within less than 3δ ln(N+6r(C−1)δ) successful

updates.

The rest is to prove that the probability of a successful update is higher than

one half. By sampling lemma, the bound (5.4), we have

E(u(Vp)) ≤ (|Sp|−r)δ
r+1

< |Sp|
6δ

.

By the Markov equality, we have

Pro{u(Vp) ≤ |Sp|
3δ

}
≥ Pro{u(Vp) ≤ 2E(u(Vp))}
≥ 1

2
.

This implies that the expected number of updates is at most twice as large as the

number of successful updates, i.e., k ≤ 6δ ln(N + 6r(C − 1)δ), where k denotes

the total number of updates. Note that, at the end of each iteration, we have

k = Ct.
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Therefore, the PRSVM algorithm guarantees, on average, within (6δ/C) ln(N +

6r(C−1)δ) steps, that all the support vectors are contained by one of the C work-

ing sites. For separable problems, we have δ ≤ n + 1. For general nonseparable

problems, δ is bounded by the number of support vectors. 2

The bound of average convergence rate (6δ/C) ln(N + 6r(C − 1)δ) clearly

shows the linear scalability if N � δ. This can be true if the number of support

vectors is very limited.

5.5 Simulations and Applications

We analyze the PRSVM by using synthesized data and a real-world geographic

information system (GIS) database.

Through out this section, the machine we use has a Pentium IV 2.26G CPU

and 512M RAM. The operation system is Windows XP. The SVMlight [Joa98]

version 6.01 was used as the local SVM solver. Parallel computing is virtually

simulated in a single machine. We ignore any communication overhead.

5.5.1 Synthesized Demonstration

We demonstrate our RSVM (reduced PRSVM when C = 1) training procedure

by using a synthesized two-dimensional training data set. This data set consists of

1000 data points: 500 positive and 500 negative. Each class of data are generated

from an independent Gaussian distribution. Random noise is added.

We set the sample size r to be 100 and the regularization factor γ to be 0.2.

The RSVM converges in 13 iteration. In order to demonstrate the weighting

procedure, we choose three iterations (iteration 1, iteration 6 and iteration 13)

and plot the weights of the training vectors in Figure 5.1. The darker a point
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Figure 5.1: Weights of training vectors in iterations. Darker points denote higher

weights. Left. The first iteration. Middle. The sixth iterations. Right. The last

iteration. The figures demonstrate how those support vectors get higher and higher

weights during iterations.

appears, the higher weight the training sample has. Figure 5.1 shows that how

those ”important” points stand out and get higher and higher probability to be

sampled.

5.5.2 Application in a Geographic Information System Database

We select covtype, a geographic information system database, from the UCI

Repository of machine learning databases as our PRSVM applications [BM98].

The covtype database consists of 581,012 instances. There are 12 measurements

but 54 columns of data: 10 quantitative variables, 4 binary wilderness areas and

40 binary soil type variables [BD99]. There are totally 7 classes. We scale all

quantitative variables to [0,1] and keep binary variable unchanged. We select

287831 training vectors and use our PRSVM to classify class 4 against the rest.

This is a very suitable database for testing PRSVM since the database has huge

number of training data and the number of SVs is limited.

We set the size of working size r to be 60000, the regularization factor γ to be
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Algorithm C Number of Iterations Learning Time

(CPU Seconds)

SVMlight 1 - 11.7

RSVM 1 27 47.32

PRSVM 2 10 20.81

4 7 15.52

Table 5.1: Algorithm performance comparison of SVMlight, RSVM and PRSVM.

This table shows that the PRSVM really takes the advantage of the multiple servers.

When the number of servers are limited, the salability of the PRSVM is good.

Though the PRSVM is still not as good as the SVMlight, lack of a provable conver-

gence rate makes the later one not always preferable.

0.2. We try three cases with C = 1, C = 2 and C = 4 and compare the computing

time with the SVMlight in Table 5.1. The results show that our implementation

of RSVM and PRSVM achieves comparable result with the reported fastest algo-

rithm SVMlight, though they cannot beat SVMlight in terms of computing speed

in this application. However, the lack of a theoretical convergence bound makes

SVMlight not always preferable.

We plot the number of violators and support vectors (extremes) in each iter-

ations in Figure 5.2 to compare the performance of different number of working

sites. The results show the scalability of our method. The numerical results

match the theoretical result very well.
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5.6 Conclusions

The proposed PRSVM has the following advantages over the previous works. It is

able to solve general nonseparable SVM training problems. This is achieved by us-

ing KKT condition as the criterion of identifying violators and extremes. Second,

our algorithm supports multiple working sets that may work parallel. Multiple

working sets have more freedom than normal gradient based parallel algorithm

since no synchronization and no special solver is required. Our PRSVM also has

a provably scalable and fast average convergence bound. Finally, our numeri-

cal results show that multiple working sets have scalable computing advantage.

The provable convergence bound and scalable results make our algorithm more

preferable in some real time applications.

Further research is going to be conducted to accelerate the performance of

the PRSVM. Intuitively, the weighting mechanism may be able to be improved

so that the initial iteration plays more determinant role.
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Figure 5.2: Number of violators and SVs found in each iteration of PRSVM. These

figures demostrate the effect of using more servers. The system with more servers

will find the violator and support vectors much faster than that with less servers.
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CHAPTER 6

Maximum Likelihood Estimation of Gaussian

Mixture Models

6.1 Introduction

We consider the problem of estimating the parameters in mixture distributions

of the form

p(y) =
n
∑

j=1

wjfj(y, µ).

where

fj(y, µ) =
1√
2πsj

e
−

(y−µj)2

2sj (6.1)

with parameters µ, which are constrained to lie in some convex set S. The weights

w are also unknown and must satisfy w � 0 and 1T w = 1. The variance vector

s is known. Therefore, the density function fj is a log concave function in µ.

Our goal is to estimate w and µ, based on an observed values y1, . . . , yN using

the maximum likelihood principle. The ML estimation problem is

maximize L(w, µ)

subject to 1T w = 1, w � 0, µ ∈ S,
(6.2)

where the log-likelihood function L is defined as

L(w, µ) =
N
∑

k=1

log
n
∑

j=1

wjfj(yk, µ).
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In general, L is a complicated non-concave function. It is obviously concave

in w for fixed µ. However, it is not concave in µ, not even when fj is log-concave

in µ because a sum of log-concave functions is not necessarily log-concave.

Dempster, Laird, and Rubin (1977) published their fundamental paper and

introduced the Expectation-Maximization (EM) algorithm for maximum likeli-

hood estimation from incomplete data [DLR97]. Thereafter, the EM algorithm

for maximum likelihood estimation has been widely used and extensively studied

[MK96, RWD84]. The EM algorithm estimates the parameters iteratively. Each

iteration consists of an Expectation step, which computes the distribution for

the set of unobserved variables, given the current estimation of the parameters,

and a Maximization step, which estimates the parameters, given the estimation

of the unobserved variables. Although the EM algorithm has been successfully

applied in variety of contexts, it has two major limitations. One is that it can be

very slow to converge in certain situations [MK96]; the other is that EM is often

trapped into a local optimum.

Several authors have focused on accelerating convergence of the EM algo-

rithm. Meng and Rubin (1993) introduced the ECM algorithm, which replaces

the Maximization step by a number of simpler Conditional Maximization steps

to achieve faster overall computing time [MR93]]. This algorithm was further ex-

tended to the ECME algorithm proposed by Liu and Rubin (1994) [LR94]. The

ECME improves the speed of convergence by conditionally maximizing on the

CM-steps the actual log likelihood instead of the Q-function with EM and ECM

algorithm. The SAGE algorithm proposed by Fessler and Hero (1994) updates the

parameter sequentially by alternating between several small hidden-data spaces

[FH94]. Neal and Hinton [NH98] proposed an incremental EM algorithm, which

updates only a subset of unobservable variables in each Expectation so that the
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rate of convergence can be much greater than standard algorithm. Their algo-

rithm already has some successful application [Now03]. Neal and Hinton (1998)

also proposed a sparse variant of the EM algorithm which fixes the probabilities

of the implausible values for many iterations, when we have prior bias for the

unobserved variable [NH98]. Csiszar and Tusnady (1984), Hathaway (1986), and

Neal and Hinton (1998) view the EM algorithm as maximizing a joint function

of the parameters and of the distribution over the unobserved variables that is

analogous to the Kullback-Leibler divergence [CT84, Hat86, NH98]. Matsuyama

proposed the α-EM algorithm to achieve faster rate of convergence by replacing

the log function in the KL-divergence by a function with parameter α [Mat00].

The speedup is due to the parameter α’s effect on the eigenvalues of the Hessian

matrix.

To the best of our knowledge, however, there is very limited literature trying

to search the global maximum likelihood. Vempala and Wang (2002) proposed

a spectral algorithm to avoid local optimum searching for learning mixtures of

distributions [VW02]. The basic idea of this algorithm is to project the data to a

lower dimensional space without losing much discriminant information, then infer

the parameters using projected data. This algorithm, however, assumes a strong

condition for the mixture and mean and variance vector and cannot guarantee

to converge to a global optimum. Liu and Mahmassani (2000) used the genetic

algorithm to globally search maximum likelihood [LM00]. Unfortunately, their

method cannot guarantee global optimum either. Slump and Honeners (1985)

search the global maximum by determining the number of stationary points in

a certain region with the Kronecker-Picard (KP) integral [SH85]. Their method

may become prohibitively complicated for numerical evaluation in case of many

parameters.
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6.2 ML Estimation of Gaussian Mixture Distributions

We first introduce the basics of Kullback-Leibler divergence and normalized en-

tropy as a preparation for our ML estimation reformulation.

6.2.1 Kullback-Leibler divergence and normalized entropy

Definitions

The Kullback-Leibler divergence of two vectors x, y ∈ RN is defined as

Dkl(x, y) =
N
∑

i=1

xj log(xj/yj) − 1T x + 1T y,

domDkl = RN
+ × RN

++.

It can be shown that Dkl is convex, jointly in x and y. Moreover Dkl(x, y) ≥ 0

with Dkl(x, y) = 0 if and only if x = y. (This is known as the information

inequality.)

If X and Y are two matrices in RN×n, we define Dkl(X,Y ) as

Dkl(X,Y ) =
N
∑

i=1

n
∑

j=1

Xij log(Xij/Yij) − 1T X1 + 1T Y 1,

domDkl = RN×n
+ × RN×n

++ ,

i.e., the sum of the pairwise KL-divergences of the columns of X and Y . We have

Dkl(X,Y ) ≥ 0 with equality if X = Y .

The normalized entropy of a nonzero vector x ∈ RN
+ is defined as

En(x) =
N
∑

i=1

xi log(1T x/xi), domEn

= RN
+ \ {0}.

This is a concave function of x, because

En(x) = −Dkl(x, (1T x)1) + (N − 1)1T x.
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The normalized entropy of a matrix X ∈ RN×n is defined as the sum of the

normalized entropies of its columns Xk:

En(X) =
n
∑

k=1

En(Xk)

= −
n
∑

k=1

N
∑

i=1

xik log xik +
n
∑

k=1

(
N
∑

i=1

xik) log(
N
∑

i=1

xik).

The conjugate of −En

The conjugate of −En on RN is

(−En)
∗(y) = sup

x
(yT x + En(x)) =











0
∑N

i=1 eyi ≤ 1

−∞ otherwise.

This can be seen as follows. Suppose
∑N

i=1 eyi > 1. Define xi = teyi , i = 1, . . . , N .

We have

yT x + En(x) =
N
∑

i=1

xi log(eyi1T x/xi) = t
N
∑

i=1

eyi log(
N
∑

j=1

eyj)

which increase without bound as t → ∞. Next, suppose
∑N

i=1 eyi ≤ 1. We first

show that this implies that yT x + En(x) ≤ 0 for all x. The function yT x + En(x)

is homogeneous in x, so it is sufficient to show that it is nonnegative if 1T x = 1:

yT x + En(x) = yT x −
N
∑

i=1

xi log xi

=
N
∑

i=1

xi log(zi/xi)

= −Dkl(x, z) − 1 + 1T z

≤ −Dkl(x, z)

≤ 0,

where zi = exp(yi). This follows from the information inequality and 1T z ≤ 1.

Since yT x + En(x) is homogeneous, the inequality holds for all nonzero x ∈ Rn
+.

Moreover, equality holds if x = z, i.e., xi = exp(yi) for i = 1, . . . , N .
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The conjugate of −En on RN×n is

(−En)
∗(Y ) =











0
∑N

j=1 exp(yjk) ≤ 1,∀k

−∞ otherwise.

6.2.2 Reformulation as a bi-convex optimization problem

We can reformulate the ML estimation problem as a bi-concave maximization

problem as follows. We introduce a matrix variable P ∈ RN×n, and define a

function F : RN×n × Rn × Rm → R, as

F (P,w, µ) = L(w, µ) − Dkl(P, P̂ (w, µ)) (6.3)

where Dkl is the Kullback-Leibler divergence, and P̂ (w, µ) ∈ RN×n with

P̂kj(w, µ) =
wjfj(yk, µ)

∑n
j=1 wjfj(yk, µ)

,∀k, j. (6.4)

We take as domain of F the set

domF = {(P,w, µ) ∈ RN×n × Rn × Rm → R |

P � 0, P1 = 1, w � 0,1T w = 1}.

This function can be simplified as follows:

F (P,w, µ) = L(w, µ) − Dkl(P, P̂ (w, µ))

=
N
∑

k=1

log
n
∑

j=1

wjfj(yk, µ) −
N
∑

k=1

n
∑

j=1

Pkj log Pkj

+
N
∑

k=1

n
∑

j=1

Pkj log
wjfj(yk, µ)

∑n
j=1 wjfj(yk, µ)

= −
N
∑

k=1

n
∑

j=1

Pkj log Pkj

+
N
∑

k=1

n
∑

j=1

Pkj (log wj + log fj(yk, µ)) . (6.5)
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(On line 3 we assume that P1 = 1.) This shows that F is bi-concave: if we fix

w and µ, it is concave in P ; if we fix P , then F is concave jointly in µ and w.

From the information inequality and the definition (6.3) it is clear that

sup
P1=1

F (P,w, µ) = L(w, µ),

and that the maximum is achieved by P = P̂ (w, µ). We can conclude that the ML

estimation problem (6.2) is equivalent to the bi-concave maximization problem

maximize F (P,w, µ)

subject to 1T w = 1, P1 = 1, µ ∈ S,
(6.6)

with variables P ∈ RN×n and w, µ ∈ Rn.

We can also simplify (6.5) further and eliminate w. For fixed P the maximum

of F over w is attained at

wj =

∑N
k=1 Pkj

1T P1
=

1

N

N
∑

k=1

Pkj,

which gives

sup
1T w=1

F (P,w, µ)

= −N log N +
∑N

k=1

∑n
j=1 Pkj log

∑N

k=1
Pkj

Pkj

+
∑N

k=1

∑n
j=1 Pkj log fj(yk, µ)

= En(P ) +
∑N

k=1

∑n
j=1 Pkj log fj(yk, µ) − N log N,

where En is the normalized entropy, i.e., a concave function of P , that can be

solved efficiently by a GP proved in Lemma 2.

Lemma 2 Normalized Entropy Maximization
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The optimization problems of the form

maximize En(X) + mini=1,...,l Tr(CT
i X + di)

subject to Tr(AT
i X) ≤ bi, i = 1, . . . ,m

X1 = 1,

(6.7)

with variable X ∈ RN×n, has the corresponding dual formula:

minimize bT λ + dT µ + 1T ν

subject to log
(

∑N
j=1 exp(A(λ, µ, ν)jk)

)

≤ 0, k = 1, . . . , n

λ � 0, µ � 0

1T µ = 1,

(6.8)

where the variables are λ ∈ Rm, µ ∈ Rl, ν ∈ RN , and

A(λ, µ, ν) =
l
∑

i=1

µiCi −
m
∑

i=1

λiAi − ν1T .

Proof. To derive this dual we first reformulate (6.7) as

minimize −En(X) − t

subject to Tr(AT
i X) ≤ bi, i = 1, . . . ,m

TrCi(X) + di ≥ t, i = 1, . . . , l

X1 = 1,

with an auxiliary variable t ∈ R. The Lagrangian is

L(X, t, λ, µ, ν)

= −En(X) − t +
m
∑

i=1

λi(Tr(AT
i X) − bi)

−
l
∑

i=1

µi(TrCi(X) + di − t) + νT (X1 − 1)

= −En(X) − Tr(A(λ, µ, ν)T X) − t(1 − 1T µ)

−bT λ − dT µ − 1T ν.
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Minimizing over X and t gives the following expression for the dual function:

g(λ, µ, ν)

=











−(−En)∗(A(λ, µ, ν) − bT λ − dT µ − 1T ν 1T µ = 1

−∞ otherwise.

The dual of problem (6.7) is therefore

minimize (−En)
∗(A(λ, µ, ν)) + bT λ + dT µ + 1T ν

subject to λ � 0, µ � 0

1T µ = 1.

More explicitly,

minimize bT λ + dT µ + 1T ν

subject to
∑N

j=1 exp(A(λ, µ, ν)jk) ≤ 1, k = 1, . . . , n

λ � 0, µ � 0

1T µ = 1,

which further simplifies to (6.8). Note that the dual problem is always strictly

feasible. 2

In conclusion, the ML problem (6.2) is equivalent to

maximize En(P ) +
∑N

k=1

∑n
j=1 Pkj log fj(yk, µ)

subject to P1 = 1, µ ∈ S.
(6.9)

6.2.3 The EM algorithm

The EM algorithm attempts to solve (6.6) by alternating maximization. It is also

a greedy bi-level optimization algorithm of solving (6.6).

• In the E-step, the variables w and µ are fixed, and we maximize over P .

This is a concave maximization problem with a simple analytical solution,

given by (6.4). This follows directly from (6.3).
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• In the M-step, the variable P is fixed and we maximize over w and µ. The

maximum over w can be determined analytically, by solving

maximize
∑n

j=1(
∑N

k=1 Pkj) log wj

subject to 1T w = 1.

As already mentioned, the solution is

wj =

∑N
k=1 Pkj

1T P1
=

1

N

N
∑

k=1

Pkj.

The optimal µ can be determined numerically (or in some simple cases,

analytically), by solving a convex optimization problem.

6.2.4 A Bi-Convex Formulation for Gaussian Mixture Models with

known variances

We work out the details for Gaussian distributions on R,

fj(y) =
1√
2πsj

e−(y−µj)
2/(2sj), j = 1, . . . , n. (6.10)

We assume the variances sj are nonzero and known, and that µ is constrained to

lie in the simplex

S = {µ ∈ Rn | 0 ≤ µ1 ≤ · · · ≤ µn ≤ 1}.

The maximum likelihood problem is

maximize
∑N

k=1 log
∑n

j=1 wjfj(yk)

subject to 1T w = 1, w � 0

0 ≤ µ1 ≤ · · · ≤ µn ≤ 1,

(6.11)

where fj is given by (6.10). We have

log fj(y, µj, sj) = −1

2
log(sj) −

(y − µj)
2

2sj

− 1

2
log(2π),
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so the biconvex formulation (6.9) reduces to

maximize En(P ) − (1/2)
∑n

j=1

∑N
k=1 Pkj (log sj + (yk − µj)

2/sj)

subject to P1 = 1

0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn ≤ 1.

(6.12)

The terms in the sum over i in the objective can also be written as

N
∑

k=1

Pkj

(

log sj +
(yk − µj)

2

sj

)

=
1

sj

((
N
∑

k=1

Pkj)(sj log sj + µ2
j)

−2(
N
∑

k=1

ykPkj)µj + (
N
∑

k=1

y2
kPkj))

=
1

sj

(
N
∑

k=1

Pkj)
(

sj log sj + (µj − µ̂j(P ))2
)

+
1

sj

(
N
∑

k=1

y2
kPkj −

(
∑N

k=1 ykPkj)
2

∑N
k=1 Pkj

) (6.13)

where

µ̂j(P ) =

∑N
k=1 Pkjyk
∑N

k=1 Pkj

.

This last expression shows that for fixed P , µj = µ̂j(P ) is obviously the

unconstrained minimizer of the cost function. With the constraints µ ∈ S added,

the solution is not as obvious, but can be easily found by solving the quadratic

program

minimize
∑n

j=1(αj(P )µ2
j − 2βj(P )µj + γj(P ))

subject to 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn ≤ 1.
(6.14)

where

αj(P ) =

∑N
k=1 Pkj

2sj

,

βj(P ) =

∑N
k=1 Pkjyk

2sj

,

γj(P ) =

∑N
k=1 Pkj(sj log sj + y2

k)

2sj

.
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6.3 Generalized Benders decomposition

Problem (6.12) can be written as

maximize En(P ) − V (P )

subject to P1 = 1,
(6.15)

where V (P ) is the optimal value of the QP (6.14), as a function of P . This

problem is not convex (although En is a concave function), because V is a concave

function.

6.3.1 Piecewise-linear lower bounds on V

We first note that αj(P ) ≥ 0 for all P , so

αj(P )µ2
j ≥ 2αj(P )µ̂jµj − αj(P )µ̂2

j

for all µj, µ̂j. If we choose some µ̂, we have

V (P ) = inf
µ∈C

N
∑

j=1

(

αj(P )µ2
j − 2βj(P )µj + γj(P )

)

≥
n
∑

j=1

(

γj(P ) − αj(P )µ̂2
j

)

+ 2 inf
µ∈C

n
∑

j=1

(αj(P )µ̂j − βj(P ))µj

=
n
∑

j=1

(

γj(P ) − αj(P )µ̂2
j

)

+ 2 min{0, min
j=1,...,n

n
∑

j=i

(αj(P )µ̂j − βj(P ))}.

The third line is true because
∑n

j=1(αj(P )µ̂j − βj(P ))µj is linear in µj and the

domain C for µ is a polyhedron with n + 1 vertices µBi where

µBi ∈ {[0, 0, ..., 0]T , [0, 0, ..., 0, 1]T , ..., [0, 1, 1, ..., 1]T , [1, 1, ..., 1]T}

Moreover we have equality if µ̂ is the solution of the QP (6.14), because then

inf
µ∈C

n
∑

j=1

(αj(P )µ̂j − βj(P ))µj =
n
∑

j=1

(αj(P )µ̂j − βj(P ))µ̂j.

Since α(P ), β(P ), γ(P ) are linear, the lower bound (6.16) is a piecewise-linear

concave function of P .
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6.3.2 Algorithm

We will solve problem (6.15) by computing and updating a piecewise-linear lower

bound for V . We partition the set

P = {P ∈ RN×n | Pkj ≥ 0, P1 = 1}

in K polyhedral regions Pk, k = 1, . . . , K. On each region Pk, we have a

(piecewise-linear) convex function V
(k)
lb , which gives a lower bound for V on Pk.

For each region, we define P (k)
max and Uk as the maximizer, resp. the optimal value,

of

maximize En(P ) − V
(k)
lb (P )

subject to P ∈ Pk.
(6.16)

We also store a lower bound L on the optimal value of (6.15) and (if L is finite)

a matrix Pbest with En(Pbest) − V (Pbest) = L.

The proof of the convergence of this algorithm is in Appendix 6.4.

Initialization

We initialize the algorithm with K = 1, P1 = P . We take

V
(1)
lb (P ) = −∞, P (1)

max = (1/n)11T , U1 = ∞, L = −∞.

Iteration

For simplicity, we will assume that the regions are sorted so that U1 ≤ U2 ≤
· · · ≤ UK . Each iteration consists of the following steps.

1. Take P := P (K)
max, and evaluate V (P ) by solving the QP (6.14). If En(P ) −

V (P ) > L, take

L := En(P ) − V (P ), Pbest := P.
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Let µ̂ be the solution of the QP.

2. For j = 1, . . . , n, add a new region

PK+i := PK∩






P

∣

∣

∣

∣

∣

∣

n
∑

j=i

(αj(P )µ̂j − βj(P )) = min{0, min
k=1,...,n

n
∑

j=k

(αj(P )µ̂j − βj(P ))}






with lower bound function

V
(K+i)
lb (P ) :=

max







V
(K)
lb (P ) |

n
∑

j=1

(γj(P ) −αj(P )µ̂2
j) + 2

n
∑

j=i

(αj(P )µ̂j − βj(P ))







.

Replace region K with

PK := PK ∩






P | 0 = min{0, min
j=1,...,n

n
∑

j=i

(αj(P )µ̂j − βj(P ))







and update the lower bound

V
(K)
lb (P ) := max







V
(K)
lb (P ),

n
∑

j=1

(γj(P ) − αj(P )µ̂2
j)







.

3. Solve (6.16) for k = K,K + 1, . . . , K + n. For each k, let P (k)
max be the

maximizer, and let U (k) be the optimal value.

4. Set K := K + n. Reorder the regions so that

U1 ≤ U2 ≤ · · · ≤ UK .

We terminate the iteration and return Pbest if UK − L is sufficiently small.

6.4 Proof of Convergence

In this section, we prove that the global optimization algorithm will converge to

a global optimal point in a finite number of steps by proving the following two

theorems.
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Theorem 5 (Finite ε-Convergence).

Proof. Fix ε > 0 arbitrarily. Let 〈P (t), UBD(t)〉 be the sequence of optimal

solutions to the Problem (6.16) at iteration t . At each iteration, there is an

accumulation of constraints from previous iterations. This implies that 〈UBD(t)〉
is a non-decreasing sequence which is bounded by the optimal value of the original

problem. At each iteration, P (t) ∈ X where X = P : P1 = 1 and P � 0. So, X is

a compact set. By taking a subsequence, 〈P (t), UBD(t)〉 will converge to 〈P̂ , ˆUBD〉
in finite steps with arbitrary tolerance ε′ > 0 such that P̂ ∈ X, i.e. |P̂ −P (t)| ≤ ε′,

where t is sufficient large but finite. The solution for the corresponding evaluation

problem QP (6.14), therefore, also converges to µ̂. By convexity of En(P̂ ) −
V (P̂ , µ) in the domain defined by S = {µ : 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn ≤ 1},

En(P̂ ) − V (P̂ , µ)

≤ sup
µ∈S

En(P̂ ) − V (P̂ , µ)

≤ sup
P∈X,µ∈S

En(P ) − V (P, µ)

≤ sup
P∈X

{En(P ) − V (P, µ̂) − inf
µ∈S

{DV (µ̂)T (µ − µ̂)}},

where DV (µ̂) ∈ Rn with each component DV (µ̂)j = ∂V (P,µ)
µj

|µj=µ̂j
.

Let

P̃ = arg max
P∈X

{En(P ) − V (P, µ̂) − inf
µ∈S

DV (µ̂)T (µ − µ̂)}.

By sequence convergence, we have P̃ = P̂ .

Note that

µ̂ = arg min
µ∈S

−V (P̃ , µ) (6.17)

= arg min
µ∈S

−V (P̂ , µ) (6.18)

Therefore,

DV (µ̂)T (µ − µ̂) ≥ 0,∀µ ∈ S
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Hence,

En(P̂ ) − V (P̂ , µ̂) − inf
µ∈S

DV (µ̂)T (µ − µ̂) ≤ En(P̂ ) − V (P̂ , µ̂)

for any fixed P̂ . Since we keep adding constraints, we have

ˆUBD ≤ En(P̂ ) − V (P̂ , µ̂) − inf
µ∈S

DV (µ̂)T (µ − µ̂).

So,

ˆUBD ≤ En(P̂ ) − V (P̂ , µ̂).

Since En −V is continuous in µ and En −V is upper semicontinuous at P̂ , we

have UBD(t) ≤ (En −V )(t+1) + ε for t sufficiently large. That is the algorithm’s

termination condition can be satisfied in finite steps.

Theorem 6 (Global Optimality) If the conditions in Theorem 5 hold, then the

algorithm will terminate at the global optimum of the original problem.

Proof. From the proof of Theorem 1, we know that by taking subsequence,

〈P (t), µ(t), LBD(t)〉 will converge to P̂ , µ̂, ˆLBD. We prove that (P̂ , µ̂) is the global

optimal solution by showing that the ˆUBD is the global overestimator of En −V ,

P ∈ X, µ ∈ S, since in the proof of finite ε-convergence, we already showed

that ˆUBD ≤ En(P̂ ) − V (P̂ , µ̂). In each iteration, we know that UBD(T ) =

maxP∈PK
En(P )−V (P, µ) ≥ maxk=1,...,K En(P )−V k

lb (P, µ). Since En(P )−V (P, µ) ≤
En(P ) − Vlb(P, µ) ∀P ∈ X and ˆUBD ≤ En(P̂ ) − V (P̂ , µ̂), we have

ˆUBD = max
P∈X,µ∈S

En(P ) − V (P, µ)

with the corresponding solution (P̂ , µ̂).
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Figure 6.1: Convergence of EM Algorithm and Benders Method (Example 1).

Left. The dashed line shows the iterates for the EM algorithm. The solid lines

are the upper and lower bounds in Benders method. Right. The solid curve is

the globally optimal distribution. The dashed line shows the distribution used to

generate the data. The 25 circles show (yk, Pk1) where yk is the kth data point,

and P is the optimal P in the biconvex formulation.

6.5 Demonstration

We compare the EM algorithm and the generalized Benders decomposition in

this section by presenting two numerical results: one is a maximum likelihood

estimation problem of 2 Gaussian mixtures with 25 data points; the other is that

of 3 mixtures with 20 data points. The data are generated from a given Gaussian

mixture density. Both Benders method and the EM algorithm are implemented

in MATLAB with MOSEK toolbox.

Figures 6.1 and 6.2 show an example with n = 2, N = 25, and n = 3, N = 20,

respectively.

These results show that for the simple 2 or 3 model cases with known vari-

ances, the EM algorithm works pretty well. Both the EM algorithm and the
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Figure 6.2: Convergence of EM Algorithm and Benders Method (Example 2).

Left. The dashed line shows the iterates for the EM algorithm. The solid lines

are the upper and lower bounds in Benders method. Right. The solid curve is

the globally optimal distribution. The dashed line shows the distribution used to

generate the data.

Benders method converge to the global optimum, though people never know how

good the solution of EM is without the Benders method. To be interesting, Ben-

ders method finds the global optimum very soon (at least far before it converges)

by looking at the lower bound. However, it takes long time to ”prove” its global

optimum. It is as expected since to prove a solution is a global optimum solution

for a general non-convex problem is a NP-hard problem. The best of all, when-

ever Benders method halts, we have the currently best sub-optimal solution and

a pair of lower and upper bound to see how good or bad this solution is.

6.6 Conclusion and Future Research

We identified that the maximum likelihood estimation problem of mixture family

(if the component density function is log concave) is a biconcave problem. Bicon-
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vex modeling of maximum likelihood estimation has a few implications. First, we

can solve local optimum by using alternating optimization technique. The EM

algorithm is one of the most famous alternating optimization algorithms. For

some biconvex problems, if the gradient of the Lagrange function over one set of

variables are linear in the other set of variables, we can solve such problems by

using generalized Benders decomposition. It turns out that most mixture of ex-

ponential family learning problem with discrete or exponential observation model

and many other learning models can be reformulated as a biconvex optimization

problem.

We worked out the details of Benders decomposition for Gaussian mixture

model. In this modeling, we add additional constraints to order the mean vector

without losing generality. By doing this, we reduce the number of vertices of

domain µ ∈ S from 2n to n + 1 so that the number of subregions generated in

each iteration is no longer an exponential number of parameters. Moreover, this

algorithm generalized Floudas’s method [FV93] by allowing a polyhedral domain

of parameters instead of a set of artificial lower and upper bounds.
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CHAPTER 7

Conclusion

Traditional support vector machines assume that the kernel matrices are fixed

and the feature vectors can be locally accessed. We proposed several algorithms

that work when the above assumptions do not hold.

7.1 Kernel Optimization

We proposed a kernel learning technique for support vector multi-class classi-

fication problems. We construct a function ω of the kernel matrix K as the

optimal value of the dual formulation of Crammer and Singer’s one-against-

others method. The function ω(K) can be maximized via a semi-definite program

(SDP). We successfully decomposed the linear matrix equality (LMI) constraints

in the SDP into a set of smaller LMI constraints so that the formulated prob-

lem can be more efficiently solved. A similar technique is applied to the support

vector regression (SVR) problem. We worked out the details of the SDP kernel

optimization formulation for SVR.

When features are heterogeneous, we can not simply vectorize the features.

The proposed kernel optimization technique allows us to linearly combine kernel

matrices formed from heterogeneous features. An application of retina ganglion

cell signal multi-class classification problem demonstrated that the proposed het-

erogenous feature combining method is superior to a widely used voting algo-

119



rithm.

The kernel selection problem may be considered a special case of the hetero-

geneous feature combination problem, since features are no longer homogeneous

after projected by different kernels. Experiments with synthesized data for func-

tional estimations and an application in handwritten digits multi-class classifica-

tion both show that the optimal kernel in general has as good as, if not better,

performance than the fixed kernels.

There is, however, no best known systematic way to select candidate kernels.

We tried linear combination of different type kernels, i.e., polynomial kernels,

Gaussian kernel, and etc. The idea is to algorithmically select the best feature

projection. We also tried linear combination of the polynomial kernels. The idea

is to optimally combine the features from spaces of different dimensions. The op-

timal kernels perform well in both methods. However, as long as those candidate

kernels are formed from the same set of features, the optimal combination may

not have significantly better performance than the best fixed kernel. To find a

systematic way to combine candidate kernel matrices such that the testing error

can be significantly improved is still an open problem.

7.2 Distributed Learning

We proposed a distributed support vector machine for distributed classification

problems. The idea is to iteratively exchange support vectors (SVs) in a strongly

connected network. We proved that this algorithm converges, on a strongly

connected network, to the global optimal classifier in a finite number of steps.

We evaluated the performance of this algorithm in networks of different size,

sparse and dense networks, various initial data distributions, sequential and paral-
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lel implementations and off-line and online algorithms, in terms of the computing

speed, communication cost, and data duplication and accumulation. Simula-

tions and applications show that the proposed algorithm is robust to the initial

distributions of training vectors. Denser networks and parallel implementation

usually cause more data accumulation but less computing time. Sparse networks

and sequential implementations in general achieve less data accumulation but

longer computing time. On-line implementations may significantly reduce the

computing time.

Our online algorithm implementation is, however, naive. We only use the

best available solution as the initial solution of a local problem. If there are

more advanced online SVM algorithms available, our DSVM may become much

more efficient since each local problem is essentially a problem adjustment which

appends variables and constraints based on the problem of the last iteration.

In order to take advantage of the randomized sampling technique, we proposed

a parallel randomized support vector machine (PRSVM). This algorithm is able

to train a support vector machine concurrently in multiple working sets. Each

working set is sampled via a carefully designed sampling and weighting mecha-

nism. We proved that our PRSVM algorithm converges, on average, in less than

(6δ/C) ln(N + 6r(C − 1)δ) iterations, where δ denotes the underlying combina-

torial dimension, N denotes the total number of training vectors, C denotes the

number of working sites; and r denotes the size for a working set. The average

convergence rate is faster than the randomized SVM algorithm of [BDT01] by a

factor of C.
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